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Generation of Strongly Continuous
Semigroups by Elliptic Operators

with Unbounded Coefficients in LP(R")

ALESSANDRA LUNARDI and VINCENZO VESPRI (*)

1. Introduction

This paper deals with generation of contraction semigroups by ellip-
tic operators in divergence form in LP(R"), 1 < p < oo. The main
novelty with respect to the previous literature is that the coefficients
of the first order derivatives are allowed to be unbounded, with (not
more than) linear growth at co. Precisely, we consider a differential
operator A in R" of the type

(Au)(z) = Y Di(gi;(z)Dju(x)) + Y Di(ai(z)u(z)) +
i=1

i,j=1
n

+ ) bi(z)Diu(z), =€ R (1.1)
=1

The coefficients ¢;; are assumed throughout to be measurable and
bounded in R”, and to satisfy the ellipticity condition

2,j=1
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with v > 0. The coefficients a; and b; are Lipschitz continuous,
possibly unbounded, in R".

We show that the realization of A in LP(R"™) generates a strongly
continuous contraction semigroup, which is not analytic in general
but it enjoys further smoothing properties, which will be the object
of a subsequent paper.

In the case of bounded a;, b;, uniformly continuous and bounded
gij, and p > 2, generation of analytic semigroups was proved by
Cannarsa, Vespri [4]. The same papers deal also with unbounded
coefficients, but their operator A is of the type Au = Au + vu,
where the potential v is unbounded in such a way that it balances
in a certain sense the unboundedness of a; and b;. In this context,
see also Aronson, Besala [1, 2].

In the case v = 0, analytic semigroups are generated by certain
operators where a;, b; grow superlinearly (see Davies [5]) or where
a;i, b; grow linearly but LP(R") is replaced by a suitably weighted LP
space (see [10] for the Ornstein-Uhlenbeck operator).

The lack of continuity of ¢;; gives additional technical difficulties,
even in the definition of the realization A, of A in LP(R"). To define
such a realization we introduce the bilinear form associated to A,

atig) = [ Y 4@ Djule)Dipla)ds

ij=1

- [ S a@u)Dipla)ds
i=1

+ /n Zbi(x)Diu(x)gO(w)dﬂ?, (1.3)

for every u, ¢ such that the above integrals make sense.
If the coefficients g;; are uniformly continuous, the definition of
D(A,) is the standard one: we set
D(4,) = {u € I/Vll’p(]R") : 3C > 0 such that

oc

la(u, @)l < Cllgll,y Vo € o7 (®)},  (1.4)

where p' is the conjugate exponent of p and T/VO1 4 (R™) is the subspace
of W' (R") consisting of the functions with compact support.
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If the coefficients ¢;; are not continuous, the definition of D(A4,)
is more complicated. If p > 2 we have to replace the condition
uwe WHP(RY) by u € I/Vll’Q(]R”) N LP(R™). If p < 2 we must add

loc oc
further conditions in order to prove that the resolvent set of A, is

not empty, precisely to get uniqueness of the solution of Au—Apu = f
for every f € LP(R") and A sufficiently large. See Sections 3, 4.

In any case, since WO1 4 (R") is dense in L¥ (R"), for every u €
D(Ap) the mapping ¢ — a(u, ) may be continuously extended to
LP (R™) so that there exists a unique f € L?(R") such that a(u, ) =
(f>0) ox s - Then we set

Ayu = f. (1.5)

Therefore, fixed any XA € R, f € LP(R"), a function u € D(A4,) is a
solution of the resolvent equation

Au— Apu = f (1.6)
if for each ¢ € WO1 4 (R™) we have
/ ( Z gi;DjuDjp + Z a;uD;p — Z biD;up + )\wp) dr =
R \yj=1 i=1 i=1
=/ f(z)p(x)dz,
that is, if u is a distributional solution of
A — Au = f. (1.7)

Similarly, fixed any A € R, f; € LP(R"), i = 0,...,n, a function
u € WP(R) N LP(R) (if p < 2), u € W,;2(R*) N LP(R™) (if p > 2)
is said to be a solution of

Au— Au = fy+ Z D;f; (1.8)
=1

if for each ¢ € WO1 4 (R™) we have

n n n
/ ( 5 gijDjuDjp + E a;uD;p — 5 b;Dijup + Awp) dxr =
Rn

ij=1 i=1 i=1

:/ (f‘P_ZfiDiSO)dxa
R® i=1
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that is, if u is a distributional solution of (1.8).

Things are a bit different in the case p = co. We can still prove
that for X large enough (precisely, for A > A = >0 || Diail|oo)
and for every f € L°°(R™) problem (1.6) has a unique solution u €
L>®(R") N H. (R"), and that the estimate

1
lelloo < 5—5— Il
o

holds. However the domain of the realization A, of A in L*®(R"™)
is not dense in general, so that we cannot conclude that A, gener-
ates a strongly continuous semigroup. Even if we replace L*°(R") by
UCB(R"), the space of the uniformly continuous and bounded func-
tions, the domain of the realization A of A in UCB(R") fails to be
dense in general. Neverthless, under further regularity assumptions

on g;; we have proved in [11] that A generates (in a suitable sense)
a semigroup 7'(t) which enjoys nice smoothing properties.

2. The case p=2

The main result of this section concerns unique solvability of (1.8),
with p = 2, for A large enough. The generation theorem will be a
byproduct of this one.

THEOREM 2.1. Set
1 n
A= > Db — ag)|l zoe- (2.1)
=1

then for every A > Xy and for every fo,...,fn € L%(R"), problem
(1.8) has a unique solution w € H'(R™). There is C()\) > 0, inde-
pendent of f;, 1 =0,...,n, such that

lull g < C) Y fillee- (2.2)
1=0
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Proof. We approximate the coefficients a; and b; by bounded ones.
For m € N we define

a;(x) if |z| < m,

a;(mz/|z|) otherwise,
(2.3)
bi(x) if |z| <m,
bi(mz/|z|) otherwise.
Note that the Lipschitz seminorms of az(-m), bgm)
the ones of a;, b;, respectively. Consider the operators A, defined
as the operator A, with a; replaced by agm) and b; replaced by bz(m).
For every A > X\ and fo, ..., fn € L2(R"), the equation

are less or equal to

Mum — Amtim = fo+ Y _ Difi

i=1
has a unique solution u,, € H!'(R") thanks to the Lax-Milgram

theorem. Indeed, the bilinear form a,,, defined as a with a; replaced

by az(-m) and b; replaced by bgm), is obviously continuous in H'(R")

and it is coercive, as it is easy to check. Therefore,

/ (qu ) Dittn (2) Djtom () —

6,J=1
30 (@) — al™ (0) ot () Do) + Aumw))dx _
=1
:/R( Zfz ) Dty (x )da: (2.4)

Thanks to the ellipticity condition (1.2) we get

/ Z qu Dium(z )Djum(a:)da: > V||Dum||%2-
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Moreover,

‘ /n Z(bgm) () — az(m) ()t (2) Dty () d
i=1

- ‘% /n ;(bgm) (z) — az(m)(fﬂ))Di(u?n)(x)dx

1 & m m
_ ‘i/ﬂwu;(x)zm(bg )~ a™)(2)da
i=1

IN

1y m  (m
5 2106 = o™ )= -
i=1

Therefore,

1 n
D+ (A= 5 D100~ i)l )l <
=1

n
< llumllz2l follze + Y I Ditml 2]l fill L2 (2:5)
i=1

so that
1
V[[Dtm |72 + (A = Xo)lum 72 < ellumllZ> + 4—6||fo||%z +

v 1 &
+ 5 1Dumll7: + o 2; 1fill72, Ve > 0.
1=

Taking e such that A — Ay — e > 0 we get

v 1 1 &
3 [ Duml72+(A—Xe —&)|[tm| 72 < 4—8||fo||%z+gz I fill72- (2.6)
=1

In particular, the functions u,, are equibounded in H'(R"). Hence
there exists a subsequence uﬁi}c converging weakly in H!(B(0,1)).
From this subsequence it is possible to extract another one ugl con-
verging weakly in H'(B(0,2)). Iterating this procedure and defining

8 . .
vy = u%l, the subsequence vs converges weakly to a function u in
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H!(K), for every compact set K C R". Tt follows easily that u is a
solution of (1.8) and satisfies (2.6), so that it satisfies (2.2).

It remains to prove uniqueness of the solution of (1.8). Let z €
H'(R™) be such that Az — Az = 0.

For every k > 1 let 85 be a smooth cutoff function such that

Op(z) =1 if |z| <k, Ok(z) =0 if|z| > 2k, 0<6(z) <1

”ngk(iv)“L“’ < C/k VeeR*, i=1,...,n,
(2.7
where c is a constant independent on k. It is easy to check that 6,z
satisfies

Az — A (Or2) = D;(gij2D;0%) —|— . zD 0k,
J z

provided m is large enough (m > 2k), so that bz(-m) = b;, agm) = qa
on the support of ;. Estimate (2.6) gives then

n n
182l < COV (Z laigzDs0l 12+ ||(bz-—ai>zDz-ek||L2). (2.8)

i=1 i=1

Let By be the complement of B(0,k) in R*. Then for every i, j =
1,...,n
c
26kl 2y < Slaigllze 2l o 5,
and forevery i =1,...,n
c
[(bi — @i)2D;b|| 2 (mny < EHbz' — @il (0,20 121l 25, )
Since a; and b; have at most linear growth there exists ¢; such that
c n
f Z lai + bill Lo (B(0,28)) < €1, VEEN.
i=1
Therefore from (2.8) we get
c n
002l < €O 3 Nallm -+ lelogi
t,j=1

The right hand side goes to 0 when k — oco. Therefore, z = 0. O
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REMARK 2.2. The above proof shows in fact uniqueness of the so-
lution in H} (R™)N L?(R™).

loc

Define D(A;) as in the case of smooth coefficients, that is
D(A3) = {u € HY(R™) : 3C > 0 such that
la(u, )| < Clillzz Vo € Hy(R™)},
Agu = fa

where f is the unique element of L?(R") such that a(u, ) = (f,¢)
for every ¢ € H}(R™).

THEOREM 2.3. The operator As defined above generates a strongly

continuous contraction semigroup in L*>(R™). Specifically, p(A3) D
{AER: XA> Ao}, Ao being defined by (2.1), and

[R(A, A2) fll2(mny <

1
<3 I fll2@mnys A > Ao, (2.9)

1
|l A de. (2,10
200 ) 1 fllz2®n) 2. (2.10)

IDR(X, A2) fll2(rny <
Proof. D(Ay) is dense in L?, since it contains C§°(R"). Taking \ >
Ao, fo=f € L*R"), f; =0,%=1,...,n, Theorem 2.1 implies that
the resolvent equation

Au—Au=f

has a unique solution u € D(Agz). To prove estimates (2.9) and (2.10)
let us revisit the proof of Theorem 2.1. For every m € N we get from
(2.5)

V| Duml[2z + (A = A) luml|Z2 < llumz2llfllzz,

so that
1
(A=A lumllze < || fllz2, (WA= X2))2[[Dumllge < || f|lz2,

which implies (2.9) and (2.10). By the Hille-Yosida Theorem, A,
generates a strongly continuous semigroup. O
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COROLLARY 2.4. H'(R") belongs to the class Jy o between L*(R™)
and D(A3). Specifically,

2

5 Il 2142 = deDull ', Vue D(42).  (211)

[1Dullp2 < L2

Proof. Fix u € D(As3). By estimate (2.10) for every A > X2 we have

1
[Dullz: < 20N )12 [Au — Agul|
(A — X)1/? 1
< — ————||dou—A4 .
> I/l/2 ||’U’||L2 + V1/2(A — )\2)1/2” ou 2U||L2

If Aou — Agu = 0, then |Dul[z2 < v=/2(\ — Ao)Y/?||u| .2 for every
A > Ao, so that u = 0 and (2.11) holds. If Au — Agu # 0, then u # 0.
Take A > Ay such that (A — A)Y/2 = ||Au — A2u||1/2/||u||1/2. Then
IDullz2 < 207 2||ul| 2 (A — Ao )ul|}s and (2.11) is proved. O

REMARK 2.5. Similar results hold if the bilinear form « is replaced
by

i) = alu, ) +Z/ (-@@uDie) +
B Diu(@)e(z) + ao<x>u<x>)dx,

provided the coefficients ag, a;, gj, i=1,...,n, belong to L®(R").
It is not hard to check that in this case the constant Ay has to be
replaced by

~ 1 o . o~
A2 = 2o+ llog o + o 2; @i — billoos
1=
where ¢ is any positive number such that

emax{|[a; — bil|lc: 1 =1,...,n} <

bl

N R
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and af (r) = max{ao(z),0}. Indeed, estimating ||um| g1 as in the
proof of Theorem 2.1 we get the additional term

/ > (@s(w) — Fi(a) (@) Dyt () / ao(2)i2, (z)da.
=1

n

The modulus of the first integral is less or equal to

n
~ = € 1
5 1 = Bl (§lDruml + o
i=1 £
for every € > 0. The second integral is greater or equal to

~ [ @@ > o o= fuml
and the statement follows.

The result of Theorem 2.3 may be extended to the case of suitably
weighted L? spaces. Precisely, let 9 > 0 be a smooth function such
that

n

D

=1

n

2.

ij=1

D+ ()
P(z)

Djji(x)

-1 )
@) <CO+z))7Y zeR.  (2.12)

We say that a function f belongs to Li (R™), (H}b (R™), respectively)
if [[9ll22 @ny = 19 llL2@ny (vespectively, (19l gy gn) = 19|z @)
is finite.

The natural domain of the realization Ay, of A in L7 (R") is

D(Asy) = {u€ HL,(R"): 3C > 0 such that
la(u, )| < Cllellz Ve € Hy(R")}-

PROPOSITION 2.6. The operator As 4, generates a contraction semi-

group in pr(]R"). Moreover D(Ayy) C H&,(R") and there is C > 0
such that for \ sufficiently large, say A > Ay,

C 2 )
IDROV A1 < 55 0Mfllizs VF € L3R
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Proof. If f € L?p(R”) and A € R, the equation

Au— Ay ypu = f (2.13)
is equivalent (through the changement of unknown v = ¥u) to

A — Bov =9 f, (2.14)

where By is the realization in L?(R") of the operator associated to
the bilinear form
U) pdz

b(v,p) = a(v,p) / Z%( z¢]
/ Z%] " UDz<Pd-'13+/ Zb+aZ Td)’l)(pdx

4,j=1
2,j=1

D;

Since the coefficients b; have at most linear growth and v satisfies
(2.12), the form b satisfies the assumptions of Remark 2.5. Therefore,
the operator Bo generates a contraction semigroup in L?(R"), and
consequently the operator Ag ., generates a contraction semigroup in
L% (R").

Note that by Remark 2.5 the solution of (2.14) is unique in
L*(R*) N H. (R™). Therefore the solution of (2.13) is unique in
L?

2 (RY) 0 HL (R, 0

loc

The result of proposition 2.6, apart from its intrinsic interest,
will be used later to study the case p # 2.

3. The case p > 2

For p > 2 we set
D(4p) ={u € H. (R*) N LP(R") : 3C > 0 such that
la(us 9)| < Cloll L Vo € WP (R},

Apu = f,
(3.1)
where f is the unique element of LP(R") such that

a(t, ) = (f,9) pyps for every o € Wy (R*).
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In the definition of D(A),) we cannot replace u € H} (R") by
u € Wllo’f(]R"). Indeed, due to well-known counterexamples with

bounded and measurable coefficients (see [6]), for p > 2 the estimate
la(u, )| < Cllgl|,y forall ¢ € Wol’p’ (R™) is not enough to guarantee
that u € W,,”(R").

The main result of this section is similar to Theorem 2.3.

THEOREM 3.1. Let 2 < p < oo and set
1 n
Ap = s D Db = (p — Vai)|| oo (32)
=1

Then every X\ > X, belongs to p(Ap), and for every f € LP(R") we
have

1
<
||R(AaAp)f||LT’ — A _ Ap

In particular, A, generates a strongly continuous contraction semi-
group. Moreover for every f € LP(R™) |R(\,A,)f[P/? € H (R?)
and there is C(\) > 0, independent of f, such that

1fllzo- (3.3)

IDIRO, 4,)fP)2 < COVIFIS- (3-4)

Proof. Let 9 be a fixed weight function satisfying (2.12) and such
that LP(R™) C Li(]R”) for every p > 2; for instance we may take
P(z) = (1+ >, 2?)™™. We consider first the case where A >
max{\y, Ay}

We approximate again the coefficients a; and b; by the bounded
coefficients agm), bl(m) given by (2.3), and we approximate the coeffi-
cients g;; by smooth ones, defined by

ng;n (a) = /R @i (y — z)nm(y)dy, = €R", (3.5)

where 7 is a smooth function with support contained in B(0,1) and
with integral 1, and 7, (z) = m"n(mz). Then by (1.2)

3 M @)ig; > vl @, € R (3.6)

=1



GENERATION OF SEMIGROUPS 263

Consider again the operators A, defined as the operator 4, with

coefficients replaced by qg"), agm), bz(m)

For every f € LP(R"), the equation
Ay — A, = f

respectively.

has a unique solution u,, € HT}}(R") due to Proposition 2.6. It be-

longs to W1P(R") thanks to classical regularity results (see e.g. [8]).
Since Up|un, P2 € WP (R") we may take it as a test function,
getting

p—1) " ¢ fuml" 2Dyt Djuda
R iyj=1

‘/ S0 — a{™ Yt P~? Ditigmda
" =1

+ M, (z)dz = f(@)um(z)de.
R~ R~

Thanks to the ellipticity condition (3.6) we get

n
_ dv(p—1
[ 6=1 Y a i~ Ditn Dy, > L= D)

2,j=1
Moreover,

n

/ S — (0 = 1)a™ Y P2 Dinda
R

n i—1
7 1 .
= 2L S0 - 0Dl
L
1 n
B “/ Do Dih™ ~ (p =~ Day™) jum|Pdz
P Jrr i
1 n
< o> 1D; (6™ — (p — 1)a{™) | oo [l 8-
=1
Therefore,

4v(p—1)
———IDlum[P/?[17. +
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1 n
()‘ p > IDibi = (p - 1)ai)||L°°> ||tm | r <
=1
< Nl %0 1 1l o (3.7)

so that
(A = Mp)llumllee < || fllze (3-8)

and
4v(p—1) e (p-1)/p p/2)2/P
o (A= 2p) I DlumlP =172 < N flle- (3.9)

We shall show that a subsequence of u,, converges weakly to a func-
tion u in LP(R™) and in Hdl)(R"), where 1 is any weight function
satisfying (2.12) and such that LP(R") C L7 (R").

By (3.9) the sequence {u,, : m € N} is bounded in LP(R"), so
that a subsequence u,,, converges weakly to a function v € LP(R"),
which satisfies

(A =Ap)lullze <[ f]lLe-

Moreover, since f € L?p(]R”), by proposition 2.6 the sequence uy,, is
bounded in H qlp(R"), so that a subsequence u,,, converges weakly to
a function v € H&I(]R”); obviously we have v = u.

Let us prove that w is a distributional solution of (1.7).

Let ¢ € C§°(R™) and let mg be so large that the ball B(0,mg)
contains the support of ¢. Hence for each m > myg, u,, satisfies

/R (Zq”Dum o — ZbDumcp+Za,um z(,D—i-kum(p)d

1,j=1 i=1
n
= / <f90 + ) (g — qEJ’-”))Djuijw> dz.
8 i,j=1
Note that

<

Z QZ] qz] )Djum(x)Dj(P(x)dx

B(O,mo i ] 1
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o 1/4
< ([ @ —dpras)

4,j=1

1/4 1/2
(/ <p4(w)dw) (/ u%(:v)d:v)
B(0,mo) B(0,mo)

which goes to 0 when m — +oo. Hence for each ¢ € C§°(R") the
function v satisfies

/[ (qu )Djip(a)—

1,J=1

—Zb o) + M(2)p(z ))dxz F (@) ()

R"

By the density of C§°(R™) such equality holds for each ¢ € H}(R?).
Therefore, u is a distributional solution of (1.8).
Uniqueness of the solution in LP follows from uniqueness in Li.
Let us consider now the case where Ay, > X, and X € (Ap, Ay
Fixed any p such that A + p > Ay, the resolvent equation

Au— Ayu=f (3.10)
is equivalent to
A+ w)u — Ayu = f + pu,
that is
= R(A + p, Ap)(f + puw).

The operator u — T'u = R(A + u, A,)(f + pu) is a contraction in
LP(R") since, by estimate (3.3),

7

A A < —
1RO+ s Apslzs < 5l

[ullze,

and p/(A+ p — Ap) < 1. Therefore I' has a unique fixed point in
LP(R™), which is the unique solution of (3.10), and

-1
W 1 1

<|1-— =
il < (1= 572=5) 5=l =
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so that u satisfies (3.3). Moreover by (3.4)

1Dl < CO+ pIf + pull?)
< OO+ )L+ /(= X))l FIR
= I,
so that u satisfies also (3.4). O

As a corollary of Theorem 3.1 we get a similar result for p = oco.

COROLLARY 3.2. Set
n
i=1

Then for every A > Ay and for every f € L™°(R™) the equation
Au—Au=f

has a unique solution u € H} (R") N L®(R"), and

1
A— Ao

lullzee < £l zee- (3.12)

Proof. Set again 1(z) = (1+ > 1, #2) ™™, and fix A > max{Aso, Ay}
Since L*®(R™) C Li(R”), the equation A\u — Au = f has a solution
u € Hy(R"), and the solution is unique in L7 (R") N H,,,(R"), by
Proposition 2.6.

For every k € Nset fr, = fxp(o,k)- Then fi € LP(R") for every p.
Taking p large enough so that A > A, and setting up = R(X, 4p) f,
by Theorem 3.1 we have

1 1
|kl e @ny < T )\p“kaLP(Rn) <5z /\p“fHLO"(Rn)-

Therefore u; € L*°(R") and letting p — oo we get

1
|kl oo (k) < P | £l Loo (R,
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and since K is arbitrary,

1
|kl oo rmy < TN | £1l oo (Rr)-

Since fi — f in pr(]R”), then uj, — u in pr(]R”), and a subsequence
converges to u almost everywhere. It follows that

1
[[w]| oo (mmy < PEEDY | £l Loo (Y-

The case where Ay > Ao, A € (Ao, Ay) can be treated as in the
proof of Theorem 3.1. O

We cannot conclude that the realization of A in L*°(R") gen-
erates a strongly continuous semigroup because its domain is not
dense in general, not even in the case of constant g;; and linear b;

(see e.g. [7]).

4. The case 1 <p <2

For 1 < p < 2 the solution of a divergence form equation with
measurable and bounded coefficients g;;,

Xu— " Di(gijDju) = f,

ij=1

and f € LP(R"), is not unique in general.

In the case of a bounded domain  with Dirichlet boundary
condition Meyers [12] proved the existence of ¢ > 0 such that for
2 — ¢ < p < 2 there is a unique solution in W1?(Q). Serrin [15]
(see also Prignet [14]) proved non uniqueness in the case n > 2 and
1 <p<mn/(n—1) (see also the contribution of Boccardo et al. [3]).
For the general case n/(n—1) < p < 2—¢ uniqueness is still an open
question.

In our case (2 = R", unbounded coefficients) it is possible to
prove uniqueness of the solution of (1.6) in W1P(R™) for \ large
provided the coefficients g;; are uniformly continuous.
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PROPOSITION 4.1. Let g;; be uniformly continuous and bounded, let
a;i, b; be Lipschitz continuous. Let 1 <p < 2 and let A > A\y. Then
problem (1.6) has at most one solution in WP (R").

Proof. Assume that z € WHP(R™) is a solution of (1.6) with f = 0.
Then for each ¢ € WO1 P (R") we have

n n n
/ (/\zgo + Z qijD;jzDjp — Z biDizp + Z a;zD;p + )da: =0.
" i,j=1 i=1 i=1
(4.1)
We recall that
||z||LP(]Rn) = SUPkeN, geL? (R7): gl =1 e Oxgzdz.
For each g € LP (R") such that llgll,» = 1 let w be the unique
solution of Aw — A}, w = g, where A}, is the realization of the formal
adjoint A’ of A in L¥' (R"),
n

Ao =" Di(g;iDjp) = Y _(Di(bip) — aiDip)).  (4.2)

i,j=1 i=1

Then for each ¢ € W, ”(R") we have

n
/n ()\uxp + Z gi;DjwDjp —

6,j=1
n n
— Z biw(z)D;p + Z aiDZ-wgo) dx = / feodz. (4.3)
i=1 i=1 R
Since the coefficients g;; are uniformly continuous and bounded, w €
Wli’cp (R™). Let 0 be the cutoff functions defined by (2.7). Then
O,z € W, (R") may be taken as a test function in (4.3), and pw €

w, P '(R") may be taken as a test function in (4.1). Comparing we
get

n n
/ gOpzdx = / ( Z qisziijOk + Z QiijiZDj9k> dr

ij=1 i,j=1

n
+ / Z(a, - bz-)sziOk dx. (4.4)
"i=1
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It is easy to see that all the addenda in the right hand side of (4.4)
go to 0 as k goes to co, except perhaps

n
/ Z gij2DiywD;0 dz.
" 4,j=1

The difficulty is due to the fact that w does not necessarily belong
to W' (R) but only to WP (RM).

To prove that also the above integral goes to 0 as £ — oo it is suffi-
cient to show that for every i = 1,...,n, z — (1+|z[?) Y2Dw(z) €
LP (R™). Indeed, setting

Mj= sup |D;fk(z)|(1+]a?)"?,
T€ER” keN

we have in that case

/ > gijzDiwD;0; dz

1,j=1

- | Dyw()” )/
< iill oo M ——d :
< X et [ o s

2,j=1

/v
- ( / |z(x)|pdx) .
k<lol<2k

which goes to 0 as k — oo. Hence |[|2]|zp&n) =0 and u = v.

The proof of the fact that « — (1 + |z]2)~/2Dw(z) € LP (R")
for every i = 1,...,n is rather lenghty.

Let 0y, k € N, be the cutoff function considered in (2.7), and set
Xk = Oox — Oon—2 for k > 2, x1 = 61. It is easy to check that the
function yw satisfies

<

n n
Axkw — A'(xpw) = — Z Di(gijwDjxr)) — Z qi; DiwDjx +
ij=1 ij=1

n
+ > (ai + bi)wDixk + gxk
i=1
so that the function v defined by

v(z) = xk (2 2)w (27 x)
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satisfies

n n
47%x = Y Di(@;Djv) + 278 @Div +

ij=1 i=1
n . n
+275Y " Di(bv) = o+ Y Di,
=1 =1
where
n
¢o = —27F > GiyDiDjxp(2 ")
,j=1
n o~
+27F > (@ + by)wDixk (27F) + 4 Fgxw(27F),
=1
n
¢’i = _Z_szq\:tjﬂ)/D]Xk(2_k)’ 1= 17"'5”3

=1

and Gij(y) = ¢;j(27%y), ai(y) = 27%ai(27%y), bi(y) = 27Fb:(27Fy),
g(y) = g(27*y) @w(y) = w(27*y). The coefficients a; and @; are
bounded by a constant independent of k; the coefficients g;; are uni-
formly continuous with modulus of continuity bounded by a modulus
of continuity independent of k. Therefore we may apply the classical
regularity results (see e.g. [13, Thm. 7.4.1(iii) p. 297]), which give

n
ooy < € (32 1680y + 9 e
1=0

with constant C' independent of k. It is not hard to see that there
exists C1 > 0 such that

n
Z il 1o (Rn) < G (2_k||G||LP'(3(0,22k+1)\3(0722k72) +
1=0

+ 4k ||§||Lp’ (3(0,22k+1)\3(0,22k—2))-
Recalling that v = @ on B(0,2%)\ B(0,2%~1) and coming back to

w we get

n
Z/ 1+ |z2) Y2 Dsw(z) P dz <
i—1 / B(0,2%)\B(0,2k~1)
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< o2t | (11 + o) 2Drw(a)” +
B(0,2k+1)\B(0,2k—2)
@ + o) )da

Summing up for k > ko we get

Z/n\mm 1 (1 + [&>) 2 Diw(@) P de <

< o | (1 + laf?)-2Dus(a) ¥ +
R”\B(0,2k0~2)
+ |lw(@) P + |g(z) P )da.

Taking kg large enough we get

Z / (1 + |22) 2 Dyw(z) P de <
R7\B(0,2F0—1)
<0 / (w@)P +lg@)P)dz.  (45)
Rn\ B(0,2k0—2)

From the general regularity theory of elliptic differential equations
(see e.g. [13, Thm. 7.4.1(iii)]) we get also

Z | Diw(z HLP 2’“0—1))dx <

< os(nwnm(o,zko» +19@) I (oo ) (46)

Note that [[w||g1(p(o2koy) is finite thanks to Proposition 2.6: it is
sufficient to consider a weight 1 satisfying (2.12) and such that
LP(R") C Lfﬁ(R”). (4.5) and (4.6) imply now that z — (1 +
|z|2)~ Y2 Dw(z) € LY (R™) for every i = 1,...,n. O

In the case of measurable and bounded g;; we have to look for
a solution to (1.6) satisfying additional conditions if we want the
solution to be unique.

In the paper [16], Stampacchia introduced a restricted class of
solutions of Dirichlet problems in bounded domains in which he was
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able to prove uniqueness. We consider now a similar class when
Q =R".

Let 1 < p < 2, let A’ be the formal adjoint of A defined in (4.2),
let X > max{\y, Ay}, and consider the operator

G: I (R") — L¥ (R)
defined by G(g) = v, v € D(Ay) being the solution of
v —Av =g,
which exists and is unique by theorem 3.1. Such a theorem gives also

A= 2A)G L < ligllLer-

Let now f € LP(R"™). A function u € LP(R") is said to be a S-solution
of (1.6) if for any g € L (R") we have

/ ugdx = fG(g)dz.
n RTL

If u is a S-solution, we say that Au = Au — f in the S — sense.
Existence and uniqueness of an S-solution is a consequence of the
Riesz representation theorem.

To define the domain D(A,) we consider the set

D, = {ue WUP(R?) N LP(R™) : 3C > 0 such that

loc

la(u, @) < Cliell L Yo € WP (R)}.

For every u € D, the mapping ¢ — a(u,y) may be continuously
extended to I”' (R™) so that there exists a unique f = f(u) € LP(R")
such that a(u, @) = (f, ) p, .- Then we set

D(Ap) ={u€ D,: Au= f in the S-sense}, Ayu=f,  (4.7)

THEOREM 4.2. Let 1 <p <2, p' = (p—1)/p. Then every X > X,
belongs to p(Ap), and for every f € LP(R") we have

1
A=A

[1R(A, Ap) fllze < £l zs- (4.8)
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In particular A, generates a strongly continuous contraction semi-
group in LP(R™). Moreover R(\, A,)f € WLHP(R™) and there is
c(v,p) > 0, independent of f and A, such that

IDRG. AN lis < B o

(4.9)
Proof. We try to follow as far as possible the procedure of Theorem
3.1. First we note that is sufficient to prove that the statement holds
for A > max{\,, Ay, Ay}, where, as usual, ¥(z) = (1 + Y1, 2?) "
(the general case A > A, can be recovered arguing as in the final
part of the proof of Theorem 3.1). So, we fix A > max{A\p, Ay, Ay}

and we approximate the coefficients ¢;;, a;, b; by ¢;7, a(m), bgm)

; given
by (3.5), (2.3) respectively. The problem (1.6) with coefficients g7,
agm), bgm) has a unique solution u,, € WHP(R") for \ large enough.
However, now we cannot take |u,,|P 2u,, as a test function to get
an estimate similar to (3.9) because it does not necessarily belong to
WP (R"). Indeed, its gradient may have singularities of any order
at the zeroes of uy,.

We overcome this difficulty taking as a test function

N
Ph.k = Um um_{—ﬁ 0]67 hakENa

where 0, is the cut-off function defined in (2.7), and then letting h,
k — oo. For every h, k we have

n
/ ()\Um(Ph.k + > qgn)Djuij%.k +
R ij=1

n n
+)° 0™ Do gy — > bz(-m)DiUmQOh.k) dz = /R fonkde.
i=1 i=1 "

The right hand side is easily estimated, for all h, k € N, by

1\ @22
/ fum(u?n—l—E) Ordz

< / 1] - P~
Rn

—1
<\ f 2w | &2
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The left hand side may be splitted into the sum Z?:l I;, where

) ) 1\ P—2)/2
I1 = / A’U,m ’U,m+ﬁ ekd.’L‘,

" Nk
"i=1

" 1\ (P—2)/2
I4 = /n Z qi;-n ((p — 1) (u?n + E) DiuijumHk

-9 1\ (P=9)/2
S (ufn + E) Ditiry, D jum Oy, +

(p—2)/2
+ Uy, (U’12n + E) DZ’U,ijgk) dx.

Letting h — co and then £ — oo we get easily

lim ( lim I;) = Allum][%,. (4.10)

k—00 h—00

For every h, k we have, recalling that u,,(u2, + l/h)(p_z)/zDium =
Di(u?, + 1/h)P/ [p,

1 n 1 p/2
b= / S (o~ 1)a{™ — b6, D; (ufn + E) da
=1

= 1/ (u2 + 1)10/2271:(916D~((p - l)a(m) - b(m))d:v
P n m h — ? 7 7

-l-l/ (u2 + l)pﬂi((p—l)a(m) —b(-m))D-dea:.
pJrn \ " h ~ ¢ ! !
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Since a;, b; have at most linear growth, there is C > 0 such that
Yo e — Dal® — b™)D;ibg||p~ < C, for every m, k, so that the
second integral is estimated by C/p||(u2, + 1/h)1”/2||L1(§k), where By,
is the complement of B(0, k) in R™. Therefore,

lim (lim I,) = /ZD —1)a{™ = 8™ |upy |Pdz.  (4.11)

k—o00 h—>oo

Concerning I3 we have

1 p/2 n
I; < / (u?,z—l—E) Z|a§”Di0k|dm+

1=1

1 1 (r-2)/2 n
+ ‘5/ (ufn—l-ﬁ) > Di(a"0;)da|.

=1

Arguing as in the estimate for I, we see that the first integral goes
to 0 as h — oo and then &k — oco. The second addendum is less or

equal to
1

— D;(a™0;)dzx
P12 J< o <ok #(a"0h)

which goes to 0 as h — oo for every £ € N. Therefore,

lim ( lim I3) = 0. (4.12)

k—00 h—o00

Finally, lets us consider I;. Letting h — oo and then k£ — co we see
easily that the first addendum goes to

(p—l)/ | [P~ 2quDumD Umdz >

,j=1

> (p— 1)1// |um|p_2|Dum|2daE.
Rﬂ

The second addendum is nonnegative for every h,k. As h — oo the
third one goes to

/ U | U [P 2 Z qj DiumD;brdz,

t,5=1
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whose modulus is less or equal to
c 1/p (p—1)/p
S lallo ([ 1DaaPas) ([ punlra)
ij=1 R R

which goes to 0 as k — oo. Therefore,

liminf Iy > (p — 1)1// |t |P 2| Dty |2 dz. (4.13)
Rn

h, k—o0

Taking into account (4.10), (4.11), (4.12), (4.13) we get

(- 1) / et P2 | Dt P+ Mt 2y —
R‘I’L

1 & .
—;ZIIDi(bi—(p—l)ai)llellumll’ip < A fllze llumllze
=1

which coincides with (3.7), so that (3.8) and (3.9) hold. There-
fore, the sequences uy,, D|um\p/2, are bounded in LP(R"), so that
|t [P/? is bounded in L?(R™). We prove now that u,, is bounded in
WLP(R"). For every m we have

/|Dum\pdw = / | Dty [P [t |~ PP/ 2 |y, | 2PIP/2 gy
n Rn

2-p D

2 2

< (/ |um|pd:v) (/ |Dum|2u1,’n_2dw)
Rn Rn

1 1 )
(v(p — 1))P@=1)/2 (X — \)1/2 HfHLP(R")'

Let f € LP(R") N L?(R"). From Theorem 2.1 we know that problem
(1.6) has a unique solution u in D(As), obtained as the weak limit of
a subsequence U, of u,,. Since u,,, is bounded in WLP(R™), then
u € WHP(R?).

Let us prove that u is a S-solution of (1.6). For every g € LP(R")N
L*(R") let w = G(g) € D(A5)ND(A;,) be the solution of Aw—Aw =
g. Then

/'ugdx = /v()\w—Agw)d:v:

= /n()\v — Ayv)G(g)dr = - fG(g)dz.
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Since LP(R™) N L?(R") is dense in LP(R"), L* (R*)N L?(R") is dense
in L (R"), and the mappings L?(R*) N L2(R") s LP(R"), f — u,
and L (R") N L*(R") — L (R"), g — G(g), are continuous, then
the above equality holds for every f € LP(R"), g € v (R™). In other
words, the function u constructed by our procedure is a S-solution
of (1.6). This ends the proof. O

The following corollary may be proved as Corollary 2.4.

COROLLARY 4.3. WP(R") belongs to the class J jo between LP(R™)
and D(Ap).

The semigroup generated by A, is not in general analytic, as the
following counterexample shows.

EXAMPLE 4.4. Let n = 1 and set Au(z) = u"(z) + zu'(z). Then
the semigroup T(t) generated by the realization of A in LP(R) is not
differentiable, and consequently it is not analytic.

Proof. We shall show that for every ¢ > 0, T'(t) does not map con-
tinuously LP(R) to D(Ap). There is a simple representation formula
for T'(t): indeed, for ¢ > 0 we have

(T(t)u)(z) = J_?F__/e2@ Su(els — y)dy.

Let un = X[n,nt1)- Then

2

2(e2t 1)
T(t)un(x) m/etw e 16 dy7
so that
d et _(etm—n)2 _(eta:—n—l)2
_ R 2(e2t-1) _ 2(e2t—1)
de(t)un(x) 27m(e? — 1) (e ‘ ),
d2 th - (etmfn)2
grz ! (Oun(a) = _Eaﬁtiﬁ(_@%_”kzwt”+

_(efz—n 1)2
+ (elz —n—1)e 2D )
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Therefore,
d2 2t _ (etm—n)2
‘ —QT(t)'u’n = e—(/ (eta;- J— n)e 2(€2t—1) —
dz e 2r(e? —1)3 \Jr

7(etm7n71)2
—(e'lz —n—1)e 2FD

1/p
dm)

op—12t 2 1/p
D)
2m(e?t —1)3 \ Jr

et(Qfl/p)

et -1’

which is bounded independently on n, and

d

Tz

p ept

pw | CmEe—1)F

22 __=p? \P
-/(z—i—n)p(e 2(e2t-1) _ ¢ 2(e2i1)> dz,
R

which goes to 0o as n goes to oo. Therefore for every ¢ > 0 we have
lim,,_, o ||[ApT (t)un || = +o00, whereas |lu,||z» = 1 for every n. O
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