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Analytic Semigroups Generated
by Square Hormander Operators

Uco GiaNAZZA and VINCENZO VESPRI

SUMMARY. - We show that degenerate elliptic operators of Horman-
der type realized in R"™ generate analytic semigroups in proper
Sobolev spaces and we characterize some real interpolation spaces
related to the original problem.

1. Introduction

The semigroup approach in the study of parabolic evolution equa-
tions is widely known. The two basical steps in this method consist
usually first in showing that the realization of the operator in suitable
Banach spaces generates an analytic semigroup and then in charac-
terizing the interpolation spaces that are necessary to obtain optimal
regularity results for the problem considered

In the following we deal with a degenerate elliptic operator with
continuous coefficients of Hérmander type and extend to this new
setting generation results originally proved in [14].

Some differences with respect to [14] are to be underlined. First
of all we consider proper Sobolev spaces (related to Héormander vec-
tor fields) consisting of functions defined in the whole R"™ and not
just in a bounded domain : this is due to the fact that boundary
estimates for operators defined by vector fields are not yet available,
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except to our knowledge for some partial results by Franchi and oth-
ers about trace theorems ([9])(see Section 2 for the general definitions
and Section 3 for a theorem we need in the successive proofs).

Moreover Poincaré and Sobolev inequality hold only on (intrin-
sic) balls and not in general domains, even highly regular: therefore
special care has to be paid in the localization procedure when proving
generation results (see Section 4).

Finally a fundamental feature of Hérmander vector fields is that
they do not commute: therefore a characterization of Holder continu-
ous functions spaces in terms of interpolation theory, as considered,
for example, in [12] or in [13] seems to be not so straightforward
here. As a consequence we were not able to complete characterize
interpolation spaces and had to restrict ourselves to a more specific
situation (see Section 5).

Our hope is to fill this last gap and then apply our results, as
well as the others considered in [10], to evolution problems, even
nonlinear ones.

2. Functional Spaces

2.1 Let us consider C*°(R"™) bounded vector fields X;, i =1,...,m
that satisfy a uniform Hormander condition of order k: at any point
the vectors and their commutators up to order k span R". In this
case an intrinsic distance dx associated to the X; can be defined.
Namely

dx (z,y) = inf {b; ~:[0,] — R™ admissible path
with (0) = =, y(b) =y}

where an admissible path is a Lipschitz curve such that

V() =) dit)Xi(y(t)) with ) |di(t)]* <1
i=1 =1

(see also [15]). It is well-known that Vz, y € R" dx(z,y) satisfies
the condition

1
E|33—y| <dx(z,y) < clz —y|°
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with € = k—il and ¢ > 1 suitable constant. We can then define balls
in the usual way relying on the distance dx. In the following we will
always deal with so-called intrinsic balls.

In [11] it is proved that the following duplication property holds:

(2.1) 0 <m(B(2r,y)) < com(B(r,y))

for every ball with center at y € R” and radius r < Ry, with the
constant cy possibly depending only on Ry. We can then say that
the space R"™ with distance dx and Lebesgue measure dz gets the
structure of homogeneous space (see [7]).

As a consequence of (2.1) there exists a constant v = log, ¢y such

that
T

m(Blry) < 2m(Bls,y) ()

S

forevery 0 < s <r < %Q. On the other hand it is easy to see that
(2.2) m(B(2r,y)) > ¢*m(B(r,y))

(where ¢* > 1 is a constant that depends only on ¢y) and

(2.3) m(B(s,)) < m(B(r,y))(5)°

WhereO<s<§<%anda:1—c%.

The numbers v and o give an upper and lower bound on the
intrinsic dimension of R™ and are in general different. However there
are special cases in which they can coincide. Moreover a further
dimension can be defined, the so-called homogeneous dimension. We
refer to [10] for a general discussion of this situation and a comparison
between the different quantities.

In any case the intrinsic dimension v is usually different from n.
Just to make an example, let us see the subelliptic Laplacian on the
Heisenberg group. Consider the space R?"*!, whose coordinates we
denote by (z,y,2), z,y € R", z € R; then the Heisenberg group
of degree n is the Lie group whose underlying manifold is R?*+!
endowed with the group law

(z,y,2) 0 (¢',y,2) = (w+ 2"y + ¢, 2+ 2 + 2(z'y — zv/)).
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If we define on the group the vector fields (which actually are not
bounded)

Xj = ij + Qijz, Y] = Dy]. — 2£CjDz,

the subelliptic laplacian is given by Ay =Y " | X JQ +Y]2; it is easy to
see that X, Y; satisfy a Hormander condition of order 1. In this case
the dimension of the manifold is (obviously) 2n+-1, while the intrinsic
dimension (which incidentally is the same as the homogeneous one
we referred to above) is v = 2n + 2.

2.2 Let us consider suitable spaces of continuous functions. Namely,
if B(R™) denotes the space of bounded functions defined in R", we
put

Cy (R") = C°(R™) n B(R")

and
Ci'(R™M) ={f e C™R"): X'f e CRR")V |J| <m}

where J is a multi index and X7 is an ordered monomial of order
|J| built with the vector fields X;. If we set

[u]l),(o = sup sup |XJu(:1:)|,
|J|=lzeR™

then C"(R") is a Banach space with the norm

l
X
lulle = D _[uljo-
j=0

Moreover we can introduce a new class of Holder continuous func-
tions with respect to the intrinsic distance dx. For 0 < a < 1 we
define

CY™*(R") = {f € CY(R") : [f]if = sup% < +oo}

and for /] € N, 0 < a <1 we define

CY*R™) = {u € C™(R"™): X'u e CO*R") V|J| <1}.
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If we set

[u]if = sup[X7u]Y,
|J|=1

then, as before, C-*(R") is a Banach space with the norm given by

!
lullgra = D [ul o + [ully-
j=0

The proof of the previous results, as well as of other similar ones
which usually hold for classical C%®(R™) Hélder spaces, can be given
as in [19], where the case of functions defined in a bounded domain
Q is treated in details. Actually a second condition is assumed,
besides the uniform Hormander’s one discussed at the beginning of
this Section. Namely it is also supposed that

for each 5 < k the dimension of the space spanned by the commu-

tators of length < j at each point is constant in a neighbourhood

(by convention, we define X; to be of length one),
but, as it is also stated in Section 2 of [19], this is not relevant in the
construction of Hélder spaces and in the proof of the properties we
need (see also [16] for other properties of these spaces).

Moreover, as in the case of Sobolev spaces considered below, we
can define C'll **(R™) as the space of functions u € CH*(Q;) for every
Q; CC R". Let us remark that thanks to the C°°(R") coefficients in
the definition of the vector fields, C»® regular functions can be far less
regular than ”classical” C»® functions. Finally we can further define
C]l-’a(R") (and its obvious local version) as the space of functions
whose Holder continuity is considered only in the j ”direction” with
Jj fixed.

In the following, dealing with (Holder) continuous functions de-
fined in the whole R", we will always consider them bounded and
therefore we will suppress the suffix . Moreover Holder continuity
will always be considered in the degenerate sense if not otherwise
stated.

2.8 We define WHP(R", X) as the space of all u € LP(R"™) such
that we have X;(u) € LP(R") Vi=1,...,m. It is easy to see that
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WIP(R"™, X) is a Banach space if it is endowed with the norm

1

m
g = (Jlullz + 32 X))
i=1

If p €]1, 00[, then WHP(R™, X) is reflexive. The proof is absolutely
analogous to the classical one (see also [4]). As in the usual situation,
we can also deal with the local version of the previous spaces or with
spaces of functions defined not in the whole R" but just in a bounded
domain €.
Let us now consider the dual spaces. Namely we define
—1,p 1 ! 1 1
w—P(R", X)=(W"P(R", X)), -+ =1
p p
We can then prove

PROPOSITION 2.1. Let p €]1,00[. Then f € W~1#(R™, X) if and
only if there exists (fo, fi,-- -, fm) € (LP (R?))™t1 . ¢,

< frp>= /R fopdz+ 3 /R fiXi(@)dz ¥ o€ W'P(R", X).

Proof. As in [4], Lemma 2.4.

We define o
/ v L
£l -1 = if {1 foll + DN FI5)7}
=1
where (fo, f1,- .., fm) realizes the representation of f.

Furthermore we define

Ey={f € (W"P®R", X)) :
p>1

o oos S € COR™) st f = fo+ Y Xilfi)}
=1

with || fl| g, = inf{|| folloo + 32521 || filloo} Where, as usual, {fo, ..., fm}
represents f.

REMARK 2.2. In the following we will sometimes deal with Sobolev
spaces W2P(R", X). After what we said above, the definition should
be obvious.
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3. Analytic Semigroup Generation in Spaces of
Continuous Functions

Let us consider the differential operator
m

(3.1) AXu:ZXZ?;
i=1

it will act in the special sets of functions
COR™) ={ue C'R™) : u— 0 as |z| = oo}

D{(Ax) = {u € CJ(R™) with Axu € CJ(R™), u € WI(R", X)}.

C

We get the following estimate

THEOREM 3.1. Let ¢ > v. There exist positive constants €, My, Ao,
o depending on q such that for u € DI(Ax) we have

S TTIX  ullco + D7 AT sup 1X ull Lo (s(ry o)) <
0<|J|<2 1=2 R»

< Mo|A| 7o sup (A = Ax)ullLa(B(ry 0))

for [\l > Xo, |argA| < T +¢€ 0 = 2%1,

multi-indices and X7 u, XTu as above.

ra = ro|A|7Y2 with J, T

Sketch of the proof. The proof is essentially the same as given in
[17] once the proper quantities are considered and we won’t repeat it
here. Let’s just remark that Agmon - Douglis - Nirenberg estimates
are here replaced by the analogous ones proved in [8]. Many of the
difficulties in Stewart’s proof, linked with the study of the behaviour
at the boundary, are obviously missing here, since we limited our-
selves at the whole R™ (see also what we said in the introduction).

As a direct consequence of the previous theorem we obtain
COROLLARY 3.2. For every p > v there are R' >0, M' >0, 6 > %
s.t. if [\ > R/, |arg\| < 0" and h € LP(R™), then the problem

Au—Axu=h in R"
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has a unique solution u € W2P(R™, X) and
[l oo (rmy < MIA| 7! sup{|A| 22 [|hll 1o g(pa 172,29y 0 = € R}

REMARK 3.3. Here we have considered the same formulation as given
in [14]; see also [1] for a somewhat different statement of the same re-
sult. Corollary 3.2 will be crucial in the characterization of D 4(83, 00)
(see Section 5 for the precise definition).

4. Analytic Semigroup Generation in W~ '?(R" X) and
in EO

Let us consider a C°(R™) matrix [a;;] with i,5 = 1,...,m which
satisfies a uniform ellipticity condition, that is

m

> ag&i; > 0l¢)

ij—=1
with & proper positive constant, and the C°(R™) functions a;, b;, c,
with ¢ =1,...,m as above. We can then define the sesquilinear form

a(u,v) = /Rn la;; X;(u)X;(v) + a; X;(u)v + bjuX;(v) + cuv] dz

(from now on summation over repeated indeces is implied if not
otherwise stated) in W'P(R™, X) x W' (R", X) with 1 < p < 0.
We now introduce the operator A4, : D(4,) = WYR", X) —
W-LP(R", X) by setting

< Apu,v >=a(u,v) Vue WW(R", X), Vv e WP (R", X)

and relying on the previous definition of Ey we consider a further
operator A by

D(A)={ue€ ﬂ Wl,P(R",X) : Apu € By} Au= Apu Vp> 1.
p>1

We state now the main results of this Section with the relative proofs.
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THEOREM 4.1. Let p € [2,00[. Then the operator A, : D(Ap) —
W-LP(R" X) generates an analytic semigroup in W~P(R™ X).
There are Cp, R, > 0, 6, €]5, [ depending on the ellipticity con-
stant &, such that the resolvent set of A, contains the sector S, =
{AeC: |\ >R, |argA\| < 0p} and

IM[ullw-10@®n x) + A2 ]ull o @e) + [wllwio@a, x) <

(4.1) < Gyl — Apullw-1omnx)  Yu € D(A).

Proof. For f; € LP(R") existence and uniqueness of the solution of
(4.2) Au— (Xi(ay; X;(u)) + aiXi(u) + Xi(biu) + cu) = fo+ Xi(fi)

for Re A large can be proved using monotone operators technique
(see, for example, [18], chapter 4.2). To prove estimate (4.1) it is
enough to choose |u[P~2u as test function in both members of (4.2).
Existence, uniqueness and the estimate for A in a sector follow in a
standard way.

THEOREM 4.2. The operator A : D(A) — Ey generates an analytic
semigroup in Ey. For every p > v there are C, R > 0, 0 €]5,n]
depending on the ellipticity constant §, such that the resolvent set of
A contains the sector S={A € C: |\ >R, |arg | < 0} and

Al + A2 llull o (rem) + sup A2l a-172,),x) <

(4.3) < COlMu—Aullp,  Yue D(A).

Before proving this last result, we first need the following introduc-
tory Lemma:

LEMMA 4.3. Letp > 2, A € S, f € W™ LP(R", X) and let u €
WIP(R™, X) be the solution of M\u — Ayu = f. Then there is a
constant K, > 0 (independent of A and f) such that

Z 1 X (u) ||LP(B(7',J:0)) <
(4.4) i=1

Ui 1
< KP[Z | fill Lo (B(2r,20)) T+ ;||u||Lp(B(2r,w0))
=0
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for every xo € R™ and r > 0.

Proof. 1t is exactly as in [14], once we substitute classical derivatives
with vector fields and the dimension n with the intrinsic dimension
v. The fundamental tool in the proof is the Sobolev inequality for
v € WIP(B(r,z¢), X ), whose proof can be found, for example, in [3]
(see also the following Remark).

REMARK 4.4. In the general framework of Dirichlet forms (of which
square Hormander operators can be seen as a particular case) Biroli
and Mosco have recently proved Sobolev imbeddings which extend
usual classical ones (see [2] and [3]). In particular Theorem 3 of [2]
implies the imbedding

WP (B(r,zq), X) < L™(B(r, z9))

when p > v. Even if their estimate is essentially local because every-
thing is given in terms of intrinsic balls, a global result can easily be
obtained, due to the fact that the constants do not depend on the
point. Therefore we can conclude that

WHP(R™, X) — L®(R")
if p > v, a fact we will need in the forthcoming proof.

We can now finally conclude.

Proof of Theorem 4.2. The aim is the proof of (4.3) in a proper
sector. As in [14], we will divide it in three parts.

I) Estimate of ||ullpeorr). - Let p > v, X € S, f € Ep and
u € WHP(R™, X) be the solution of

m
Au—Apu=fo+> Xi(f) inR"
=1

Consider zp € R™ and r > 0 and let 6 be a C§°(R™) function satis-
fying
=1 in B(r,zo);

0=0 in R™\B(V2r,z);
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S |w

| Xi(6)] <

(for the existence of such a function, see [2] and [3]). Then v = 6u
satisfies

>‘U_Apv_ (f10+QZJUX (9))+f0 fz ( )
a4y X; (u)X:(0) + (i + b)uXi(6).

i=1,...,min R"

Thanks to Theorem 4.1, we have
IA|Ou][y—1.0RP, x) + |)\|1/2
< Gl Xi(fi6 + aijuX;(0)) + fo0 — fiXi(0) + ai;j X;(u) X;(0)+

+ (ai + b)) uX;(0)lw-1,R", x)
<G| X I ilo(oanann
1=0
2/ UL
2 (032 Nl + 3 103+ Billo ) ] 5(s2rman +

ij=1 i=1

10wl Lo (mmy + [10ullwro e, x)

+ 1fiXa @) lw-10@n x) + @i X5 (w) X (0) lw-10@n x) | -
If we now take into account Sobolev imbedding theorem and Lemma

4.3, (where we replace p by - +p) we obtain

1£i X (0) llw—10(mn x) < k lelel

LP+" (B(2r,z0))

2 m
< ;k*kp'm(B(%", 20)) P ST fill oo (B2r0))
=1

2 m
< K kym(B(2r, 20)) YTV Y I fill oo -
i=1

llai; X '(U) '( Mw- bo(Re ) <

< v
k Z ||aZJ||0°Z||X Lpﬂ-'/ (B(2r,20))

1,j=1

k**k Z laijlloo (ZHMLHU _“ ||LP+" (B(4r,z0 )))

1,5=1
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D fill oo (Blarao) +

2
< Sk kym(B(4r, 3)) VP
1=0

1
+ ;||U||L°°(B(4r,z0))]

2 *% v — 1
< ;k k:p/m(B(47“, .’IIO))I/ +1/p lz ||fz||L°°(R") + ;HU”Loo(Rn)] .
i=0

We can then conclude

IAI16ullw-ra(n,x) + A2 [0l Logrn) + 10ullwismn,x)

M U 1
< 7777;(3(47", ,'L'O))I/II+I/P lz ||fz||L°°(R") + ;||U||L00(Rn)‘| .
1=0

Let us now recall that, since p > v, for each ¢ > 0 there exists
C(€) > 0 (independent of zy and r) such that

1
||<P||L°°(B(r,xo)) < C(G)W”‘P”M(B(nwo))JF

T
+ GWH‘PHWLP(B(TJO),X)

for any ¢ € WO1 P(B(r,z0),X). Therefore, if zo € R" is a maximum
point for |u|, we have

lullpeo®ry = l0ullLo(B(2r,20))

1
= Bz e @era *

2r 9
m(B @, zg))7e | 2w (B0 X)
o M m(B(4r,0)) /117
v m(B(2r,a0))/?

Ui 1
: <Z||fi||L°°(R”) + ;IIUIIm(Rn)) +
i=0

M 2r
- B(4 /v+l/p |
+e r m(B(QT', xo))l/pm( ( T, :L.O))

n 1
: (Z | fill oo () + ;||U||L°°(Rn)>
i=0

+ €

IN

Cle)lA~Y
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< M (CEON 24 er) Y I fillomn) +
1=0
+M* (CON Y2t + ) [[ull oo (mr)-

If we choose r = 2M*C/(€)|A|1/2 and € = 717, we obtain

[ull oo (rry < 6MC ()N | fill poo (mry
1=0

and we are finished.

IT) Estimate of |[ully1o(p(an-1/2,2),x)- - If we take o € R" and
consider a test function 8 as before, repeating the same procedure as
before, we have

lullwie(Brme),x) < [10ullwie@mn, x)

<

IS

U 1
m(B (4r, Io))l/yﬂ/p <Z ||fi||Loo(Rn) + ;||U||Loo(Rn)>
i=0

M
T

< —m(B(4r, zo)) /TP (Z | fill oo (mn) +

i—0
6 _ m
+ ;MC(G)W 2N ||fi||L°°(R"))
i=0
M
T

< = m(B(dr,0)) P (147 A T2) D il )

=0
< M (1407 CoATY2) S fill oo .
=0

|71/2

If we choose r = |\ we can further estimate by

M1+ 0) Y il
i=0

and conclude

m
lellw o (ma-172,000,5) < M 3 M filloe ey
=0
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since r is small and v < p.

III) Estimate of ||ul|g,. - Let us choose A € S, such that |A| > R/,
|arg A| < @ with R" and 6’ as in Corollary 3.2. Now let 6 be defined
as in Step I and consider v = fu. Then v satisfies

Av — in?('U) = X;(fif + aiuX;(0)) + fob — fi Xi(0)+
=1
(4.5) +a;; X (u) X;(0) + (a; + b;)uX;(0) + Apv — inQ(v)
— ho+ X7 Xi(hs)  in R =
The right-hand side of (4.5) belongs to W~ 1P(R", X). Thanks to

the previous step, we have

) m
1Bill Lo (a1 -172,2)) < CIAIZ lIIfOIIoo + ||fz'||oo]

i=1
for any j = 0,1,...,m and x € R"™. If we define vg,v1,...,vy €
WP(R"™, X) as the solutions of
(4.6) Avj — Axv; = h; j=1,...,m;
(4.7

m m
vo—Axvo = ho+ Y [Xi Xj1Xi(v) + Y Xi([Xi, Xjlv))
i,j=1 ij=1
= h(’;
we easily obtain
(4.8) v =1 + Z X (v;)-
i=1

With respect to the original case of usual derivatives dealt with in
[14], in (4.7) we have to take into account the non commutativity
of our vector fields. Now, thanks to Corollary 3.2 applied to (4.6),
v; € WHP(R™, X), j=1,...,m and satisfy

M, Z n
[vjlloe < ﬁsﬂp{wz” 1Pl o (B(A-1/2,0y) ¢ ® € R™}

(4.9) . m
Al ||fz-||oo] |
Al pat
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As a consequence the right - hand side of (4.7) belongs to W ~1P(R",
X), which in turn assures that vg € WHP(R™, X) (as already stated
above), but nothing more under the point of view of Sobolev spaces
regularity. However we can now work as in Theorem 2.12 of [4] and
obtain that

M, A n
(4.10)  [jvolloe < WSUP{P\\Z”||ho||Lp(B(\,\|—1/2,m)) : z€R"}
Since hj depends on hg and v, j = 1,...,m, we can further estimate
and conclude as in (4.9) that
<

4.11 <

umu+§ﬂm&]
=1

Thanks to (4.8) we have ||v||g, < [|vollco + Xini ||Villoo and taking
into account (4.9) and (4.11) we are done.

5. Characterization of Some Interpolation Spaces

Let us consider the operator A : D(A) — Ey and let e'4 denote the
analytic semigroup that A generates.

We can indifferently define the interpolation space D 4(f, c0) be-
tween D(A) and Ej as

Da(B,00) = {z € Eo : supl|[t’ AR(t, A)z|m, < oo}
t>T

for any ¢ > T such that R(t, A) = (t — A)~! exists, or as
Da(B,00) ={z € Eq : SUP[ [P (e — 1)z ||, < 00}
t€0,1

We put
lep.(p00) = Izl + supIt” A4 R(t, A)e]ls, < oo
or B
2] Dy (8,00) = 12l 20 + b 18 (e = D)1, < oo.
Moreover

DA(ﬂa OO) = (D(A)aEO)l—ﬂ,oo
according to the usual definition of real interpolation spaces (see [5]
or [6]).
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REMARK 5.1.  The possibility to characterize D4(f,00) in two
different ways is a direct consequence of the general theory of strongly
contractive semigroups (see also [12]).

We have the following
THEOREM 5.2. If% < B <1 we have

D4 (B,00) = C?P~1(RM).

Proof. Tt is similar to the analogous proof of [14]; we give it here for
the sake of completeness, trying to highlighten the main differences.
Let us show that:

a) C?-L(R") D D4(B,0)
b) C?~1(R") C Da(B,0).

The proof relies on Theorems 4.1 and 4.2 and the relative generation
estimates.

a) If we take R as given in Theorem 4.2, V v € Dy(f,00) and
VY t> s> R we have

tR(t, A)y — sR(s, A)y = / t %(TR(T, A)y)dr =

=— /t R(1,A)AR(1, A)ydr

where we have explicitely taken the derivative with respect to 7.
Relying on the generation estimate of Theorem 4.2, we know that

A2 = 4) " flloo < ClIf 1z

which implies that

C
—1
||(/\ - A) ”[:(EO,LOO) < W

Furthermore, practically by definition, || AR z(p,(8,00),E0) < K18,
therefore, if we take the L°°-norm both on the left hand side and on
the right hand one, we have

KC _ _
[tR(t, A)y — sR(s, A)7]loo < ﬁ_—(slﬂ A —1/28)
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Since v = limy_,o0 tR(t, A)7y, the previous inequality tells us that
{tR(t, A)v}: is a Cauchy sequence with the sup-norm; therefore, due
to the completeness, 7y is a continuous function. Moreover

[£R(t, A)y =Yl < CBYE>P |1l D4 (8,00)

We finish showing that v is not only continuous but also Hélder
continuous (of course in the vector fields sense). For any z, y € R"
with dx (z,y) < R™'/? (where again R is given by Theorem 4.2) and
taken t = dx (x,y) ? we have

[y(z) —v(y)| < |y(z) — (tR(t, A)y)(2) |+
+ [(tR(t, A)y)(z) — (tR(t, A)y)(y)| + [(ER(t, A)Y)(y) — v(v)|

< 2|[tR(t, A)y — Ylloo + [ER(E, A)Y]c28-1(p(i-1/2 5y dx (,y)

< 20(B)dx (2,9)*" " |V pa(s,00)+

+ [tR(t, A)W’]()Zﬂfl(g(t—l/aw))dx (z, y)Zﬂfl-

We can now apply the Sobolev imbedding for ¢ > p = ﬁ proved
in [2] and conclude

[ER(t, A)Vlcos-1(p (172 5)) <
< Kgt~/?UP10|¢ Ryt Al wracs-172 gy

For any fixed s we have
t
tR(t,A)y = sR(s, A)y — / R(1,A)AR(t, A)ydr.
S

We can then take s = R (as usual with R as in Theorem 4.2) and
obtain

t
[ER(E, A)yllwra < [IsR(s, A)vllwra + II/ R(r, A)AR(r, A)y dr [y 1.
S

Now we rely on the fact that

|1R(r, A)AR(, A)y[lw1a <
<R, A) | o wr0) | AR, Al 204 (8,00),20) 17l D4 (8,00)
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We use Theorem 4.2 once again to estimate the first term on the
right-hand side. We have

¢
[ER(E, A)ylw1.a S/ IR(T, Al c(i0,wr.0) 7 ATVl D4 8,000+
+ sl R(s, A)vllwa

t
< / IR(7, Al om0, w10y Pl .4 8,00) A7 + 81 R (5, A)Yllwa

t
<C [ 7P drl 4 (p00) + RCul w10
S
v _1,1—2
< 0= g =B P lna@ e + RClm,
where we used s = R. Recovering the previous estimate we obtain

[LR(t, AV]e2s-1(8-172.2)) S ClVlDA(B,00)

and we conclude

(=) =@ < C dX (@97 Da@00)-

b) Let us now suppose that u € C?~1(R™). Then the solution of
the following problem

(5.1) { v € WH2(R™, X)

tv—Y", X2(v)=u in R"

is highly regular: namely v € C?**1(R") and solves the equation in
the classical sense (again we can adapt to our situation the results
given in [19]). Therefore v = R(t, Ax)u € D(A) and

||U||C25+1(R") < C||u||c’2ﬂ71(Rn)
which implies
(5.2) IAXR(t, Ax)ullg2e-1(mey < C Jlullg2s-1(mony

for some proper constant C. Moreover, relying directly on (5.1), we

have
tR(t,Ax)u(z) — AxR(t, Ax)u(z) = u(z)
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tR(t, Ax)u(y) — AxR(t, Ax)u(y) = u(y).

Subtracting and using (5.2) we easily obtain
|R(t, Ax)ullc2s-1(mn) < Ct_1||u||c2ﬂ*1(Rn)
for t large, say ¢ > T. If we now take ¢ € C?/T1(R™) we have

lellor < Cllellgzasa)t P (llellgaa-1)”.

Therefore
IR(t, Ax)ullcr < C(IR(E, Ax )ullg2s+1)' P (|R(E, Ax)ull2-1)°

< Ot Hlullg2e-1)" (Ilull g2-1) 7

where we have used the analogue of Xu’s estimate which allows us in
this degenerate context to conclude about C?+1 continuity. Finally

IR(t, Ax)ullor < ¢t |lul| c2s-r

with ¢ > T. Starting from this inequality and from the generation
estimate given in Theorem 4.2, we can argue as in [14] and conclude
that u € D4(B, 00).

REMARK 5.3. As in the classical case, we cannot expect D 4(1/2,00)
to be made up just of continuous functions. As for 0 < § < 1/2,
this is still an open problem, mainly due to two difficulties: first
of all the definition of Holder spaces with negative exponent has to
be done with some care in the case of Hormander vector fields; on
the other hand, there are a certain number of difficulties in charac-
terizing Holder spaces by means of interpolation, due to the lack of
commutativity. Therefore the original method used in [14] does not
seem to apply here.
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