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Introduction

In this paper we consider the Ornstein-Uhlenbeck process Z(t,z),
solution of the following differential stochastic equation in a Hilbert
space H:

dZ = AZdt + dW (t), Z(0) = z.

Here W is a cylindrical Wiener process on H and A is the infinites-
imal generator of an exponentially stable analytic semigroup e’ in
H. Under this hypothesis it is well known that the process Z(t, z)
has a unique invariant measure 4, see e.g. [7].

Let us denote by A the infinitesimal generator of the transition
semigroup

Ryp(x) = Elp(Z(t, z))], t >0,
defined in the space L?(H; u). A can be written formally as

Ap = 5 T [D%p(z)] + (As, Dp(a)).

In G. Da Prato and J. Zabczyk see [9], it was proved that A is an
m-dissipative operator on L?(H; ). Moreover, in that paper we also

() Indirizzo dell’Autore: Scuola Normale Superiore di Pisa, Piazza dei Cavalieri
6, 56126 Pisa (Italy).
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studied perturbations of A of the form

(F(z), Do(x)), (0.1)

where F' : H — H is a continuous and bounded mapping.

The main result of the present paper is a precise characterization,
under suitable assumptions, of the domain D(A) of A, as a subspace
of W%2(H; p).

We notice that the operator A has been extensively studied using
the Theory of Dirichlet forms, see Z. M. Ma and M. Réckner [17].
Using this method one can show that, in several situations, the oper-
ator A is variational, and consequently one can conclude that D(.A)
is a subspace of WY2(H; ). Knowing that D(A) C W22(H; p), will
allow us to consider perturbations of A more general than (0.1).

Our method is based on a generalization of the well known L.
Nirenberg’s proof about H? regularity of second order elliptic equa-
tions, see e.g. [2]. We establish a basic identity for functions belong-
ing to D(A), that, under suitable assumptions (see Hypotheses 1.1
and 3.1), yields a characterization of D(A). These assumptions are
in particular fulfilled when A is self-adjoint and when H is finite-
dimensional.

We notice that, when A is self-adjoint, a characterization of D(.A)
could also be obtained by using the spectral decomposition of A
written in terms of Hermite polynomial, see [7]. Moreover, when H
is finite-dimensional, our characterization coincides with that proved
earlier by A. Lunardi, see [16], by a completely different method
involving interpolatory arguments.

In section §1 we recall several known results, proved for instance
in [7], about transition semigroups R;, t > 0, defined in space of
continuous functions.

Section §2 is devoted to the description of the transition semi-
group Ry, t > 0, in L?(H;p). Here we recall several results proved
earlier in [9] and [12], and we give some improvements that will be
used later.

In §3 we present a characterization of the domain of A. This
characterization is exploited in §4 to study different perturbations

of A.
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1. Notation and setting of the problem

We are given a separable Hilbert space H (norm | - |, inner product
< -, ->), and a differential stochastic equation in H

dZ(t) = AZ(t)dt + dW (t)

(1.1)
Z(0) =z € H,

where A : D(A) C H — H is a linear operator and W (t),t > 0,
is a cylindrical Wiener process on a probability space (€2, F,P), see

e.g. [7].
We shall assume that

HyPOTHESIS 1.1.

(i) A is the infinitesimal generator of an analytic semigroup 4 in

H. There exist M > 1 and w > 0 such that
le"]| < Me*, > 0.
(ii) For anyt >0, !4 € Lo(H) (*) and, setting
t
Qix = / eV dt, v e H, (1.2)
0
we have
Tr [Q¢] < +o00, V> 0.
The following result is proved in [7].
PROPOSITION 1.1. Assume that Hypothesis 1.1 holds.
(i) Problem (1.1) has a unique mild solution given by

t
Z(t,z) = ez +/ =)W (s), z € H, ¢t > 0. (1.3)
0

'£(H) is the Banach algebra of all linear bounded operators on H, endowed
with the sup norm ||-||. By £1(H) (norm ||-||z, (z)) we mean the Banach space of
all trace-class operators on H, and by L2(H) (norm || -||z,¢a)) the Hilbert space
of all Hilbert-Schmidt operators in H. If T € L1(H), the trace of T is denoted
by Tr T'.
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Moreover Z(t,z) is a Gaussian random variable N (e!dz, Q;),
forallt >0 and all z € H. (%)

(1i) There ezists a unique probability measure 1 on (H,B(H)) that
is invariant for the process Z(t,x), that is such that

/ Rup(a)u(dz) = / o(@)u(dz), ¥ o € Cy(H), ()
H H

where Ry, t > 0 is the transition semigroup

Rypl(a) = /H PN (2, Q) (dy), ¢ € Cy(H), t >0, z € H.

(1.4)
Moreover u = N(0,Q), where

—+00 .
Qz = /0 e zdt, © € H. (1.5)

One can easily check that () is a solution to the following Lya-
punov equation

2A*z, Qz) + |z|> = 0, z € D(A*). (1.6)
We end this section by recalling some properties of the semigroup
Ry, t > 0, in the space Cy(H).
The following result is proved in [7].

PROPOSITION 1.2. Assume that Hypothesis 1.1 holds.

(i) For allt > 0 we have e!4(H) C Qi/Q(H) Moreover the linear
operator T'(t) := Qt_l/QetA belongs to Lo(H) and the following
estimate holds

@) <t~ Y2 t>o0. (1.7)

2For any z € H, and any positive operator L € £1(H), we denote by N(z, L)
the Gaussian measure on (H, B(H)), (where B(H) is the family of all Borel subsets
of H), with mean z and covariance operator L.)

3Cy(H) is the Banach space of all uniformly continuous and bounded mappings
from H into R, endowed with the norm ||¢|jo = sup,¢ g |¢(z)].
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(ii) For all t > 0 and all p € Cy(H), we have Ryp € CL(H) (%)

and
(DRyp(), h) = (18)
- /H (T ()h, QM 2y) (e + y) N(0,Q0)(dy), h € H.

We notice that, when A is not identically 0, the semigroup R, t > 0
is never strongly continuous, see [3]. Moreover its restriction to the
“subspace of continuity”:

{p € Cy(H) : t — Ryp is continuous in Cy(H)},

is not an analytic semigroup, see [5].
Proceeding as in S. Cerrai [3], we define the infinitesimal gener-
ator A of Ry, t > 0, through its resolvent, by setting

+o0

R\, A)p(z) = / e MRyp(x)dt, z € H, p € Cy(H).  (1.9)
0

To give a description of the infinitesimal generator A4, it is conve-

nient to introduce the space € of all finite linear combinations of the

exponential functions @), = e"?) z € H, h € D(A*).

2. Transition semigroup in L?(H; p)

In this section we first recall the definition and some properties of the
Sobolev spaces W12(H; 1) and W22(H; 11). Then we show, following
[7], that the semigroup Ry, ¢ > 0 can be uniquely extended as a
contraction semigroup to L?(H;u), and we state several properties
of it, needed in the sequel.

2.1 Sobolev spaces

First of all we remark that, as easily checked, the linear space £
of exponential functions, as introduced in §1, is dense in L2(H; ).
Moreover we denote by {er} a complete orthonormal system in H of

4CL(H) is the set of all functions in Cy(H) that are uniformly continuous and
bounded together with their Fréchet derivative.
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eigenvectors of Q, and by {\}, the corresponding set of eigenval-
ues:
Qe = e, k €N

For any k € N we denote by Dy the derivative of ¢ in the direction
of e, and we set xp = (z,ex), x € H.

The following lemma and proposition are well known, see e.g.
[12]. However, we give a sketch of proofs for the reader’s convenience.

LEMMA 2.1. Let ¢, € £ and h € N. Then we have

/ Duip(e) ¥(@)udz) + / Dyip(e) pl(x)u(de) =
H

= = / (o) Y(@)p(d).  (21)

Proof. Since £ is dense in L?(H;p), it is enough to prove (2.1) for
p(z) = e, () = P o, 8 € H.

In this case we have (°):

/H Dpo(z) b(x)p(dz) + / Duip(x) p(x)p(dz) =

i(on — Bp)e” 3{Q(a—p),a—p) (2.2)

Moreover
[ onet@) wlantda) = [ ane@ 5
H H
. d i(a—Lf+Aep,x)
e PR > d
e p(dz) .
— —ii o~ 3(Q(a—B+Xen),a—Bg+Aen)
d\ A=0
= ieié(Q(aiﬂ)’afﬂ) (Oéh — ﬁh)/\h- (2.3)
Now the conclusion follows. O

Sifv = N(0,Q) is a Gaussian measure on H, then the characteristic function
of v is defined as F(h) = [, e Uh2) y (de). One can easily show that F(h) =
e~ 3{(Qn.1)
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From Lemma 2.1 we have

PROPOSITION 2.2. For any h € N the linear operator
Dy : & C L*(H;p) — L*(H;p), ¢ = Dy,

is closable in L?(H;p).

We shall still denote by Dy, the closure of Dj,.

Proof. Let {¢,} be a sequence in £ and let g € L?(H; u) such that
on =0, Dpop — g, in L>(H; p), as n — oo.

We have to show that g = 0.

By using (2.1) with ¢ = ¢,, and with ¢ being any element in &,
we have in fact

/ Dipn(@) ¥(@)u(de) + / Diih(z) onl(@)u(de) =
H H
1

= [ onone) plautdo)
h JH

Letting n tend to oo we have by the hypothesis

/H o) (@) p(dz) =0,

that yields g = 0 due to the density of £ and the arbitrariness of .
This completes the proof. O

We can now define Sobolev spaces. We denote by W12(H; 1) the
linear space of all functions ¢ € L?(H;p) such that Dyp € L?(H; p)
for all k € N and

o
| pe@Putda) =Y [ Dweta)ulds) < +oc.
H 1 JH
W12(H; 1), endowed with the inner product

(o)1 = /H (@ yp(@)u(d) + / (D(z), D () u(d),

H
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is a Hilbert space. We recall that the embedding of W12(H; 1) into
L?(H; ) is compact, see [6], [19], [7]-

In a similar way we can define the Sobolev space W22 (H; 1) con-
sisting of all functions ¢ € W12(H; ) such that DpDye € L?(H; 1)
for all b,k € N and D?p(x) € Lo(H) for all z € H.

W?%2(H; ), endowed with the inner product

(bl = (ebhi+ Y [ DuDipla) DuDup(alu(ds)

hyk=1

= o+ [ (DPpla), D)}, gyl da)

is a Hilbert space. Notice that, when H is infinite-dimensional, the
embedding of W22(H; u) into W12(H; 11) is not compact, see [9].

Now from Lemma 2.1 and Proposition 2.2 the following integra-
tion by parts formula follows, see [12].

PROPOSITION 2.3. Let 11,19 € WY2(H, i) and o € H. Then we
have

/H (D (), Qat) () u(dl) + /H (D (), Qet)epy () (dx) =
- /H b1 (@) ) )pu(de). (2.4)

We finish this subsection by proving some useful properties of the
spaces W2(H, ) and W22 (H, p).

PROPOSITION 2.4. ([12]) Let ¢ € WY2(H, ) and o € H. Then the
function
z = (z,)((z),

belongs to L?(H, ) and the following inequality holds.

/ o 2) 2 (@)uldz) < 2/QY2af? / C2(z)u(dz) +
H H
+16Qal* [ 1DC(@)Putde). (25)
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Proof. 1t is enough to prove (2.5) when ¢ € £. We apply the inte-
gration by parts formula (2.4) with

$1(x) = (o, 3), () = ().
Since
Dip1(z) = @, Dipo(x) = 2¢(z)D((z), = € H,

we obtain, using Holder’s inequality

/H (o 2 2¢ () () =

- /H (Qa, )¢2 («)u(d) +2 /H (e, 2)(DC(2), Qar) ¢ (x)u(de)

< Qa2 +

1/2 1/2
2 [ / |<a,x>\2<2<x)u<dx>] [ [ 1@ D¢(@)) Pt
<|Q1/2a|2||4||i2u, +
/ e )¢ (@) () +8 /H |(Qar, DC () P (i),
that yields (2.5). O

By Proposition 2.4 it follows the result
COROLLARY 2.5. Let ( € WY2(H, ). Then the function
H - R, z— |z|{(z),
belongs to L?(H, i) and the following estimate holds

[ e outdn) < 21vQ [ Cautds) +
#1610 (Q) [ |DY(a)ldo). (26)
H
Proof. Let k € N; setting in (2.5) a = eg, we find

/Hxi ¢?(z) p(dx) <2,\k/g da:)+16)\2/ |D¢ () 2 p(der).

Summing up on k, the inequality (2.6) follows. O
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We now consider functions ¢ in W22(H, ).

PROPOSITION 2.6. Let ¢ € W2?2(H, ) and o € H. Then the func-
tion z — |(z,a)|*¢(x) belongs to L?>(H;u) and

[ lma)i@ndn) < 40"l +8laP1QaP) [ Calnlas
H H
+96 |Qof2|Q /202 /H D¢ () P pa(d)

+512(Qal! [ I1D%(@)lfnyn(da)
2.7)

Proof. Setting n(z) = (z,a)((z), we have by Proposition 2.4 that
n € L2(H; ) and

/ P(@)uldr) < 2QY%af? / () u(d)
H H
+16Qaf [ |DC@)Pu(da).  (28)
H
Moreover, for any 7 € N, we have
Din(z) = ai¢(z) + (=, ) D;((x).
Thus, by Proposition 2.4, D;n € L?(H;u) and
/ Din(@)Pulde) < 2lef? / ¢ () () +
H H
2 / (@, @) 2| Di () u(d)
H

< Yaf? / CX(x)p(dz) +
H
1 4/Q1af? / Di¢(2) Pulde) +
H

+32/Qaf? /H DDy () ().
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Summing up on ¢ we have
/ Dy(2)Pu(dz) < 2laf? / (@) u(de) +
H H
+4QaP / D¢ () u(de)
H

+32(Qal* | ID*C(@)lIZ, gy ps(de). (2.9)
H

This shows that n € WY2(H; ). Now, applying once again Propo-
sition 2.4, we have that g = (z,a)n € L?(H; u) and

/H (o, ) C()uld) < 21Q2af? /H 7P () p(de) +

+16/Qaf? /H D) Pa(d). (2.10)

By substituting (2.8) and (2.9) into (2.10) we obtain the conclusion
(2.7). O

In a similar way we prove the following result.

PROPOSITION 2.7. Let ( € W?2(H,u). Then the function = —
(1 + |z|2)¢(x) belongs to L*(H; p) and

[ @+ lal ¢ @tdo) <
[321&:Q2+(1+2T&rQ)Q]/HgQ(x)u(dxH
+48Tx Q1+ 2T Q) [ 1DC(o)Pu(da) +
512 (0 Q)? [ ID%C@IE ptda). @1)

Proof. Setting p(z) = /1+ |z|? ((z), we have by (2.6) that p €
L?(H;p) and

| pa@tn) = [ Cautds) + [ laPeautis) <

<+210Q) [ Clutdn) +16 (@) [ 1D¢()Pu(da).
(2.12)
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For any 7 € N we have
Dip(x) = zi(1 + |2*)7/*¢(2) + (1 + [2[*)/* Di (),

so that
2

[ 1Dit@)udn) < 2 [ B

+2 [ D) utds)
+2 /H 22| DiC (2) 2 ).

Consequently, by (2.6) it follows that D;p € L?(H; ) and

1+
+2 /H \Di¢ («) P d)

[ 1D Puta) < 2 [ @)

LATEQ / D3¢ () ()
H
+327(Q7) [ [DDC(a)Pu(da).
H
Summing up on ¢ we obtain
[ o)utda) <2 [ oyute) +
H H
24T Q) / |D¢() P ()
H
#3210 Q7 [ D), ), (213)
H
that yields p € W12(H; ). Finally by (2.6) it follows
| a2 < [ P+ [ 1ol @uis)
H H H
< 1+21Q) [ Ploutds) +
H

+16 10 Q7] [ |Dpta)Pildo). (2:14)
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By substituting (2.12) and (2.13) into (2.14) we complete the proof.

O

2.2 Transition semigroup

The following result was proved in [7], see also [8]. We give however
a sketch of the proof for the reader’s convenience.

PROPOSITION 2.8. (i) Assume that Hypothesis 1.1 holds. Then,

(i)

(iii)

for any t > 0, the operator Ry, defined by (1.4), has a unique
extension to a linear bounded operator in L?(H;u), that we
still denote by Ry. Moreover Ry, t > 0 is a strongly continuous
semigroup of contractions in L?(H;u), and

Ripla) = [ plea +1)N(0,Q0(d),
t>0, z€ H, pc L*(H;p). (2.15)

EC D(A) and
A7) (z) = ((A*h,:v) - %lhl2> ¢ x e H.  (2.16)

Moreover, £ is a core for the infinitesimal generator A of Ry,
t>0.

For all t > 0 and all p € L?>(H; ), one has Ryp € WH2(H; p)
and

(DRyp(z), h) = / LR Q%) oz + ) N0, Q1) (dy).

H
(2.17)
Consequently, Ry is compact on L?(H;p) for all t > 0.

Proof. Let ¢ € Cy(H), then by (1.4) and Hoélder’s estimate, we have

Ryp(a)]? < /H P+ yIN(0, Q1) (dy) = Ri(0?)(@).
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Using the invariance of y, it follows that

/ Rup(a) Pu(dc) < / () Putde),
H H

that proves (i).
(ii) Notice first that, in view of (2.15), for all h € H we have

Ryei™) (z) = e hz) = 3(Qyhih)

Thus, for any ¢t > 0, R; maps & into itself. Since clearly &€ C D(A),
we have that £ is a core for A, see [11, Theorem 1.9].

Let us prove (iii). Let ¢ € Cy(H) and h € H. By (1.8) and the
Holder inequality we have

|(DRp(z), h)|?

|
< / Tk, Q, 2y) / lp( + ) PN (0, Q) (dy)
— [C(ORPRUP) (@).

Integrating on = and using the invariance of u, we find

| (Ripla). mPudn) < PORE [ ota)Putds).
H H

Setting h = e, k € N, summing up on k, and recalling that by
Proposition 1.2-(i), I'(t) € Lo(H), we obtain

/ DRyp(z) Pu(dz) < T [D(£)T (1) / () Pu(de).
H H

The conclusion follows from the density of Cy(H) in L2(H;p). O

The following propositions were proved in [12], see also [1]. Before
stating it we need some preliminary results.

LEMMA 2.9. For any @,y € & the following identity holds.

/ (Ag) (& )p(a)(d) = / (QD(z), A Do(@))pu(dz).  (2.18)
H H
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Proof. 1t is enough to prove (2.18) for
o(r) = ei<$’a>, P(x) = ei<$’ﬁ>, x € H, a,3 € D(A").

Tn this case we have, by a simple computation,
| Ao @sontis) -
— - (@ =) + jlaf) 3@, (219
and
| (@D@), 4" Dp(lds) = (4, @B 220)

Taking into account (2.19) and (2.20), we see that equality (2.18) is
equivalent to
2(A*e, Qa) + |af* =0,

that coincides with Lyapunov equation (1.6). 0
The lemma yields now the result

PROPOSITION 2.10. For any ¢ € D(A) and any p € WY2(H; ) the

following identity holds.

/(Aw)($)¢($)u(dm)Z/(QDw(:v),A*Dw(w))u(dw)- (2.21)
H H

Finally, taking ¢ = 1, and using again the Lyapunov equation we
have

PROPOSITION 2.11. Assume that Hypothesis 1.1 holds. Then for
any ¢ € D(A) one has ¢ € WY2(H, ) and the following identity
holds.

| Ua@e@nn =5 [ pe@Puan).  @22)

The following corollary is an immediate consequence of Proposition
2.11.
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COROLLARY 2.12. Assume that Hypothesis 1.1 holds. Then for any
€ > 0 one has

| IPo@)lun) <¢ [ 1)@ Pulda) + 2 [ fo(@)Pu(do).
o " " (2.23)

REMARK 2.13. If M = 1 (%), one can prove that the semigroup
Ry t > 0 is analytic in L?(H; u), see [12], [9].
3. Characterization of D(A)

In this section we want to characterize the domain of A. From now
on we shall assume that

{ex} C D(A). (3.1)

Then we set
Ah,k = <Aek,6h), h,k S N,

and we write A on & as

(o)le) =53 Dipla) + 3 AnsmiDuple), €. (32

We start with a basic identity.

PROPOSITION 3.1. Assume that Hypotheses 1.1 and (3.1) hold. Let
p €& and let f = Ap. Then the following identity holds:

3 [ 106, ) nldo) — [ (Dipla), 4" Dila) ()

1
—2 [ If@)Pudo) -2 [ fla)s+ 50 lw,Dw(w))u(d:v)(-g ;

8M is the constant in Hypothesis 1.1



PERTURBATION OF ORNSTEIN-UHLENBECK 117
Proof. By differentiating (3.2) with respect to z;, we obtain

A(Djp)(z ZAh,thSD( ) =Djf(z).

h=1

Multiplying both sides by D;¢(z) and integrating with respect to p
it follows

| ADs¢) Dy utaa) +3 | AniDueDyp uida) =
2/ DjoD;f p(dz).
H

Recalling (2.22) we see that the above equality is equivalent to

/ \DD; () 2 pu(d) Z / A Dypl) Dyp(s) p(d)

- [ Dpta)D; (aulda),
By (2.1) we get
3 | IPDje(@)Putds) - / AngDup(a) D) u(do)
= [ 1@kt wiw) ~ [ S p@Diptwntan)

Summing up on j we find

3 | 10y @) = [ (Dp(o), A Dp(ohula

= | 5@ {15 [D%p(a)] — (Q o, Dipla)} utdo).

and the conclusion follows. O
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In order to characterize D(.A) we need some further assumptions.

HypoTHESIS 3.1. (i) D(A)NQ(H) is dense in H and the linear
operator

D(K) = D(A)NQ(H),

. (3.4)
Kz := Az + 2 Q7 'z, r € D(K),
18 bounded in H.
(i) There exists n > 0 such that
(Az,z) < —n|z|?, z € D(A). (3.5)

If Hypothesis 3.1 holds, we shall denote by K the unique extension
of the operator K to H. Notice that if Hypothesis 1.1 holds with
M =1, then (3.5) holds with n = w.

In the following we denote by H 4 the Banach space obtained by
taking the completion of D(A) with respect to the norm

|$|%IA = _<A$a$>a S D(A)
THEOREM 3.2. Assume that Hypotheses 1.1, 3.1 and (3.1) hold. Let

A be the infinitesimal generator of the semigroup Ry, t > 0, defined
by (2.15). Then we have

D) = {pew(H;p):
Dg(z)| € Ha, pae., [D()|n, € L*(H;p)} (3.6)
Proof. We first prove that

DA) ¢ {peW?X(H;p):

Dyp(s) € Ha, pace. |Di()|m, € F(H;p) ). (3.7)
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For this, recalling that D(A) C WY2(H;u) by Proposition 2.11, it
suffices to prove that for any ¢ € D(.A) the following estimate holds

/ 1D2(w) 2, g () + / ()2, il d)
<9201+ 128||K||2 Tr [Q) / 1 (@) () +

+ g [, [P Putdo). (3.8)

Since £ is a core for A, it is enough to prove (3.8) for all ¢ € £. Let
a > 0 be a positive number to be fixed later. By (3.3) it follows

3 [ 107001,y n(da) + [ D@l (da) <
2
<@+1a) [ 1f@Putdn) + EL [ japiDoo)utas).
H H

Taking into account (2.6) we find

3 [ IDe@) o)+ [ IDp@)uds) <
< (2+4a) / 1 (@) Pu(da) +
H
2
1o IEIMTrQ [ 1Dt utan) +
a H

K|? Tr [Q?
+16 B2 [ p2p)2, o o)

Choosing finally a such that
a = 64| K|* Tr @

(3.8) and consequently (3.7) follows.
We now prove that

DA) > {peWX(H;p):

Dy(s) € Ha, pace., |Do()lm, € L2(Hip)}. (3.9)
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Let ¢ € € and set

=5 [ 10 @ ) ntdo) + [ Dol utie),

then from (3.3) we have

2/ [Ap(2)|*u(dz) < L+2IIKII/ |Ap(z)| || [Dp(x)|p(dx)
H H

2 2 2 2
<L+ /H Ap(a) 2 u(dz) + 4| K| /H 2l | Dep(e) Pu(de),
and so
/ Ap(2)Pu(dz) < I+ 4| K2 / 2f? | Dp(e) 2 u(de).
H H

By (2.6) it follows

2.6)
/ Ap(@)Pu(dr) < L+8TrQ|K|? / |Dip() 2 u(d)
H H

+ 64T [QY [ Do) uldo),

Taking into account (2.23), for any ¢ > 0 we have

/ [Ap(z)*u(dz) < L+ 8[| K| Tr Q / [Ap(z) | u(dz)
H H

32K2Tr
KB Q [y

Now choosing
1

T QK[

we have

3 [ Me@iudn <o+ 512 (1 QR KT [ fota)Putdo)

6417 Q) [ 1D%9(a) I,y 1(da).
(3.10)
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From (3.10) and the density of £ it follows that if ¢ is such that L
is bounded, then ¢ € D(A). This proves the inclusion (3.9).
The proof is complete. O

REMARK 3.3. It is well known that when A is a variational operator
and D(A) = D(A*), then H, coincides with D4 (3,2), the real
interpolation space consisting of all x € H such that

o
|x|%A(% 2) ::/ |AetAz|?dt < +oo,
’ 0

see [13]. Thus in this case, if Hypotheses 1.1, 3.1 and (3.1) hold,
then the domain of A is given by

zxA)z{wew%%H”o: Dw@)EDA(%J>,p&m

D6l (32) € B - (311

REMARK 3.4. Assume that Hypotheses 1.1, and (3.1) hold and that
A is self-adjoint. In this case from (1.5) we have

+00 1
Qz = / A Ardt = —3 A7z, z € H,
0

that obviously implies K = 0. Consequently Hypotheses 3.1 holds
and, from Theorem 3.2 it follows that

D(A) = {p e W**(H;p) : Dp() € D(-4)'2), pae.,
(—AfﬂDweL%Hnn} (3.12)

REMARK 3.5. Assume that H is finite-dimensional and that A is of
negative type. Then Hypotheses 1.1, 3.1 and (3.1) obviously hold.
Then from Theorem 3.2 it follows that

D(A) = W»(H; p). (3.13)

This result was earlier proved by a different method based on inter-
polation, by A. Lunardi, see [16].
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4. Perturbation results

We assume here that A is self-adjoint and fulfills Hypotheses 1.1 and
3.1. We will be concerned with some perturbations of the operator A,
the infinitesimal generator of the semigroup Ry, t > 0, in L?(H; u),
defined in §2. We recall that A is m-dissipative and that the domain
of A is defined by (3.12). Then the graph norm of A can be defined
as

lellBeay = llellyzecaryy + 1(=A) "2 Dol 72, @ € D(A). (4.1)

4.1 Relatively bounded perturbations

Let F: H — H, be a Borel mapping such that
HyYPOTHESIS 4.1. (—A)~Y/2F is bounded.

We set
a=sup ess {|(—A)"V2F(z)|: z € H}.
Now we define a mapping F in L?(H;u) by setting
D(F) = {p e W' (H;p) : (—A)'*Dyp € L*(H; p) }

(4.2)
Fo(x) = (F(z), Dp(x)) = —((—A)"/?F(z), (—A)2De(x)),

Vo € D(F).

The following proposition concerns the operator A + F, defined in

D(A).

PROPOSITION 4.1. Assume that Hypotheses 1.1, 3.1, and 4.1 hold,
and let F be defined by (4.2).

(i) If a < 1 then A+ F is m-dissipative in L*(H;p).

(i) If a =1 then A+ F is closable and its closure is m-dissipative
in L*(H; p).
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Proof. We first note that by (3.13) we have D(F) C D(A). Moreover
for any ¢ € D(A) we have

1Pl = [ 1@, Do) ulda)
- /H ((~A)/2F (a), (—A)Y2Dip(a)) 2u(da)

< @ [ (=A)/Dy(a) Pu(ds) < o® 1 AplEagy

This implies that F is relatively bounded with respect to A. By a
well-known perturbation result, see e. g. [18], the conclusion follows.
O

EXAMPLE 4.2. We take H = L?([0, 27]) and define a linear operator
A on H by setting

{ D(A) = {z € H*(0,2r) : z(0) = z(27), Dex(0) = Dez(2n)},

Az(€) = DZx(€) — x(€), € € [0,2n], z € D(A).
(4.3)
A is clearly self-adjoint and fulfills Hypothesis 1.1 with M = 1 and
w =1, and Hypothesis 3.1, since the eigenvectors of A are given by

_ i k&
ek(E) T or e, fe [0’27T]a ke Z.
Let L be a positive number, and set
F(z)(¢) = d—gsma:( §), £ €]0,2n]. (4.4)

Then
(—A)2F(z)(¢) = Lsinz(é), £ € [0,2n].

so that Hypothesis 4.1 holds. Thus by Proposition 4.1 it follows that
if L < 1, then the operator B:

Bio(a)(€) = Ap(z) + k <d% sinz(¢), Dw(x)> e DA

is m-dissipative in L?(H; u), whereas if L = 1 then B is closable and
its closure is m-dissipative in L2(H; p).
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4.2 Perturbation by a potential

We are given a nonnegative Borel function V : H — R, and we define
a mapping V in L?(H; u) by setting

D) ={p € L*(H;p): Vy € L*(H;p)} ws)
45
Vop(z) = =V (2)p(z), ¥ ¢ € DV).

Next proposition concerns the operator A + V with domain D(A).

PROPOSITION 4.3. Let V be defined by (4.5), and assume that there
are numbers a > 0 and § € [0,1] such that

V(x) < alz|'*?, z € H. (4.6)
Then A+ V, is self-adjoint in L2(H; ).
Proof. Let € > 0 to be chosen later, and let C(e, 5) > 0 such that
a?|z|**? < elz|* + O(e, B), = € H.

Let ¢ € D(A), then we have

/ V() (2)u(d) < e / (262 (2)u(d) + C e, B) / (2)u(dr).
H H

H

Consequently, in view of Proposition 2.7, we have ¢ € D(V) and
| V)@t <
H
32 Tr Q%+ (1 4+ 2 Tr Q)2 + Cle, B)] / (@) u(dz) +
H

+e(48 Tr [Q°](1 +2 Tr Q) + 512 (Tr [Q*])*) | A@[72 1 1r)-

So, by choosing ¢ sufficiently small, we see that V is relatively
bounded with respect to A, and the conclusion follows by the quoted
result in [18]. O

REMARK 4.4. If (4.6) is fulfilled with 8 = 1, then the argument
above works with o sufficiently small.
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