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On the Sum of Generators
of Analytic Semigroups

MARCO FUHRMAN *)

SUMMARY. - Let A and B be generators of analytic semigroups in
a Banach space. Under some conditions on the commutator of
the resolvents of A and B, already considered in the literature
and not implying relative boundedness, we prove that the closure
of A+ B (or a proper extension of it) also generates an analytic
semigroup, and we characterize interpolation spaces related to it.

1. Introduction

The present work has its origin in the paper [5] of Giuseppe Da Prato
and Pierre Grisvard. In this paper the authors develop an investiga-
tion of (mainly) spectral properties of the sum of two linear operators
in a Banach space, as a general framework for several problems on
evolution equations. Their approach raised the interest of several
researchers and gave origin to a variety of applications to different
fields: see, among others, [14], [15], [13], [6], [17], [2], [1], [4]-

When I started my research activity in this field, I had the fortune
to meet personally Pierre Grisvard. I could appreciate his attitude to
discuss and share mathematical ideas, and I received encouragement
and constant help to enter this subject. Grisvard’s interest in it
lasted until his latest years when, in November 1993, he gave a course
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in Blaubeuren on applications of sums of operators to differential
problems in polygonal domains.

Here we want to show how these techniques can be applied to pro-
duce results in perturbation theory for generators of analytic semi-
groups, and to study some related questions of interpolation theory.
We continue, under different assumptions, the investigations carried
out in [9].

We say that a linear operator A in a complex Banach space X,
with (not necessarily dense) domain D4, generates an analytic semi-
group if its resolvent set contains a sector of the complex plane ¥ =
{z€C:2z#w,|arg(z —w)| < ® — I}, for some w € R, Y € (0,7/2),
and its resolvent family satisfies the estimate ||(A — A)™'||zx) <
¢\ — w|~! for some ¢ > 0 and for every A € ¥. Under these con-
ditions one can define in a usual way a semigroup e*4 € £(X), not
necessarily strongly continuous at ¢ = 0 (see for instance [18]). We
are interested in the additive perturbation problem: assuming that
A is a generator and B is another linear operator in X, one looks
for conditions implying that A + B, or some operator intrinsically
related to A+ B, is still a generator. We refer the reader to [16] and
its bibliography for an exposition of the classical results, and to [12]
for a more general study of the subject.

In the paper [5] the following assumptions are presented. In
contrast to the classical approach to perturbative theory, they relate
to commutativity properties of the operators A and B and do not
require, in particular, the relative boundedness condition Dp C D 4.

Hypothesis H.I. A and B are linear operators in X with do-

mains Dy, Dp and there ezxist ¥ € (0,7/2),c > 0 such that
-1 -1 C
[(z—=A) " lexy + 1z —B) " lexy <

|=|

for every z € C with |arg(z)| < m — 9.

Hypothesis H.IIa. We have (A —v) 'Dp C Dp and there
exist ¢ > 0, a, B such that —1 < a< <1,

A1 R -1 __ ¢
||[Ba (A U) ](B Z) ||/.',(X) < |v|1*a\z|ﬁ’

for every z,v € C with | arg(z)|, |arg(v)| < 7 — 9.
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[P; Q] denotes the commutator PQ — QP of two linear operators
in X. (In this section we do not state hypotheses in full generality:
see below for precise statements.) Remark that H.I simply states
that both A and B generate bounded analytic semigroups.

Under Hypotheses H.I and H.IIa, it has been shown in [9] that
A+ B, or some extension of it, also generates an analytic semigroup.
Here we want to replace H.IIa with the following

Hypothesis H.11b. There exist ¢ > 0, a, (B such that 0 < a <
p<1,

—1p4—1. -1 c
|A(A —v)" [A75 (B —2) ]||L(X)S‘v|1—a|z|l+ﬂ’

for every z,v € C with |arg(z)|, |arg(v)| <7 — 9.

Hypothesis H.IIb is essentially taken from [14], where it is pre-
sented as an alternative (and independent) assumption to H.IIa.
Such an assumption is used by the authors to find solutions (in var-
ious senses) of the equation

(A+B—- XNz =y

with z (unknown) and y (datum) in X, and A > 0 sufficiently large.
Their treatment, together with many examples and applications pre-
sented in [15], shows that it is fairly natural.

An intuitive meaning for assumptions such as H.IIa or H.1Ib is
the following. Consider the commutativity condition

Hypothesis H.II1. [(A—v) (B —2)"1]=0.

If H.III holds, the semigroups e and e'® commute, so that
their product is still a semigroup. So in this case the simplest way
to define a semigroup generated by A + B is simply to identify it
with et4e*P (a more precise characterization of the generator of this
semigroup follows from our results below). So H.IIa or H.IIb can be
considered as the statement that the commutator of A and B, though
not zero, is suitably “small”, so that our situation is a perturbation
(and an extension) of the commutative case.

In the following, we give a short account of our results, sometimes
omitting some details. First we can prove:
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(i) Assume that H.I, H.IIb hold and suppose that D4 N Dp is
dense in X. Then A+ B is closable and its closure A+ B generates
an analytic semigroup.

In [5] the reader can find additional conditions implying that
A+ B is closed; related closedness results are discussed in [2], [6]. If
we drop the density assumption on D4 N Dpg, we meet a difficulty,
since we do not know whether A + B is still closable. The closability
of A+ B has been proved only when the stronger condition H.I11
holds (see [1], [5], [13]). Following [5], the way we choose to overcome
this difficulty is to identify A + B with its graph in X x X, and then
take its closure in X x X, which is always possible. It remains to
prove that the object we construct in such a way still generates a
semigroup in a suitable sense. We call graph any subspace of X x X;
it can be naturally identified with a multivalued linear operator in
X. Several definitions of generation are available for multivalued
operators. We adopt the definition of analytic semigroups generated
by linear subspaces of X x X that can be found in [7]: see Subsection
2.3 below. Then we can prove:

(ii) Assume that H.I, H.IIb hold and suppose that D4 or Dpg
is dense in X. Then A 4+ B generates an analytic semigroup, in the
sense of graphs.

It is of some interest, in view of certain applications ([1], [13]),
to drop the density assumption also for D4 and Dg. Then we meet
situations where A + B is not a generator and has even empty re-
solvent set ([13]). Extending results of [1], [13], that only deal with
hypothesis H.I1I, we can prove:

(iii) Assume H.I, H.IIb. Then there exists a graph (A + B)~
that extends A + B and generates an analytic semigroup.

More precise information about (A + B)"™ is also obtained (see
Corollaries 5.5-5.9).

Finally, we come to some problem concerning interpolation the-
ory. As a technical tool, we use several times the characterization of
the real interpolation spaces (X, Da)g,p, (X, DB)yp, given by Pierre
Grisvard ([10]): see (2.1), (2.2) below. Another problem of interest
to him was to investigate the validity of the equality

(X, DaNDpB)op=(X,Da)9p N (X,DB)s,p

(see [11]). In the present framework, we will prove the following:
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(iv) Assume H.I, H.IIb. Then for 9 € (0,1), p € [1,00]:
DaNDp C Dgypy~ C(X,Da)9pN (X, DB)oyp -
Moreover, for 9 > 0 sufficiently small, we have

(X, Diagpy~)op = (X, Da)ygp N (X, D)oy pe€[l,00].  (1.1)

For this, we need to define a suitable norm in the domain D4+ p)~,
and to extend Grisvard’s characterization: see Proposition 2.3 below.

Now we sketch the proof of the main results and we present the
plan of the paper. We will show that (A+ B)™ exists as the limit (in
some sense), as n — 00, m — 00, of A, + By, where A, B, € L(X)
are the Yosida approximations of A and B.

Step 1. We prove the existence in £(X) of

lim lim (A\g — A, — Bn) %, (1.2)

m—00 N—00
for some Ay > 0 large.

Step 2. We prove an estimate (uniform with respect to m and n)

| Amt B £ oy < Me™', > 0. (1.3)

Step 3. We show that (1.2) and (1.3) imply the existence of (A+B)"™
and the convergence of (A — Ay, — By)™! to (A — (A + B)™)7L,
as m — 00, Mm — 00.

Step 3 follows from an extension of Trotter’s theorem to semi-
groups generated by graphs: see Section 2., where notation and other
preliminary facts on graphs are recalled. Step 1 is a consequence of
some extensions of the results of [14] and [9]: Section 3. is devoted
to recalling briefly all the material we need. Section 4. is devoted to
proving Step 2: the estimate (1.3) is Proposition 4.4. In Section 5.
we prove the main results announced earlier, whereas in Section 6.
we prove (1.1). Finally, the appendix is devoted to the proof of a
technical lemma.

The author is glad to thank Brunello Terreni for his helpful dis-
cussions.
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2. Notation and preliminaries

2.1 Notation

We define
Yy ={z€C:z+#0,|arg(z)| < m — 9}, for ¥ € [0,7),w € R;

Yy, ={2€Ciz#w|arg(z —w)| <V}, ford € (0,7]

(the argument arg(z) is assumed to take values in (—m,n]). We de-
note by X a complex Banach space, by L£(X) the space of linear
bounded operators on X. || || denotes the norm in X and, if no
confusion arises, also in £(X). To denote the norm in another Ba-
nach space Y we write || ||y. £(X,Y) is the space of linear bounded
operators from X to Y. Let C be a linear (in general unbounded)
operator in X; we denote by D¢ its domain, by o(C) its spectrum,
by p(C) its resolvent set, by R(C) its image, by C its closure (if
defined). 1 also denotes the identity operator; accordingly, for any
scalar A, the operator Al is denoted by A and the resolvent family of
C by (A —C)71, for X € p(O).

Given operators A and B in X, the operators A + B, A" etc.
always have their natural domains and definitions; for example

Dparp=DyNDp, (A+ B)x=Az+ Bz for z € Dy, p;

Dyn={z€eX:z€ DA(n—1),A(”_1)3: €Dy}, Atz = AAPD 5.

We set [A; B] := AB — BA, with natural domain.
For integers m,n > 1 we set A,, :== mA(m—A)~!, B, := nB(n—
B)~!; these operators are called Yosida approximations of A and B.

1
If v is a path in the complex plane, we shorten the symbol o /
Iy
v

by writing simply ][ .
Y

2.2 Interpolation spaces

Let A be a closed linear operator in X. We endow D 4, D 42 with the
norms

Izllps = llzll + |1 Azll, [lzllp,, = llzll + [ Az + | A%].
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One can define the real interpolation spaces
(X,Da)gp and (X,Dy2)9,,

for ¥ € (0,1), p € [1,00] (see e.g. [19]). We will denote them by
D 4(9,p), D42(9,p), respectively. We have the continuous inclusions

1
DA2(§,00) C Da(n,r) C Da(0,p) C Da(¥,q) C Da(p,s) C X

forO0<pu<d<n<1,1<p<qg<o0,1<r<oo,1<s<o00.

Assume in addition that p(A) D (0,00) and there exists c4 > 0
such that [[(A — A)7!| < caA™!, for every A > 0. The following
properties are proved in [10].

(i) Let p € [1,00) and A > 0. Then z belongs to D (¥, p) if and
only if

1
o _ dA\»
||;,;||'DA(19,p) = ||z|| + </X INYA(A - N) 13;||p7> < o0.
(2.1)

(i) Let p = oo and A > 0. Then x belongs to D 4(19, 0o) if and only
if

[l 9,00y = 12l +sup [A?A(A = N)lal| < o0, (22)
A>A

Moreover, ||£C||IDA(Q9,p) and [|z||p, (s,p) are equivalent norms, ¥ € (0, 1),
p € [1,00].

If one also assumes that there exists ¥4 € (0, 7) such that p(A4) D
Yo, and [|[(A — A)7Y| < ca|A|7L, for every A € By, then it follows
easily from (2.2) and the resolvent identity that for every 9 € (0,1)
there exists ¢ > 0 such that

IA(A = 2) 7"yl < cle[lyllpaee) 2 €Bou  (2:3)

2.3 Graphs

Here we recall some definitions and basic properties about graphs
(sometimes called multivalued linear operators, or linear relations).
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We call graph in X a subspace of X x X. A graph A can be
identified with a multivalued function z — Az := {y € X : (z,y) €
A} defined on X (possibly Az = (). Every linear operator in X will
be identified with a graph in a natural way. The closure A of a
graph A is its closure in X x X (with the usual topology); it is still
a graph. A is said to be closed if A = A. Define

A—X={(z,y) : (z,y + Az) € A}; A= {(z,y) : (y,z) € A}

for any scalar A\. The resolvent set p(A) of A is the set of all scalars
such that (A — A)~! is the graph of an everywhere defined bounded
linear operator in X; we identify them and we simply write (A —
A7t e L(X); (A — A)~! will be called resolvent operator of A.

The following definition, even in greater generality, can be found
in [7].

DEFINITION 2.1. Let A be a graph in a complex Banach space X.
We say that A generates an analytic semigroup in X if there exist
K>0,weR, 9€ (n/2,n) such that

K
A —wl’

Shw CPp(A)  and  [|(A=A)Hlgx) < for X€ Xy,

(2.4)
In this case we write A € AG(K,w,?) and we define the semigroup
generated by A by the formula

et = ][ eAA— A7\, fort >0, 4 = 1. (2.5)
v

Note that, although A is a graph, €4 € £(X), since (A — A)~! €
L(X). In the definition we fix any number 9 satisfying 7/2 < 99 <
9, and we set

v = {z€C:z=w+re ™ rec[l,00)}U
U{z€C:z=w+e% pc [} U
U{z€eC:z=w+re recl,00)},

oriented with increasing imaginary part. More generally, without

affecting the value of the integral, v can be taken to be any piecewise
differentiable path lying in 3 , and joining coe % with coe™t?.
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We recall some properties of a graph A € AG(K,w, ). Detailed
proofs can be found for example in [7], [9].

1. A is a closed graph and there exists a constant M > 1 such
that |e*4| < Me“t, for t > 0;

2. The mapping ¢ — e*4 is infinitely differentiable in (0, c0) with
respect to the norm of £(X) and, for every ¢ > 0 and every
integer n > 1,

d’n

e = ][ A (A — A) s (2.6)
Y

3. if0 € p(A), A et = A~ for t — 0, in the norm of £(X);

4. if A € AG(K,w,?) and 0 € p(A) then, for every t > 0 and
every integer n > 1,
d"

et = A—"ﬁ—ne“‘ =A™ ][ AmeA (X — A)7ld. (2.7)
Y

The next Proposition is an approximation result for the class
AG(K,w,?). It is a simple extension of Trotter’s theorem ([16],
Theorem 3.4.3). The proof can be found in [9]. Similar convergence
results are obtained in [3].

PROPOSITION 2.2. Let A, be a sequence of graphs in a complex Ba-
nach space X. Suppose
(1) there erist K >0, w € R, ¥ € (w/2,7) such that, for every n,

A, € AG(K,w,¥); (2.8)

ii) there exists A\g € Xy such that (\g—A,) ! converges in L(X
Fw
for n — oo.

Then there exists a unique graph A such that for all A € E%,w
A=A, s A=A inL(X), forn— . (2.9)

Moreover, A € AG(K,w,d). Finally, for every compact interval
I C(0,00),

nli)rréo etin = ¢l (2.10)

in L(X), uniformly fort € I.
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Let A be a closed graph and define Dy = {z € X : there exists
y € X, (z,y) € A}. It is readily verified that D 4, endowed with the
norm

[2llpa = llz]l + [z]p, := l|=ll + inf{[Jw]| : (z,w) € A}, (2.11)

is a Banach space, continuously embedded in X. One can then define
the real interpolation spaces (X, Da)ygp, ¥ € (0,1), p € [1,00], that
we will denote by D 4 (¥, p). The following Proposition, proved in [9],
extends (2.1), (2.2).

PROPOSITION 2.3. Suppose A is a graph satisfying
p(A) D (w, o), llt(t — A)_1||£(X) <K, fort>w, (2.12)

for some constants w € R, K > 0, and fix Ag > max(w,0). Then z
belongs to Da(9,p) if and only if ||ac||’DA(19 p) < 00, where

) 1
o0 _ d\\ 7
||x||+( [T —a0- 1x)||p—) ,
Ao A
< 0Q;
1211, 0.9) = 3 P
lall + sup 13 — A — 4) 2,
A> Ao
\ p = oo.

Moreover, ||x||'DA(19,p) and [|z||p,(s,p) are equivalent mnorms for 9 €
(0,1), p € [1,00].

3. Some preliminary results

This section mainly contains generalizations of results of [8] to the
case where neither Dy nor Dp is dense in X. This generality is
needed in the sequel. The results concern the equation

(A=XNz+ (B- Nz =y, (3.1)

with unknown z, for given y € X and A > 0 sufficiently large. We
present existence results (Proposition 3.5) and a representation for-
mula z = U,y for the solution (Proposition 3.10), and we show regu-
larity properties of the operator Uy (Proposition 3.12 and Corollary
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3.13). As a technical tool, analogous results are proved for the Yosida
approximations A,,, By,.

To conform to the setting of [14] and [8], and to allow greater
generality, in this section the following assumptions hold. Starting
from the next section, the more restrictive Hypotheses 3, 4 will be
assumed.

Recall the notation Xy := {z € C: z # 0,| arg(z)| < m — 9}.

HyPOTHESIS 1. A and B are linear operators in a complex Ba-
nach space X with domains Da, Dp and there exist 94,9 € (0,7),
ca,cg > 0 such that

_ C
pA) Dy, Nz =AY < ﬁ forallz € Sy, (3:2)
_ C
p(B) D %oy,  ll(z=B) e < ﬁ for allz € Sy, (3.3)
V4495 <. (3.4)

HYPOTHESIS 2. There exist an integer k > 1, and real numbers
cap >0, A0 >0, at,...,ax, Bi1,-.-, Bk such that

0<a;<p; <1, 1=1...k,

1(A = X0)(A —v) " (A = X0) 5 (B —2)llex) <
b 1
< canB ; ol 2T A (3.5)

forallveXy,, z€ Xy,. We also assume

d:= 1I£zl£k(ﬂz — ;) € (0,1). (3.6)

Recall the notation A, := mA(m — A)~!, B, :==nB(n— B) L.

LEMMA 3.1. The operators A,, and B, satisfy Hypotheses 1, 2 with
constants independent from n and m.

Proof. The proof is essentially contained in [5], formula 6.11 and [14],
Lemma 3.1. |
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LEMMA 3.2. For every X > 0 there exists c(\) > 0 such that
I(A=XN(A=-A=0) [(A=X)7}(B _Z)_l]”E <

<c

A
Z A+ v]t- al|z‘1+ﬂl
forallX> X veEXy,, 2 €Ty,.

Proof. See [14], Lemma 1.2. |

Next we define several operators in £(X) and list some of their
properties. They are used to construct the operator U, that gives a
representation of the solutions of equation (3.1).

Let 6y be a number such that

Op<by<m—04a, 6y>7/2 if0s<m/2, (3.7)
93<90<7T—9A, 00<7r/2 ingZ’}T/2, )
and let v be the path defined as
Y = {AeC:A=re ™ recl0,00)}U
U{reC: A =re rel0,00)}, (3.8)
oriented with increasing imaginary part. Define
Sx ::—][ (A=X—2)"YB - X+ 2)"" dz, (3.9)
o
s, ;:—][ (BoA+2)YA-r—2)"'ds  (3.10)
o

Bim = A=A A=) AN B - A2 b

(3.11)
My = —][ Z(A=XN)"THA-A—2)""
Y0
(A=X)"5(B=A+2)"2(4 =X —2)""dz (3.12)
We call Sy, S)\n, Ians My, (respectively Sy, z, Sm z Imns M s

resp. Sman, S;n’)\’n, Jmans Mman) the integrals defined as S, S5
Jx, M) by replacing A, B with A, B, (resp. An, B; resp. Ap, Bp).
The next Lemma is proved in [9], Lemmas 3.1-3.5.
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LEMMA 3.3. For any p € (0,0) and X > 0 there ezists ¢ = c(p, \) >

0 such that, for every A > A,
ISA L+ ISA <A™, Il + [IMAl < eA™.

The same estimates hold with Sx, S}, Jx, My replaced by Sy p, Sg\,n,
J)\,n; M/\,n or by Sm,)\; S;n,)\; Jm,/\; Mm,/\ or by Sm,/\,n; S;n,)\,n’ Jm,/\,n;
Mm,)\,n-

Moreover,

1A = Ba) ™2l + 1A = Bn) ' 7Sy nll + l(X = Ba) 83 sl < A7,

1Tan X = Ba)? [l + [ Jman(X = Ba)Il < e~

Finally, the following limits exist in the norm of L(X):

K= lim Jp (A= Bp)?, Ky := lim Jy,(\— B,)". (3.13)
n—o n—r0o0
(A—=B)*8} := lim (A — Bn) PS5 s (3.14)
and we have

(A= B)!7*8} = ]{ vIP(B=X+0v)HA-XA—v)" dv. (3.15)

The path 7, is defined as in (3.8), with 6, replaced by 05, where
05 satisfies O < 05 < 6.
Fix any p € (0,d) and define

-1

Unan == (A— Bn)pl{l + (A — Bn)f”Jm’,\,n()\ — Bn)”}
-1

(/\ - Bn)l_pS;n,)\,n + (A - Bn)_l{l + Jm,)\,n} Mm,)\,n

(3.16)

—1
Urn = (A= Bn)pl{l + (M= Bn)ipJ)\’n(/\ — Bn)p}

—1
(A= Bp) 7?84, + (A — Bn)—l{l + J,\,n} My, (3.17)
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Uy :i= (A — B)P—1{1 + (A — B)_PK,\}I()\ — B)'7PSh +

-1
—I—()\—B)_1{1+J>\} My, (3.18)

In these formulae, fractional powers of A\ — B,, are defined using
functional calculus for bounded operators, (A — B)™? is defined as

][ z %\ —z— B) ldz for @ € (0,1), (A — B)}"»S), is defined in
70

(3.14) and K is defined in (3.13). Notice that the operators in curly
brackets are invertible, for A > 0 sufficiently large, by Lemma, 3.3.

The next Lemma is proved in [9], Lemma 3.6, Corollary 3.7,
formula (4.10).

LEMMA 3.4. There exist constants A* > 0 and ¢ > 0, depending only
on the constants in Hypotheses 1, 2, such that, for A > \*,

1T smll + 1Umall + 10l + U5 < X7 (3.19)
We have, in the norm of L(X),

Um,)\ = limy, 00 Um,)\,n ’ U/\,n = lim,, 40 Um,)\,n s
. . (3.20)
Uy = limy, 00 Unp = limy, Uxn -

We have
Uy= 8+ —B)'Q,, (3.21)

for some bounded operator Qy satisfying ||Qx| < eA~?.

Now we are ready to state and prove results on the equation
(3.1).

PROPOSITION 3.5. Assume that Hypotheses 1, 2 hold. Then there
exists \* > 0 such that for A > X*, 6 € (0,6), p € [1, 00| and for every
y € D4(0,p) (ory € Dp(0,p)) there exists a unique x € Dy N Dp
satisfying the equation

(A+B—-2X\)z =y.
Moreover, S\y € Dy and x is given by the formula

z=(A-XN"1 1+ )" (A= XSy
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Proof. See [14], Theorem 4.1. |
The next Lemma is proved in [9], Corollary 3.7.

LEMMA 3.6. There exists a constant \* > 0 such that, whenever
T,y € X satisfy

(A =Nz + (B — ANz =1y
for some A > X\* and some m,n, then
T = Um,)\,ny-

From now on, \* is the constant appearing in Proposition 3.5
and Lemmas 3.4, 3.6.

LEMMA 3.7. If z € Dp, y € X satisfy
(A —Nz+(B—ANz =y
for some X > X* and some m, then

r = Um7)\y.

Proof. Since Ay, is bounded, by Proposition 3.5 x is given by
T = (Am - /\)_1(1 + Jm,)\)_l(Am - )‘)Sm,)\y-

Similarly, for every n, the equation (A,, — A)z, + (Bp, — AN)zp, = y
has a unique solution z, given by

Tn = (Am — N) T 1+ Tman) " HAm — A)Smany.
It is readily verified that Jy, xn — Jm and Syapn — Smo as n —

00, in the norm of £(X), so we have x,, — z. Since, by Lemma 3.6,
Zn = Unny, we conclude that z = Uy, \y, by (3.20). O
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LEMMA 3.8. For A > X\* and for every m,

p(Am + B) D (22*,00), (Am + B —2X)" ' =Upa-

Proof. If Ay > X* is so large that
1220 — B) ™ Al < Al Amll < 1,

then 2\ € p(A,, + B), since

(200 — Ay — i ( 2X — B)'4 )k(mo - B)™L.

k=0

By Lemma 3.7, (2Xg — Am — B) ™! = Up,,, and the Lemma is
proved for A = \g. The estimate ||[Up || < cA™!, A > X*, of Lemma
3.4 allows to deduce the general case by a standard argument (see
e.g. [5], Theorem 2.1 or [14], Prop. 3.1). O

LEMMA 3.9. For A > \*,

lim UprA(A—m)~t =0, (3.22)

m—oQ

in the norm of L(X).

Proof. Uy mA(A—m)! = (U m—Ur)A(A—m) 1+ U \A(A—m) !
Since [|A(A —m) g x) < 1 + c4, by (3.20) it suffices to prove
limy;, 00 UyA(A —m)~ = 0. By (3.18) and Lemma 3.3 it is enough
to show

lim (A — B)' PS5 A(A—m)™t =0, lim MyA(A—m)~'=0.

m—00 m—00
(3.23)

By (3.15), (3.12) we have
(A—=B)"PSLA(A—m)" =
][ ZATP(B=A+2) A - X\—2)"tAA —m) e,
T2
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MyA(A—m)™" = —][ Z(A=N(A-X—2)"
Yo
(A=N) "B =-A+2) Y2(A—X—2) A4 —m) 'd.

Note first that for z € 7, (respectively, z € ), by Hypotheses 1, 2
and Lemma 3.2,

Hzl—ﬂ(B At HA—A—2)TAA - m)—1H <

CB CA

< |z|tP
<l EESVIEESY

(1 +CA),

|4 =N -2=2 1A= 0SB -A+2) 1

2A—X—2)"LA(A - m)—1H <

“)l2] cal?|
1 .
= Z |z—|—)\|1 O‘%\z EpYIE |z—|—)\|( +ca)

and the right-hand sides are integrable over v, and <y respectively.
Moreover, for fixed z € ¥2 (resp. z € ),

Hzl_p(B A2 TAA A -2 A - m)—1H <

<l LA+ =,

CB
2 = A
[sa-na=x-n7 A - B -2+

ZAA— XA —2)" YA~ m)—1H <

|Z| CA
_Z|Z+)\|1 al'Z— ‘1+ﬂl|z|( CA)m )

as m — 00. So (3.23) holds by the dominated convergence Theorem.
O
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PROPOSITION 3.10. Assume that Hypotheses 1, 2 hold. Then there
exists \* > 0, depending only on the constants in Hypotheses 1, 2,
with the following property:

fA>N, € DsNDp and y € X satisfy

(A= XNz + (B—-MNz =y,
then x is given by
z = Uyy. (3.24)

In particular,

Iz < Ayl A> A, (3.25)

with ¢(X*) > 0 independent of X .

Proof. Let \* be the same as before. Since (A—A)z+ (B—A)z =y

we have

(Am — ANz +(B—-ANz=y+ (4n — A)z.
From Lemma 3.8, and taking into account that
(Ap — A)z = (m(m — A) ' —1)Az = A(m — A) ' Az,

we obtain
z = Unmy + UxmA(m — A~ Az.

The conclusion follows from (3.20) and Lemma 3.9. O

COROLLARY 3.11. Assume that Hypotheses 1, 2 hold and suppose
that D4 N Dpg is dense in X. Then A+ B is closable.

Proof. By (3.25), ||lz]| < c(A)ATY(A+ B —2N\)z||, A > \*, z € X.
The conclusion follows from [5], Theorem 2.1. O

The next Proposition and its Corollary show that Uy has some
regularizing effect: its image in contained in subspaces of X related
to the operators A and B.
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PROPOSITION 3.12. Assume that Hypotheses 1, 2 hold. Then for
A > A

Uy € ‘C(Xv DA2(1/27 OO))a ||U)\||L'(X,DA2(1/2,00)) < C()\*), (326)

Ux € L(X,Dp2(1/2,00)), Ul c(x,04201/2,00)) < €(X7). (3.27)
Proof. 1t is proved in [9], Theorem 4.6, that (3.26) holds under the
additional assumption that Dpg is dense in X, and with ¢(\*) de-

pending only on the constants in Hypotheses 1, 2. Applying this to
the operators A and B,, we obtain

[Unnlle(xD 2 (1/2,00)) S €(A), A > A%,

ie.
JA*(A = )2 Uppyll < M)t yll, yeX, t>0,

with ¢(A\*) independent from n. Letting n — oo we have, by (3.20),
14%(A =) *Txyll < (W)t Iyl y € X, > 0.

Now (3.26), is proved.
(3.27) is proved in [9], Theorem 4.6. O

COROLLARY 3.13. For A > \* the following statements hold.
(1) The operator
(A+B—2)\):DyNDp — R(A+ B —2)\)
1s bijective and its inverse has a bounded extension given by
Uy: X — R(Uy) C Dy2(1/2,00) N Dp2(1/2,00).
In particular

DanNDp CR(Uy) CDy2(1/2,00) N Dp2(1/2,00), A > A"
(3.28)

(’L’L) R(U)\Q) CDsNDpg and (A—l- B — 2)\)U§ =U,.
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(ii6) R(UYTY) C Diaypyn and (A+ B —20)"Uy = Uy, n > 1.

Proof. (i) is a direct consequence of Propositions 3.10 and 3.12.

To prove (i3), for y € X set z := Uypy. Then z € Dy2(1/2,00) C
D4(6,p), by Proposition 3.12. By Propositions 3.5 and 3.10, the
equation

(A+ B —-2)\)z =

has a unique solution z € D4 N Dp given by © = Uyz. Therefore
r=U}y€e€DsNDpgand (A+ B —2\)Uy = z = Uypy.
(7i7) can be proved in a similar way, using induction on 7. O

4. Estimates on approximating semigroups

In this section we state the assumptions needed for the perturbation
theorems of the following section and we prove some preliminary
result. The following hypotheses are assumed to hold from now on.
They correspond to the Hypotheses H.I, H.IIb mentioned in the
Introduction.

Recall the notation ¥y :={z € C: z # 0, |arg(z)| < m — J}.

HypOTHESIS 3. A and B are linear operators in a complex Banach
space X with domains D4, Dp and there exist 94,95 € (0,7/2),
ca,cp > 0 such that

p(A) D89, U0}, Iz —A) e < % for allz € S,
(4.1)

p(B) D%y, U{0}, (2= B) Mlex) < ﬁ for all z € Sy,,.
(4.2)

HYPOTHESIS 4. There exist an integer k > 1, and real numbers
cap >0, a1,...,ax, B1,..., 0k such that

0<o < B <1, 1=1...k,

JA(A = v)" A7 (B = 2) e <CABZ||1 %MH@ (4.3)
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forallveXy,, z€Xy,. We also assume

d:= lIélllé]k(ﬂZ — ;) € (0,1). (4.4)

REMARK 4.1. 1. Hypothesis 3 implies A € AG(c4,0,7m — 94),
B € AG(cp,0,m —9p) (see Definition 2.1).

2. It is easy to verify that Hypotheses 3, 4 imply Hypotheses 1, 2.
Therefore we can use the results of the previous section. This
will be done only in Sections 5., 6..

3. (4.4) causes no loss of generality, since the inequality (4.3) turns
out to be relevant for large values of |v| and |z|.

LEMMA 4.2. The operators Ay, and B, satisfy Hypotheses 3, / with
constants independent from n and m.

Proof. The proof is essentially contained in [5], formula 6.11 and [14],
Lemma 3.1. O

REMARK 4.3. By this lemma, we can modify the values of the con-
stants 94,95, c4, etc. in (4.1)-(4.4) in such a way that Hypotheses
3, 4 hold also for A,, and B,, uniformly with respect to m and n.
We assume once and for all that this has been done. So from now on
(4.1)-(4.4) also hold for A,, and B,,, and the constants 94, Jp , c4,
cB, caB, k, a1,...,ap, Bi,..., B are independent from m and n.

Recall that for integers m,n > 1 we set A,, := mA(m — A)~1,
B, := nB(n — B)~l. The operators A,,, B, are approximations of
A, B. The rest of this section is devoted to proving Proposition 4.4,
the only result that will be needed in the sequel.

PROPOSITION 4.4. There exist M > 1, @ > 0 such that, for every
t > 0 and for every m,n,

eAm+Bn)|| < D™, (4.5)
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The idea of the proof is to show that V(t) := e{(An+Br) satisfies
an equation of Volterra type (equation (4.6) below, with P = A,,,
Q@ = By). The estimates (4.10), (4.11) on the integral kernels of the
Volterra equation, independent of m,n, allow to use a fixed point
argument to deduce (4.5).

LEMMA 4.5. Assume P,Q € L(X), 0 € p(P), and define V(t) :=
e P+Q) Then

t
V(t) = ethtP+/ e(t_s)Q[PeSP;esQ] ds
0

t
—/ e(t_s)QPQeSP[P_I;eSQ] ds
0
t
+/ et=9)Q p2esPIp=1. 3RV (s) ds
0

t v
+/ e(t—v)Q/ (P3e(v—s)P[P—1;e('u—s)Q]+
0 0

+ PQe(v—s)P[P—l; Qe(’u—s)Q]) . (V(s) — V(’U)) ds dv
t v
_ / H1-0)Q / P?mIP[P1 e mIRIQV (5)ds dv. (4.6)
0 0

Proof. Define H(s) := elt=9)Pe(t=5)Qes(P+Q)  Then
H'(s) = —Pelt=5)Pelt=5)Qes(P+Q) _ o(t=5)P e(t—5)Qcs(P+Q)
+ e(t—S)Pe(t—S)Q(p + Q)GS(P+Q)
= —PeltTIPE3)Ry (5) 4 et=9)P (=90 Py ()
= Pet=9)P(Pplelt=9)@ _ o(t=5)Q@ p=1) py/(s)
= PP [P (991 Py ().

The equality H(t) = H(0) + f(f H'(s)ds yields
¢
V(t) = ePel@ +/ Pelt=)P[p=1 (t=5)Q1 PV (5)ds. (4.7)
0

Let us apply P to both sides of (4.7). Taking into account that
V'(t) = (P + Q)V(t) we obtain

V'(t) — QV(t) = PetPe!? +
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+ / ' PRet=0P [Pl =99 (V1 (5) — QU (s))ds.  (4.8)
0

Now we apply e(*=%)€ to both sides of (4.8) and we integrate from 0
to t. Note that, integrating by parts,

/ t =9IV () — QV(s))ds = [V (5) 1=
0 " t
+ / Qe(t=2V (s)ds — / Qe ™IV (s)ds = V(1) — €,
0 0

and

1 t
/ e(t—s)QPesPestS — / e(t_s)QesQPGSPdS +
0 0

t
—I—/ et PesP; ¢39ds
0
t t
= etQ/ PeSPds—i—/ =99 PesP: 59 ds
0 0
t
= etQ(etP—l)—f—/ Q[ Pest; 89 ds.
0

Then (4.8) becomes

t
V(t) — !9 = eQ(ef — 1) —I—/ =9 [PeT; e ds
0

t v
b [l [Pl Ry (v () - QU (s)dsdo,
0 0

1l.e.

t
V(t) = elQetf +/ e(t_s)Q[PeSP;eSQ]ds
0

t v
B / St 0)Q / P2v=9)P[p=1, (v-9)Q)QV (5)dsdv
0 0

t v
n / ()@ / P2 IP[pL (0 9QV (5)dsdv.  (4.9)
0 0
Now notice that

/ PP [P VIRV (5)ds =
0
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- [PQe(v—S)P[P—l; e(v—S)Q]V(S)]Si; _
_ / 4 (P20 [P-1; o0-9Q) ) V' (s)ds
0 ds
— _PQe’UP[P—l; e’UQ] _
— [ (PP [P0 (V) — V() ds
0 S
_ / 4 p2eo-9P[p-L, ((v-5)Q] ) dsV (v)
0 dS
_ _P2e'uP[P—1;e'uQ] +/ (PSe(v—s)P[P—l;e(v—s)Q] +
0
+ PZelv=9)P P, Qe<v—s>Q]> (V(s) = V(v))ds +
+ P2 [P e RV (v).
Substituting into (4.9) we finally obtain (4.6). O

LEMMA 4.6. For every p € (0,0) (see (4.4)), there exists ki =
k1(p) > 0, such that for every t € (0,1] and for every m,n we have

| A2 etAm AL etBr](—B,)P|| < kit~ 107, (4.10)

The proof of this Lemma is postponed to the appendix.

LEMMA 4.7. Let a € [0,1] Then there ezist positive numbers ko, ks,
k4, ka(a), kp(a) such that for every t € (0,1] and for every m,n we

have
i)
11)
141)
v)

v)

I[Ametm; e Bl < kot ™17,

| A% A € Pn]| < st ™',

m )

A% 64 (ALY €fBe]| + | AL et 4 (AL BetBe]|| < hat ™24,

I(=Am)*e 4| < ka(a)t™,

|(—Bn)*e"" || < kp(a)t™™.
(4.11)
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Proof. Let us choose J¢ such that 7/2 < 99 < # —max(94,9p). Let
us define )
yi={AeC: Ax=re ™ re[l,o0)}U
U{AEC: A =¢e",p e [0, 9]} U (4.12)
U{reC:x=re? rell,00)},

oriented with increasing imaginary part. Fix ¢ € (0,1]. By our
assumptions and a well known result (see [16], theorem 1.7.7 and
formula (5.12)), we have, for h = 0,1,2,... , and every n,m,

Ab gtAn ][ MM\ — A,)LdA
Y

= ][ MTHrA AT — A,) "N, (4.13)
vt

Bre't = ][/\he“t(u — Bn)~dp
Y

- ][ Gt et = B) NN (14
Y

Since the integrands in (4.13), (4.14) are analytic, we can deform the
path vt into v without affecting the value of the integrals.

i) We have

[AmetAm; etBn] —

= ][ ][ MM — Ay) 7 (it — By) et 2dAdp

— ][ ][ AT 1 /\A t—l m)_l[Ar_nl; (Ht_l o Bn)—l] .
m(MTL = A T teb T 2dNd .
By (4.3) we obtain

I[Amet tB"]II <

1
< eap S (2m)2 / / P\ — .
; vy N/l | /t|Bitt

(1 + ca)e®Wi=2|dN| |dpl
< kot L
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i1) We have

| Az et azt et =

][ ][ ML A (AT — Ap) 7
A

AL (ut ! — Bn)—l]e“t*cuduH

k
< caB Z(QW)_Q//t_lweRe(/\)'
i=1 Ty
1
e [ufepe e
< kytdl

Re(t)4=2|d)\| |dp)

i11) can be proved in a similar way and iv), v) can be proved as in
[16], Theorem 2.6.13, or using the formula, analogous to (4.13),

(—A,,)%etAm = ][ (“A)2M (A — A,)~ld),

and taking into account our assumptions and Lemma 4.2. O

Proof of Proposition 4.4. Fix m and n. Since ¢fAmtBn) ¢ >
is a semigroup, it suffices to show that there exist T > 0, M; >
independent of m,n, such that

| AmtBa)|| < My, te0,T]. (4.15)

This will be proved by means of equation (4.6) with P = A, Q
B,. To this end let us define g(t) := gi1(t) + g2(t) + g3(t), Q
Q1 + Qg + 93, where

gi(t) = etBrethm
t

g2(t) = /e(t_s)B"[AmeSAm;eSB“]ds,
0

t
g3(t) := —/ e(t_S)B”A?neSAm[A;nl;eSB“]ds,
0
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t
(Q]_f)(t) = / e(t—S)BnAgneSAm [Ay_nl;eSBn]f(S)dS’
0
i v
(Qf)(t) = /o e(t=)Bn /O (Afne(v—s)Am (A @=9)Bn] 4

A2 Am[4 L, Bne<“>3n1) (f(5) — F(v))dsdo,

(Qsf)(t) == — /t e(t=v)Bn /v A2 o(v=5)Am .
' [AO;LI; e("_s)B"?an (s)dsdo.
Now, setting V (¢) := e(4m+Br) equation (4.6) becomes
V(t) =g(t) + (QV)(1)- (4.16)

For T € (0,1], p € (0,6), p < § let us define the Banach space Fr,,
of the functions f : (0,7] — L£(X) such that the quantity

1-p £ (2) = f(s)]

= su 1) + su S (417
Iltmo 1= sup IS+ swp o RCE o @)
+ sup 1177)(=Ba) S (0)] (418)

0<t<T

is finite. Note that (4.17) implies that for f € Fr, , we have

v—s\'"
150) = SO < g (22 (4.19)

for 0 < s <wv <T. We will show that g € Frr,, and that Q is a
bounded linear operator in Fr, ,. More precisely we will prove

lgll7n,p < C1, (4.20)

19l e, ) < Ca(T), (4.21)

with Co(T) — 0 for T — 0 and Cy,Co(T) independent of m,n.
Let us assume (4.20) and (4.21) for a moment. If T is so small
that Co(T) < 1/2, then 1 — Q invertible in L(Fry,) and |1 —
Qllc(rr,,,,) < 2. Therefore (4.16) becomes V = (1 — Q)"lg and we
obtain [|V|py, , < 2C1. So by (4.17) ||V (t)|| < 2Cy, t € (0,T], and

(4.15) is proved.



174 M. FUHRMAN

To finish the proof we show that (4.20), (4.21) hold. We only
use Lemmas 4.6 and 4.7 and formula (4.19). The constants k;, k4(-),
kg(-) below refer to these Lemmas.

(4.20) is easily established. For example, the inequalities

t
ks
||/ e(t_s)B”[AmeSAm;eSB"]dsHS/ kp(0) =5 =ds < kp(0)koT5 1,
0

<

t
H(_Bn)l—p/ e(t—s)Bn[AmesAm;ean]ds
0
t
kB(l—p) k’g
< — =
< it

k(1 —pks [*
- t1—p— P 0 (1 )1 psl —

kn(l—p ’“QTJ
- ti-r 1—31/’31 (1 — g)l-pgl=0’

H/ (t— an[A an / (s— an[A 6 'uBn]d,UH
/ ||t Bn _ gls= an|| dv+/ ks( 0)

/ kp(1 )logz_v k2 du+k3(0)k2T510g£

0 _

s /t—s\'" dv t—s\'7”
kp(1)k kg(0)T?

show that ||g2||7n,, < ¢, with ¢ independent of m,n.
Let us prove (4.21) for Q3. Setting

IN

AN

AN

(Hf)(v) = / A2 0= Am [ A=1 0=5)Ba1B, f(5)ds
0
we have

O A A e ]
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' (_Bn)p(—Bn)l_Pf(s)ds S
Y k1 1 . .
< i
< || o e s B S0
1 k .
0—1 1
= /0 (]. — 3)1*(5+P gl—»p ds”f”T,n,p

5_
= 1”f”T,n,p-

Then the estimates

t t
/ B (Hf)(w)do| < /0 kp(0)ev’ ™ dvl|fllzn,p < &I flln,o

0

<

B> [ =gy oyan

t
kg(1—p) 51
< _— 7
< /O(t—v)l_Pcv dv||f|lTn,p

1
k(1 p)
_ d+p—1 B P) -1
= o /0 bl

C 5
< tl——PT Il 7,05

| te(t_”)B"(Hf)(v)dv—/s B (H f) (v)do|
0 0

s t
e(t=0)Bn _ g(s—v)Bn v)||dv v)||dv
< /0 et [I(H f)(v)lld +/S kp(0)[|(H f)(v)lld

S

§ t—v ¢ t
< [ ho 0108 Tl g + ks ©) [ o ol
S

t—s\'" dv 5 i
< ke [ (550) STl + ks (T log | f iy
1—

t—s P
~
e (£22) sl

IN
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show that (4.21) holds for Q3. To estimate Q2, we set

1)) = [ (Al an a8 4

T A2 A4 L, Bne<“>Bn]) (F(s) = £(0))ds,

we notice that, by (4.19),

e < [ ot (U50) 7 wis

Tn,
v—S P

1
k
_ 01 4
- ]

Tn,p

and we proceed as before. The estimate for Q; is easier. Proposition
4.4 is proved. O

5. Perturbation theorems for generators of analytic
semigroups

Throughout this section we assume that Hypotheses 3, 4 hold.
Recall the notation X, , := {z € C: z # w,| arg(z — w)| < ¥}

LEMMA 5.1. For every 9 satisfying w/2 < ¥ < wm — max(94,9B)
there exist K > 0, w > 0, depending only on 9 and on the constants
in Hypotheses 3, 4, such that for every m,n,

p(Am +Bp) DX,y ,

and

_ K
(A = Am — Ba) Hlgx) < nal for xe %, . (5.1)

Equivalently,
Am + B, € AG(K,w, 1), (5.2)

for every m,n, with K, w independent from m,n.
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Proof. We only sketch the proof, since the argument is the same
as in [9], Lemma 4.3. For any real number ¢ with |p| < ¥ — /2,
put Ay, = e A, By, = €’?B,,. Then it can be shown that
Ay m, By, satisfy Hypotheses 3, 4 uniformly with respect to m,n, ¢.
Applying Proposition 4.4 to Ay, By, we obtain

A B — [l (A B — elldentBen) | < e,
for all z € C with |arg(z)| = |¢| <9 —7/2, |z| =t.
Next we consider the well known equality
o
A=A, —B,) ' = / e MetAmtBu)gt  NeR A >w. (5.3)
0

By shifting the path of integration from [0, c0) to
vy := {z = re',r > 0}

for suitable ¥; we see that the integral in (5.3) extends to an analytic
function of A in X/, 4, and the estimate (5.1) follows. O

LEMMA 5.2. If 9 satisfies /2 < ¥ < m — max(J4,9B), then there
exist K > 0,w > 0 such that for every m,

(A, + B) € AG(K,w, ). (5.4)
Moreover, for every compact interval I C (0, 00),
lim efAm+Bn) — HAm+B) (5.5)
n—oo

in L(X), uniformly fort € I.

Proof. By Lemma, 5.1 there exist K > 0,w > 0 such that A,,+ B, €
AG(K,w, ), for all m,n. Let us fix m and show that there exists

lim (A — Ay — Bp) ' =(A— A4, — B)™, (5.6)

n—oQ

in the norm of £(X), for A € X 4. Since Hypothesis 3 holds
uniformly with respect to n, we can choose A; > 0 so large that

A1 € Ei,ﬁ and

1A = Br) ™ Al < epATH [ Amll < 1, (5.7)
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for every n. From the equality A\ — Ay, — By = (A1 — Bp)(1 — (M —
B,)'A,,) it follows that

(M —Am—By) ' = fj (M =Ba)™ )" (M —Ba)™" (58)
h=0

and this series converges in £(X) uniformly with respect to n, by
(5.7). Since (A1 — Byp)™! = (A — B)7! in £L(X) for n — oo, (A1 —
Ay — Byp) ! converges in £L(X) for n — oo. By Proposition 2.2,
there exists C,,, € AG(K,w, ) such that, for all A € Zi,ﬁ,

lim (A — A4, —B,) ' =(\=Cn) L, (5.9)

n—o0
in £(X). Passing to the limit in (5.8) yields

o

(A= Cr)™h =D (M = B) A (= B) Y,
h=0

and this equals (A\; — A,;, — B) !, as it can be easily seen. So C,,, =
A + B.
Finally, (5.5) follows from (2.10). O

THEOREM 5.3. Assume that Hypotheses 3, 4 hold and let 9 satisfy
/2 <9 < m—max(da,9p).

Then one can find w > 0 such that there exists a unique graph (A +
B)™ satisfying

lim (A, + B— X' = ((A+B)~ -\, (5.10)

m— 00

in L(X), for all A\ > w. Moreover,
(i) (A+ B)™ is an extension of A+ B;
(ii) there exists K > 0 such that (A+ B)~ € AG(K,w,9);

(i) (5.10) holds for every A € %}, 5;
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(iv) for every compact interval I C (0,00),

= lim lim ¢Mm+Ba)  (511)
m—0o0 m—r0o0 N—r00

in L(X), uniformly fort € I.

Proof. We apply Proposition 2.2 to the operators A,, + B. By
Lemma 5.2 there exist K > 0, w > 0 such that A,,+B€ AG(K,w, 9).
Lemma 3.8 and (3.20) show that, for A\g > 0 sufficiently large, the
limit limyy, 00 (Am +B—Xo) ™! exists in the norm of £(X). Therefore
there exists a unique graph (A 4+ B)™ such that

lim (A, + B—\)"'=((A+B)~ -\ 1, (5.12)

m—00

in £(X) forall A € & 4, and (A+B)~ € AG(K,w,d). (5.11) follows
from (5.5) and (2.10). Now we only have to prove that (A + B)"™ is
an extension of A + B. It suffices to show (z,y) € A+ B— Xy =
(z,y) € (A+B)~ — X ie.

t€DsNDp, y=(A+B—-X)z = z=(A+B)"—X) v
Note that
y=A+B—-X)r = y=An+B-XN)z+(A-A4Ap)z =

= (An+B—-XN)ty=x+(An+B—X) A4,z
= (An+B—2)ly=2+ (An + B — Xo) LA(A — m) Az
By Lemma 3.8, (A, + B — Xo) "'y = & + Uy A(A — m) Az,

Then, letting m — oo we obtain, by (5.12) and Lemma 3.9,
(A+B)~ = X) 'y =1z O

REMARK 5.4. Under the assumptions of Theorem 5.3, there are sit-
uations where A + B is a closable operator, but A + B has empty
resolvent set (see [13]). So in general (A + B)™~ # A + B. The next
Corollary gives a necessary and sufficient condition in order that
(A+B)~ = A+ B. Tt is essentially due to [13], Lemma 2.3 (cfr. also
[6]). We omit the proof, since it is the same as [9], Theorem 5.6.
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COROLLARY 5.5. Under the assumptions of Theorem 5.3, the fol-
lowing holds.

(2) If R(A+ B — \g) is dense in X for a Ay > w, then we have
(A+ B)~”=A+ B.

(17) Conwersely, if (A+ B)~ = A+ B, then R(A+ B — \) is dense
i X, for every A > w.

REMARK 5.6. If Dy or Dp is dense in X, then R(A+ B — ) is also
dense, for A large. Indeed, as a consequence of Proposition 3.5, we
have R(A+B—X) D D4(0,p) D Dgand R(A+B—X) D Dg(0,p) D
Dp.

The following Corollary exhibits an explicit formula for the re-
solvent of (A + B)™.

COROLLARY 5.7. Under the assumptions of Theorem 5.3, there ex-
ists \* > 0 such that for all A > \*,

(A+B)y* - N =1, (5.13)
where Uy, is given by (3.18).
Proof. Let A\* be as in Section 3. We can suppose A* > w. Then by

Lemma 3.8 (A, + B—A)"! = Up,x. Now let m — oo and recall
(3.20) and (5.10). O

The uniqueness of (A + B)"™ is discussed in the following

COROLLARY 5.8. Under the assumptions of Theorem 5.3, suppose
there exist 91 € (n/2,m), K1 >0, w; > 0 and a graph
Ce AG(Kl,wl,’ﬁl)
such that C is an extension of A+ B. Then
(1) ify € R(A+ B — X) for every A in some interval (Ao, A1) C R
with A1 > Ao > max(w,w) we have

(A+B)" =) ly=(C-p)y, peTp,NTh .,

etcy = et(A"'B)Ny, t>0;

(5.14)
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(17) if R(A+ B — A) is dense in X for a A > max(w,w;) we have

(A+B)~ =C.
Proof. The proof is the same as in [9], Theorem 5.5. O

COROLLARY 5.9. Under the assumptions of Theorem 5.3, we have,
for t > 0 and for every integer n > 1,

R(MAHB)) € Diaypyns (5.15)

jt"_netmwr (A4 Byrela+B)~. (5.16)

Moreover, with continuous embedding,
DsNnDpg CD(A+B)~ C Dy2(1/2,00) N Dp2(1/2,00). (5.17)

REMARK 5.10. Concerning (5.17), we recall that a norm can be
defined in D4, p)~ as in Section 2., formula (2.11). We also set
|2l panDs = l12lDs + |2l Dy

||x||DA2(1/2,oo)ﬂDBQ(1/2,oo) = ||SC||DA2(1/2,oo) + ||x||DBZ(1/2,oo)-

REMARK 5.11. From general results on graphs generating analytic
semigroups (see [7], Theorem 3.2), instead of (5.15) and (5.16) (say
for n = 1) one would only obtain the differential inclusion

%etww (A4 By~ ATB 50, ¢ 0.

Proof of Corollary 5.9. We only sketch the proof, since it is similar
to [9], Theorem 5.4. Choose A; > 0 sufficiently large. Then 0 €
p((A+B)~—=\;) and (A+B)~—)\; generates S (t) := e M1 elA+B)™,
By (2.7) and Corollary 5.7

et dn+1
dgnt+1

gl dn+1

S1(t) = (A+B)" = \) e

S1(t) = (Ux)

S1 ().
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By Corollary 3.13 we have R(S1(t)) C D(aqpy~ (i.e. (5.15)) and

dn+1

(A4 B — X1)"S1(2) Si(t).

Using the integral in (2.6) and the resovent identity (the latter being
valid for graphs, too), one proves
dn
—S51(t) = (A+ B — \)"S1().
g 1(t) = (A+ 1)"51(1)
(5.16) follows from this.
Finally, note that by Corollary 5.7 we have R(U)) = D44 p)~ -
(5.17) is then a consequence of (3.28). O

Under some density assumptions for the domains of A and B
the conclusions of Theorem 5.3 can be strengthened and made more
precise. Recall that D4 C D4(0,p), Dg C Dg(6,p).

THEOREM 5.12. Assume that Hypotheses 8, 4 hold and suppose that
there ezist 9 € (0,1) and p € [1,00] such that D4 (9,p) or Dp(d,p)
is dense in X. Then A+ B generates an analytic semigroup.

More precisely, for every 9 satisfying

/2 <9 <7 —max(94,9p)
there exist K > 0 and w > 0 such that
A+ B e AG(K,w, V). (5.18)

( A+ B is a graph, in general.)
A+ B is the unique graph that simultaneously extends A+ B and
generates an analytic semigroup.

Proof. By Proposition 3.5, for A > 0 large we have
Ds(¥,p) CR(A+B—)X) and Dpg(d,p) CR(A+ B —)),

so that R(A+B—A\) isdense in X. Then (5.18) follows from Theorem
5.3 and Corollary 5.5. Uniqueness follows from Corollary 5.8. O
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THEOREM 5.13. Assume that Hypotheses 3, 4 hold and suppose that
DsNDpg is dense in X. Then A+ B is a closable operator and
the (single-valued) operator A+ B generates a strongly continuous
analytic semigroup. More precisely, for every 9 satisfying

/2 <9 < 7w —max(da,9pB).

there exist K > 0, w > 0 such that A+ B € AG(K,w,1).

Proof. Since D4 N Dp is dense, A + B is closable by Corollary 3.11.
So (A + B)~ = A+ B is a single-valued operator. Since Dzrz D
DsNDpg and DyNDpg is dense, then Dm is also dense. By a well
known result (see e.g. [16], Theorem 1.7.7), the semigroup generated
by A + B is strongly continuous. O

6. Some results on interpolation spaces
This section is devoted to giving a characterization of the real inter-
polation spaces between D4 gy~ and X, where (A + B)"~ is defined

in (5.10). We extend some results of [13]. We assume Hypotheses 3,
4 throughout.

LEMMA 6.1. Letd be as in (4.4) and Sy, S} be given in (3.9), (3.10).
Then for every X > 0, 9 € (0,6) there ezist ¢,c, > 0 such that for
every y € Da(9,p) N Dp(¥,p) we have S\y € Dy, S\y € Dp and

% e dA)P ,
. INASWIPS | < ellylpawee). i p€[L00),  (6.1)

1
& d\\» .
([T 18801 % )" < colullppomy #r€ L) (62

ANASwl < ellyllpace),  for A> X, if p = oo, (6.3)

N[BS\yll < ellyllps(occ)s  for A> X, if p=oo (6.4)
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Proof. Let A > X; let g be the path (already defined in Section 3.)

Y% = {AeC: A= ’I“B_MO,T € [0,00)} U
U{reC: A =re",re0,00)},

oriented with increasing imaginary part, where 6y satisfies 7/2 <
0y < m™—04. Then

AS\y = —][ AA—z=N)"' B-2+2)"1y
Yo
= —f A=z N) BB - A+2) ds
Yo
— ][ (B=X+2)"1A(A—z— N "lydz
70

- —][ (24 N(A—A)(A—z—A)L.
Y0
JA=XN"5H(B=-A+2)"NA-NA—-z—-)) lydz
—][ (B—)\—I—z)*lA(A—z—)\)*lydz
Yo

_ ][AYOIl(z,)\)dz-l— ][ Loz, \)dz.

0

(The estimates below show that these integrals are absolutely con-
vergent.) By Lemma 3.2 we have, for A > A,

‘ ][ Li(z,\)dz
"o

<

k —
1 c(A)
< L A :
< o [ FNE e
cal?|
(1+| ‘)n lld
k |v+ 1]
< ex?!
s C ||y||/ 2; +1‘1_ai|’l)—1|1+ﬁi|dv‘

= |yl
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Therefore to prove (6.1) it suffices to show that

1
o0 d\\ »
(/ wifzxa»ww—) <clyloyom.  (65)
A Y0 A

Since D 4 (¢, p) C D4(9,00) we have

cRB 1
||IQ(Z’ /\)H < |Z — | | n A|19 ”yHDA(ﬁ,p)’ FAS EﬁA N (_2193)7

(see (2.3)). Therefore ][ I5(z,\)dz can be computed over g — A

Yo
instead of . By the change of variable v = z + A we obtain

][ I(z,\N)dz = ][ I(z,\)dz
"0 Yo—A
= - ][ (B =2\ +0v)"tA(A — v) " tyd.
Y0

Let us set ¢(r) := max (||A(A — re®0)~1y||, | A(A — re_“ﬁ))_lyn )-
Then by the elementary inequality 2|v—2A| > |v|4+2X, A > A, v € 7,
we have

nf <szn<21/m 28 (r)d
" A=2r )y T

Since y € D 4(¥, p) we have

1
> dr\»
([T 1rers)” < dvluon

Then we obtain
P A\ v
— <
v) <

(/:o ,\19][ I(z, \)dz
= (/ |0/ r+2/\"" |dAA)
- c(/ |/ 1+2/\7‘_1 19"0( )%pd):\)
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In the space LP((0,00); &) this is the norm of the multiplicative
9
T4

to the measure %. By Young’s Theorem we obtain

o] p 1
(/ ,\19][ In(z, \)dz d—A)p <
X Y0 A
© gy 9 dr\»
- p__
o{ [T ([ et

cllyllpa@o,p)-

Now (6.5) is proved, and so is (6.1).
Now we prove (6.2).

convolution of the functions r +— r?¢(r) and r with respect

INA

IA

BS\y = —+4 BB-X+2) ' (A—z-))"1y
Yo

= —f [B(B=X+2)"Y(A—2z—N)"Yydz
0

— ][ (A—z—X)"'B(B—-\+2)"tydz
Yo

= +][ A=2)A=NA—-z=-X"1-

Yo
JA=XN"TH(B=A+2)"A-N)(A-2z—))"lydz
—][ (A—z—N"'B(B—-X+2)"ydz

Yo

_ ][ Ti(z, \)dz + ][ To(z, N dz.

Y0

][ Li(z,\)dz
Yo

(6.2) it suffices it verify that

(U

This can be proved as (6.5), i.e. computing ][ Iy(z,\)dz over o+ A,

Y0
setting v = z — A and using Young’s Theorem.

As before we have < A7y, A > X, and to prove

1
Pd\\r
R) <clullbaon

Y ][ Ir(z,\)dz
Y0
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Finally, (6.3) and (6.4) (i.e. the case p = 00) can be proved with
obvious modifications. O

THEOREM 6.2. Assume Hypotheses 3, 4, and let (A+B)"™ be defined
by (5.10). Then

D(A—i—B)N (ﬁ,p) = DA(ﬁap) N DB('&ap)v (S (055)7 peE [150(0]' )
6.6

REMARK 6.3. § is the same as in (4.4). D(ayp)~(9,p) is the real
interpolation space (X, D(a1py~)s,p defined in Subsection 2.3 and
D4(9,p) N Dp(9,p) is endowed with the norm

12l ps@.p)nDa@p) = 12l DA@p) + 121 D5 (0.0)-
The equality (6.6) is understood in the sense that for any fixed ¥

and p the two spaces coincide with equivalence of norms.

Proof. Step 1. Let us show the inclusion
D1y~ (9,p) C Da(d,p) N Dp(9,p). (6.7)
In the Corollary 5.9 we proved the continuous inclusion
Dat4B)~ C Dy2(1/2,00) N Dp2(1/2,00).
So the identity operator
id : Diaqp)~ — Dg2(1/2,00)

is continuous. Since evidently id : X — X is continuous, by interpo-
lation id : Diaypy~(9,p) = (X, Diayny~)op = (X, Dp2(1/2,00))9p
is also continuous. By a result of [10] (Cor. 1.3.2 and Rem. 1.3.1) we
have (X, D 42(1/2,00))p = Da(9,p). So we have D4, py~(9,p) C
D4(9,p). In a similar way one can show D44 )~ (¥,p) C Dp(¥,p)
and (6.7) is proved.

Step 2. Let us prove the inclusion

D(A—i—B)"’ (’19,])) D) DA('ﬂap) N DB(Il?ap) (68)
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We fix \* > 0 sufficiently large and A > A*. For y € Dy(d,p) N
Dp(9,p), let z € Dy N Dp be the unique solution of the equation
(A— XNz + (B — Az =y. Such an z exists by Proposition 3.5, and
x = U,y, by Proposition 3.10.

By Corollary 5.7, z = ((A + B)™~ — 2X)"'y. So we have

y =272\ — (A+ B)™) 'y = y + 20z = Az + Bz = AU,y + BUyy.
By Proposition 2.3 it suffices to show

1
© 9 pdA P
N INAUIPS= ) < eo{ [Ylpawp + lylDsw ), (6.9)

1
> d\\»
([7 1801 5)” < o (1ollat00) + Iolpio ).~ (610

for p € [1,00), with obvious modifications for the case p = oco. By
Proposition 3.5, the vector z introduced above is also given by the
formula z = (A — X)71(1 + Jy) 7} (4 — \)Syy. Taking into account
the identity (1+ Jy) ! =1— Jy(1+ Jy) ! we obtain

Uy=z=58y—(A=2) "1 +Jy) (4-21)Sy.
By Lemma 3.3 we have, for every A > \*,
|AUNy < [|ASxyll + [IA(A = N) T[] -
N+ I) I AS ] + [IASxyll)
1AS Il (L + A =N THIIANIE + 207
+ A =TI + 20 HIASw ]
[AS Y1+ (1 + ca)eA™) + (1 + ca)ed [y
cl|ASxyll + A~ |ly]l-
Then (6.9) follows from (6.1) and (6.3). To prove (6.10) recall that
by (3.21) Uy = S} + (A — B)~'Q,, where Q) € L(X) and ||Q,[ <
c(A*)A7? with ¢(\*) independent from A. Therefore we obtain
IBUwIl < [1BSiyll + IB(x = B) '@yl
|1BShyll + (1 +ca)@alllly
IBS\yll +eAllyll, YA > X,

(6.10) follows from (6.2) and (6.4), and step 2 is finished. O

IN

<
<

<
<
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7. Appendix

This section is devoted to proving Lemma 4.6. In the sequel we

will use only Hypotheses 3, 4 and the Remark 4.3, the well-known

formulae (4.13), (4.14) and the material introduced in Section 2..
For convenience, we state again Lemma 4.6. As before,

Ay = mA(m — A", B,:==nB(n—B)"!,
for every pair of integers m,n > 1.

LEMMA 7.1. Assume Hypotheses 3, 4. Then for every p € (0,0) (see
(4.4)) there exists k1 = k1(p) > 0, such that

|47, [AL" s € P (=Bo)? |l < kit ™' 7P, € (0,1], myn > 1.

For the proof we need another preliminary lemma. It consists
simply in a convenient splitting of an expression that we will meet
later.

LEMMA 7.2. Let us define

Topn(& A ) 1= =M Ay (A — M) !
(AR (By — ™)
ceM (e By + &) TR (1)

Then T n(& A, 1) - ZT,(an (&, A\, 1), where

T(nl)tn(gaA M) = e)‘)\t_lAm(Am _ )\t_l)_l
[A_l' (B - /,Lt_l)_l](Bn — /Lt_l + £t_1)_1
(Bp + §t_1) t_l(ft—l)peut—3’
TT(VLQ)tn(éLa A,H) = —e)‘)\t_lAm(Am _ )\t_l)_l .

(AR (B — ut™h) (6T ek,

TTS?%’!L(&? A,N) = e)\At_lAm(Am _ )\t—l)—l
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(ALY (Bp — ™t + &7
N3 L A

T (A ) = AN (B — pt™) A (Am — M)
TAGY (By — put ™" + &7Y) 7Y (et )Pert S,

Ton(€Am) = A1) 2Am(Ap — X1

ALY (B = ™) A (A — A7)
A5 (B — ™+ 667 (et

provided all the inverse operators ezxist and belong to L(X).

Proof. It consists in algebraic manipulation. To simplify the notation
we write P, Q,a, b, c instead of A,,, By, ™!, ut~1, £t~ ! respectively.

Trin(& A n) =
= —aP(P-a) '[P 5(Q-b)"(Q+c) tcPerett®
= —aP(P—a)'[PH(Q—-b)"UQ—b+c) 'Pelett?
+aP(P—a) ' [PH(Q-b)"]-
(Q—b+c)H(Q+c) thcPerert
= —aP(P-a)7'QQ-b)7'P1Q7'QQ-b"-
(Q—b+c) tePetett™?
+ T3 (6 A 1)
= —aP(P—a) 'QQ-b) P 1Q'QQ-b -
P lerett 3
+aP(P-a)7'QQ-b)7'[P7HQ Q@ -b+c) -
P lerett 3
+ T, (6N )
= T (&N )
+aP(P—a)"'QQ—-b+0) ' [P7HQ71-
Q(Q—b+c) L tetert®
+aP(P—a)"'Qc(Q—b+¢)"(Q—-b)'[P71Q 7]
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QIR —b+ c)_lc”_le)‘e"t_?’
L (60 1)
= a6 m) + T (A )
+aP(P—a) (Q—b) '[P H(Q—-b+c) ]
cPerett™ 3+T tn(§,)\ )

= Tm,t,n (57 >" :U') + Tm,t,n (€a )‘1 M)
+a(Q-b)'P(P—a)  [PTH(Q-b+c) 7]
Pelett?
+a[P(P—a)75(Q = 0)T[PTH(Q - b+ o) Pt t™?
+ﬂﬂA£Am
= Tm,t,n (5’ >‘7 :u') m,t,n (éa >‘1 H) + T'r(n4,35,n(§7 A’ H)
+¥KP @*(Q b) P @Q b+
eut_ + T tn(é‘a)‘ M)
= Tm,t,n (57 >‘a ,U/) + Tm,t,n (€a )‘a N) + T'r(n4,25,n(§a )\7 /1')
+a?P(P—a)" '[P H(Q-b) 7 |P(P—a)"-
[P 7H(Q —b+c) YcPeltett 3

+ T, (6 1)
5

= Y19, (€M n).

i=1

O

Proof of Lemma 7.1. Let p € (0,6). Let J¢ satisfy
/2 <9y < m — max(J4,9B). (7.2)

Let us define the path
v = {texp(—idy):t € [1,00)}U{exp(id) : ¥ € [—Vo,Io]}U
U{texp(iy) : t € [1,00)},

(7.3)

oriented with increasing imaginary part.
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For every R > 1 let y{* be the intersection of 7o with the disc of
radius R centered at the origin of the complex plane, namely

vt = {texp(—ido) : t € [0, R]} U {exp(i¥) : ¥ € [P, Jo]}U
U{texp(itdy) : t € [0, R]}.
(7.4)
Let us fix once and for all ¢ € (0,1],m,n > 1. Then let us choose
R > 1 and define Jy, 1, := A2 e4m A, 1 e!Bn]. By (4.13), (4.14),

Imin = ][][/\e)‘tAm(Am—/\)_I[A;nl;(Bn—u)_l]e“td/\du
7 /70

= ][ MMy (A — M)
7ot v Yot
(AL (B — ptm YT ekt 2 ddp.

m

Since the integrand is analytic we can deform vyt into vy without
affecting the integral. We obtain

Jm,t,n = ][ )\tile’\Am(Am — Atil)fl
70 7 0
AR (B — pt™Y) Vet dAdp. (7.5)
Let us define
Jrlrf,t,n = ][ ][ M le /\A —)\t_l)_l .
’70 ’Y
[A5Y (By — pt™Y) et 2dNdp. (7.6)

Let 91 satisfy
Jo <Y1 < 7. (7.7)

Now let us define
v = {texp(—id) : t € [0,00)} U {texp(ith) : t € [0,00)}, (7.8)

oriented with increasing imaginary part. Finally for r,s with 0 <
s < r let us define

M =T+ e + 715+ (7.9)
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where
Vit == {texp(—ith) : t € [s, 7]}
Yig i= {sexp(id) : ¥ € [~1,91]}
Y13 == {texp(it) : t € [s,7]}
Vg i= {rexp(id) : 9 € [=01, D]},

oriented clockwise. In the following we will let s — 0,7 — oo, so
that 7] “tends” to 71 (including orientation).

Since o(—By,) lies in the right half plane, it lies to the right of
~1; since it is compact, if we require

0 < s < dist (6(—By),0), r > || Byl (7.10)

then v surrounds o(—B,,). Therefore

B =~

1

(B +6)1e0dE = — ][ (B, +1-16)L(t-1¢P) -1 de.

7t

So we obtain (see (7.1), (7.6)),

JE, (B = ][ ][ ][ A1 Ay (A — M)
'70 'YO 'Y

(ALY (B — pt™) et (B, + 1) 7!
(71PNt deddp

_ ][7 ][7 ][7 Ty (€, ) dEdAd. (7.11)

Recall the notation ¥y, := {z € C: z # 0, |arg(z)| < # — Ip}. Let
us define

Vii= (J{—(C\Z,) +ut ™'}

HEY0

We claim the following:
V; lies in the open region to the right of ;. (7.12)

Indeed, notice that —(C\Xy,) = {0} U{w € C : |arg(w)| < I}
Pick such a w. If u € 7o, then pu # 0, and |arg(ut™1)| = |arg(u)| <
99, whence w + ut ! # 0, and, by (7.2), |arg(w + ut )| < 9y < 9.
Now the claim (7.12) is proved.
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Let us define

Vin = |J {(6(=Bn) +pt™'}.
NE'YO

Since o(—By,) C —(C\Xy, ), therefore Vg4, is contained in V; , and,
by (7.12), it also lies in the open region to the right of ;. Since
o(—B,) and v{t are compact, we have

MRtn = dist (VR’t,n,O) >0,
Mpin = max{|lw|:w € Vgn} < 0.

Therefore if s and r, in addition to (7.10), satisfy
s<mpxn and 71> Mpgp, (7.13)
we conclude that the closed path +] surrounds Vg ,. Therefore:
1. We have

ptt— et € Yoy, forpe€my, £€m. (7.14)

Indeed, if ut 1 — &¢71 € C\Zy, , we would have
&t e —(C\Zyy) + pt ™!
for a pu € ~yo; this contradicts (7.12), since &t~ € t7 1y = 1.

2. We have

B, — pt~ ! + &t has a bounded inverse

1
for every & € t}, p € vt (7.15)

Indeed, if £t 1 € o(—By,) + ut ! for a pu € v{ we would have a
contradiction, since £¢7! € v and v} N {o(—B,) + pt~'} =0,
for every p € 4, by (7.13).

Now we exploit the formula (7.11). By (7.15) we can apply Lemma
7.2 obtaining

JR, (~B, ,,_][ ][][ mtnEa/\u)d*Sd)\du
’70 ’Y ’Y



ON THE SUM OF GENERATORS OF ANALYTIC 195

Now observe that 7Z T,(,f%n(g, A\, p)dé = 0, for every A\, u € vE, by
’Y’t "
analyticity. So '

JE, (~B, ”—][ ][][ T!, (6 m)dedAdp,
'Yo 'Yo ’Y

Tran(&An) = TN m) +T<3m(s M) +
+ Tm,t,n (Ea )\a H) m,t,n (éa )\7 /1‘)
For fixed A, u € ¢ let us show (cfr. (7.9))

where

lim T’i,n,t,n (€A, p)d€ =0, (7.16)
s—0 ,Yiszt
and
Tim { (€ e = 0. (7.17)
Tat

(7.16) is obvious, since, for £ — 0,

T, (6,2 1) = O(lEPP™h),
T, (€A 1) + T, (6 A ) + T, (6,2, 1) = O(€]7).

n
To prove (7.17) observe that for |{| — oo,

LT (6 1) + T (6,2, 1) = O(JE|2+);
2. We have

T (€A ) = N By — it A (A — M)
'Bn(Bn - lﬁti1 + ftil)il[Arfr&; Brjl]'
By (B, — pt '+ &) e )Pet P
= O(j¢|7**P);

3. We have

T €A m) = A2 A (A — M)
ALY (B — pt™ ) AR (A — X7
Bn(Bp — pt™t + &7 AL B
“Bp(By, — pt ™t &) (6t Pett
= O(|¢7*t7).
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Now (7.16) and (7.17) are proved
By the analyticity of £ = T}, , (£, A, 1) we have

Jg,t,n(— )? _][ ][ llm][ T (& A p)dEddp.
& SAE it

0 s—0

So, by (7.16), (7.17) and setting s = r 1,

IR, (=B, ,,_][][ tim & W)€ A
: s {Hw e ( )

In this integral ¢ takes values in 7;. From Hypotheses 3, 4 and
the Remark 4.3, we deduce the following estimates on Tfnin, Tfng’, )t,n,

Tr(,izzn, Tr(,?)m They hold for A, 4 € vy and for & € 1, by (7.14). For
simplicity of notation and without loss of generality let us assume

that Hypothesis 4 holds with £ = 1, := a1, 8 := f1.

1T, (€A )| <

< et €AB

|)\t*1|1*°‘\ut*1|1+ﬁ '

CB —1y|¢q—1 -
. t t P “t

— CAB CBCB —1 —14+0—p _
= || 1P et =
A7l | = €]
=: (&, N\, p)t" 10, (7.18)
3)
T2 (E A )| <
< et cAB :
< et N I[afut—1 — gt-1[1+8
o[ el
A CAB — Y
= 1 g =gl e
=: @3(€,\, p)t= 10, (7.19)
4
1T (€ A I <
< A2 cAB £t
T D e
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_ [N EB CAB —14+0—p
= — E|P|et |t

Tl — g
= pa(& A, p)t" 0P, (7.20)
5

ITS), €A m)l| <

A 2(1—2 CAB

< [etATE INL|T=a 118
CAB -1 -3
et —ge o e

_ A CAB CAB Pl |4—14+20—p
e e g
= @5(&, A\ p)t TP, (7.21)

It is easy to verify that the functions ¢;(&, A\, ) are integrable

over 71 X Yo X Y- Therefore Ty, , ,(£, A\, p) is absolutely integrable

over 1 X Yo X Yo, the integral ][ Ty 0 (&5 A, ) dE exists as a Bochner

integral for every A, u € g, and

F T e = tim  Thaal& A 1)
st

Ml H’Wf:’:_ t

for every A, € vy, and therefore

BunBal = Thalerndedrds
’Yo ’Yo 7

Letting R — oo we have, by (7.5), (7.6),

Tt (— p—][ ][][ T! (€M 1) dédAdp.
Yo Y Y0 Y 71

From (7.18)-(7.21) it follows that

[ Jm,t.n(=Bn)’|| <

—14+6—p
/ / / 1 + 03 + 1) (€ A, 1) dE||dN | dps| +
YoYYoY Y1

1+2<5 p
/ / / 05(€, A, )| €| .
YovsY0v 71
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Since t € (0, 1] we finally obtain

1T, (=Bn) llcxy < k™07

The Lemma 7.1 is now proved. O
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