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Periodic Problems
for Degenerate Differential Equations

VIOREL BARBU and ANGELO FAvINT (*)

SUMMARY. - Ezxtensions of the sum of operators’ method of P. Gris-
vard are used for showing that the degenerate differential equation
4 (Mu(t)) + Lu(t) = f(t), 0 <t < 1, admits one 1- periodic so-
lution u, according to Mu(0) = Mu(1).
The parabolic case and the hyperbolic one are discussed as well.
Some examples of application to ordinary differential equations
and to partial differential equations are given.

Introduction

Let X be a complex Hilbert space and let A be the infinitesimal
generator of the Cjy semigroup exp(t4) in X. In the paper [13],
J. Priiss has given a very elegant proof that 1 € p(e?) if and only
if {2min} C p(A) and sup{||(2min — A) Y (x), n € Z} < oo,
see [13], Theorem 2, p. 850. He also showed that this is equivalent
to the property that for all f € C([0,1]; X), the space of X-valued
continuous functions on [0, 1], the equation

du(t)

dt

has precisely one 1-periodic mild solution u, according which u €
C([0,1]; X) and

=u'(t) = Au(t) + f(t), 0<t<1,

t
u(t) = ey +/ =941 (s)ds, 0<t<1,
0
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for a certain element ug of X. See [13], Theorem 1, p. 849.

The main purpose of this paper consists in extending some results
from [13] to the possibly degenerate equation of the type

d

5 Mu(®)) = —Lu(t) + f(t), 0<t<1, (1)
where L, M are two closed linear operators from the complex Banach
space X into itself, the domain D(L) of L is continuously embedded
in D(M) and L has a bounded inverse. We shall associate to (1) the
periodicity condition

(Mu)(0) = (Mu)(1). (2)
One could transform (1), (2) into the multivalued equation
v'(t) + Av(t) 2 f(t), 0<t<1, (3)
together with

v(0) = v(1), (4)

where this time A = LM !, D(A) = M(D(L)), as done in Favini and
Yagi [7] for the parabolic case, and in Yagi [16] for the hyperbolic one,
related to the Cauchy problem, and the problem should be reduced
to establish that 1 € p(exp(—A)). Now, except in a particular (al-
though very interesting) situation, that shall be discussed in section
2, it seems a very hard task to demonstrate that for general multival-
ued linear operators A an identity like o(e™4) \ {0} = exp(c(—A4))
holds. Moreover, if the data are not sufficiently smooth, “weak” so-
lutions to (3), (4) in some sense corresponding to the non degenerate
situation, may be missing at all. The variation of constants formula
sometimes available for the solution v of (3), (4) necessarily requires
additional regularity to f(¢). In other words, in order to v(0) and
v(1) to exist, we are compelled to seek for either strict solutions
u: u € C([0,1); D(L)), Mu € C*([0,1]; X), or classical solutions
u € C((0,1; D(L)), Mu € C*((0,1); X), with Mu € C([0,1]; X).
This justifies our choice to use a different approach mainly, related
to the operational method of P. Grisvard [10], in treating the problem
above.

The contents of the paper are as follows. Section 1 is devoted to
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the parabolic case and then the main result (Theorem 1.1) establishes
precisely the time regularity of f(t) guaranteeing that a strict 1-
periodic solution u to (1), (2) exists. Many concrete examples of
operators M, L verifying our hypotheses can be found in Favini and
Yagi [7]. Section 2 is devoted to the best situation, the nearest one to
the regular case, where — A generates an analytic semigroup. Then
classical solutions to (1), (2) are investigated without requiring any
periodicity to f(¢). Section 3 concerns the highly degenerate case.
Some extensions of well-known results, to be found, a.e., in Haraux
[11], are obtained. In particular, we discuss the interesting problem
where z = 0 is an isolated singularity for the resolvent (2L + M)~L.
In this peculiar case we shall indicate how to treat the problem in
presence of the resonance phenomenon too.

The resonance problem in other situations shall be treated else-
where.

1. The parabolic case

To begin with, we shortly recall the abstract result in Favini and Yagi
[7, 8, 9] concerning the unique solvability and maximal regularity of
solutions u of the equation

BMwu + Lu = h, (E)
where h is a given element of the complex Banach space £ and
(i) B is a closed linear operator from E into itself satisfying
I(B—2)" Iz < CA+|Rez) ™
for all complex numbers z such that Re z < agy, where ag > 0.

(ii) M, L are closed linear operators from E into E, D(L) C D(M),
L has a bounded inverse, and

1M (zM + L) Mlm) < C(1+2)77
for all z € %, where
Ya=1{2€C Rez>—c(1+|Imz|)*},

¢ being a positive constant and 0 < § < a < 1.
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(iii) Letting T = ML™', then B™'T = TB™!, or equivalently,
TBu = BTwu for allu € D(B).

Denote by (E,D(B))g,00, 0 < 8 < 1, the real interpolation space
between E and D(B), as described in Da Prato and Grisvard [3].
Then one has (Favini and Yagi [7], [9])

PROPOSITION 1.1. Let us assume (1)—(iii) and 2a + 8 > 2. If
f € (E,D(B))g,o0 ;
with # < 0 <1, then (E) has a unique solution u. Moreover,
Lu,BMu € (E,D(B))uw,x ;
where w = af +a+ [ — 2.

The next result will show how Proposition 1.1 allows to solve the
periodic problem (1), (2) in the non resonance case. To this end we
introduce the notation as follows.

If X is a complex Banach space with norm || ||x, let us define

E, = (C([0,1]; X), endowed with the supremum-norm
E, = Cr([0,1;X) = {u € Eq; u(0) =u(1)},
lullz, = llullz,, u€ B,
By = LF(0,1;X),
lully = (o lu®%dn)?, 1< p < co.
The operators B;, 1 = 1,2, 3, are given by means of
D(B1) = {ueCH([0,1;X); wu(0)=u(l)},
Biu = du/dt, we D(B)
D(By) = {u€CN[0,1;X); u(0)=u(l), u'(0) ='(1)},
Byu = du/dt, u€ D(Bs)

D(Bs) = {ueW"(0,1;X); wu(0)=u(l)},
Bsu = du/dt , uE€ D(Bg)
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where C*([0,1]; X), k = 1,2,. .., denotes the space of all k-times con-
tinuously differentiable X -valued functions on [0, 1] and W1®(0, 1; X)
is the usual Sobolev space, see Barbu [1], p. 18.

It is an easy matter to recognize that By, k = 1, 2, 3, satisfies

1B = 2) " llpgm) < |%ez™, Rez <0;

where F is any Ey.

Moreover, —Bs and —Bj3 generate two contraction semigroups in
E5 and in Es, respectively. See Da Prato [2], Theorem 2.2, p. 195.
This does not hold for By for its domain is not everywhere dense in
Eq.

Therefore, for given k£ > 0, B = B; + k, j = 1,2, 3, satisfies
assumption (i). On the other hand, equation (1) is equivalently
written

(% - k) (Mu(t)) + (L —kM)u(t) = f(1), 0<t<1.  (L1)

It is also to be observed that if the closed linear operators L, M
from X into itself satisfy (ii) with X instead of E and we identify
L, M to the induced operators in E;, j = 1,2, 3, in an obvious way,
then (ii) holds for these operators. Since

IM(zM + L — kM) < C(L+ |2))77,

for all z € C, ez > k — ¢(1 + |Imz|)*, let us fix K = ¢/2. Then
Rez > —5(14 | Imz|)* yields Rez > k —c(1 +|TImz[)?, so that we
are allowed to apply Proposition 1.1 to B = B, + k.

It remains to characterize the interpolation spaces (E, D(B))g,005
0 < 8 < 1, in the different cases. Our first result to this regard reads:

LEMMA 1.2. We have

(B2, D(B2))goo = {f € C?0,1];X); £(0) = (1)}
= C%0,1;X), 0<@<1.

Here C%([0,1]; X) denotes the space of all X -valued Hélder continu-
ous functions on [0, 1], with exponent 6.
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Proof. Since —Bs — k, k > 0, generates a strongly continuous semi-
group of negative type in Es, we know by Triebel [14], Theorem
1.13.5, pp. 86-87, that

(E2,D(B2))g,00 = (FE2,D(B2+k))g0
= {u € Cr([0,1]; X) ;

—kt
— ) =
sup sup ||e u(s 9) u(3)||X <oo}.
>0 0<s<1 t

Now,

t0lle Fu(s — 1) —u(s)|lx <

—kt,— 1—e
< et luls — 1) —uls)llx + ——5—lluls)lx
— 1) —
< sup sup 180 0l |
>0 0<s<1 t
1— ekt
Foup T sup ufs) lx
>0 0<s<1
< Cllullee

implies that C’g([(), 1}; X) C (E2, D(B32))g,00-
Conversely,
t_9||u(s —t) —u(s)]lx <

1—ekt e u(s —t) — u(s)||x
< 1 s — ol + ta

implies

lu(s —1) —u(s)lx _

sup sup
>0 0<s<1 ¢
1— —kt
< sup —z— sup |[u(s)|x +
t>0 t 0<s<1
—kt
—1) —
+oup sup 170 =0 = uls)lx
>0 0<s<1 t

< C||U||(E2,D(B2))s,oo'
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This concludes the proof. O

We are then allowed to establish the following statement.

THEOREM 1.1. Let us suppose that L, M satisfy (ii) in the space
X. If2a+ B > 2 and f € CY([0,1]; X), with w <0 <1, then
(1), (2) has a unique strict solution u such that Lu € C¥([0,1]; X),
where w = af + o+ B — 2.

One could suppose that if we start with a larger space like F;
above, then the periodicity condition on f(¢) is no longer necessary.
On the contrary, this does not hold, as we show in the following
theorem.

THEOREM 1.2. (E1,D(B1))g,00 = C4([0,1]; X), 0 < 8 < 1.
Proof. We recall that D(B;) coincides with the space C}([0, 1]; X) of

all 1-periodic X-valued continuously differentiable functions on [0, 1].
Define

F = Co([0,1; X) ={f € Er; £(0) = f(1) =0},

G = G5(10,1;X) = {f € C(10,11; X); f(0) = f(1) =0}.
Then we know by Lunardi [12], Corollary 1.2.19, p. 19 and Proposi-
tion 0.2.2, p. 5, (see also p. 108) that

(F,G)o0 = (B1, Goo = CF([0,1];X)
= {f €C%(0,1]; X); £(0) = f(1) = 0}.
On the other hand, the mapping T' given by

Tf={(9,f(0), gt) = f(t) - f(0), 0<E <1,
is an isomorphism from Cy ([0, 1]; X) onto Cy([0,1]; X) x X and from
Cz([0,1); X) onto G x X. Hence, by interpolation, T' is an isomor-
phism from (Cy([0,1]; X), C}([0,1]; X))g,00 onto C4([0,1]; X) x X.
Therefore, since it is well known that for general Banach spaces X,
X1, with continuous embedding X; C X, (Xo, X1)g,c0 is embedded
into the closure of X7 in X, we deduce that
C([0,1; X) = (Cx([0,1];X), Cx ([0, 1]; X))g,00
= (C([0,1]; X), Cz([0,1]; X))g,00-
This finishes the proof. O
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THEOREM 1.3. Let L, M satisfy assumption (ii) in X with 2a+3 >
2. Let f € W,f’p(O, 1;X), max{1/p,(2 —a—fB)/a} < 0 < 1, where

WoP(0,1; X) = {u € LP(0,1; X) ;  u(0) =u(1),

1 1
/ / ||u(t)—u(s)||§(|t—s\_(1+0p)dtds<oo}.
0 0

Then problem (1),(2) has a unique strict solution u such that 2 75 (Mu)
belongs to Wz'*(0,1; X), where w =l + a+ 8 — 2.

Proof. Since —%, with periodic boundary conditions, generates a
bounded strongly continuous semigroup of operators in LP(0,1; X) =
Es, (see Da Prato [2], Theorem 2.2, p. 195), with domain D(Bs3), the
space (F3,D(Bj3))s,00 coincides with the subspace of E3 consisting
of all u such that »(0) = u(1) and

Hlu(t) = u(s)|lf
X
// |t—s|1+9p — 2 dsdt < o0.

See Da Prato ang Grisvard [3], p. 383, too.
Then the affirmation follows directly from Proposition 1.1. O

Theorem 1.1 can be extended to multivalued problems of the type
(3), (4) in virtue of the following abstract generalization to Theorem
3.2 in Favini and Yagi [7], p. 363.

THEOREM 1.4. Let us assume (1) and suppose A to be a multivalued
linear operator from E into itself such that

I(z+A) Hpm) <CA+ |2) 7%, Vz € Sa,
B 'A'=4A"'B L

Ifo<pB<a<l 2a+p > 2, then for all f € (E,D(B))p,00,
(2—a—p0)/a <0 <1, the equation Bu + Au 3 f has a unique
solution u with Bu € (E,D(B))y,c0, where w =ab +a+ 3 — 2.
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Proof. Since 0 € p(A), Au > v has a unique solution u = A~ lv.
Therefore, if we denote A~! by T, our equation Bu + Au > f reads
equivalently BTv +v = f.

Let T':z=a— 5(1 4 |y)* + iy, —o0 <y < +00, and define

1
v=—-— [ YT +1)"'B(B - 2)"'f dz,
271 T

where f € Vp = (E, D(B))g,00. The above integral is well defined, in
view of the estimate

|2’ IB(B —2) "' fllg < O+ |2)) V00| £y,

Therefore we have
[v]le < C/ 2]~ (1 4 2P A+ y) DD (a2 | £y,
T

where the last integral converges in view of the assumption on the
parameter 6.

One also proves, referring to the monograph by Favini and Yagi
[9] for a detailed check, that BTv +v = f and BTwv € V,,. On the
other hand, these conclusions say nothing else that f — Bu € Au and
Bu €V, as declared. O

THEOREM 1.5. Let A be a multivalued linear operator from the
complex Banach space X into itself satisfying

Iz +A) Ml SCA+ )P, Vz € Ba.

IfOo< B <a<l,2a+p > 2, then for all f € CO([0,1]; X), with
29— a— ..
%ﬁ < 0 <1, the periodic problem

du(t

W | aue) s 1), 0<t<1,

u(0) = u(1),

has a unique strict solution u with regularity % € C¥([0,1]; X),
w=al+a+pF—2.



38 V. BARBU and A. FAVINI

Proof. It only needs to define the operator B by D(B) = D(Bsy),
B =By+el,e >0, E=Ey, = Cr(0,1]; X); instead of A, we
consider A—el, where A is the operator in C ([0, 1]; X') with domain
Cr([0,1]; D(A)) induced by the given operator A in a natural way:
D(A) is endowed with the graph norm in the product space X x X,
so that it becomes a Banach space.

If € is suitably small, Theorem 1.4 applies immediately. O

EXAMPLE 1.1. Let us consider the periodic boundary value problem

A(m(z)u) B )
—5 " Au = f(t,z) in[0,1] x £, (1.2)
w=0 in[0,1] x 99, (1.3)
m(z)u(0,z) = m(x)u(l,z) in Q, (1.4)

where 2 is a bounded domain in R” with a smooth boundary 0f2,
m(z) > 0 is a given measurable bounded function on €, f is a
function on [0,1] x ©, and u(¢,z) is the unknown. The initial value
problem m(z)u(0,z) = v relative to (1.2), (1.3) has been studied
in Favini and Yagi [7], [8] both in the spaces H~1(€), L?(2) and in
LP(Q2), p > 1. Operators L and M are defined correspondingly in
obvious way.

If we take X = H~1(f2), then (ii) holds with « = 8 = 1, but if
X = L%(Q), then « = 1, 8 = 1/2. See Favini and Yagi [7], p. 378.
Hence all our results apply immediately to (1.2)—(1.4), too.

ExAMPLE 1.2. Counsider, for t € [0,1] and z € [0, 7|, the problem

P o2
a(@ + Du(t,z) = —awu(t,x) — ku(t,z) + f(t,z), (1.5)
2 2
w(t, 0) = u(t, ) = %u(t,ﬂ) _ %u(t,w) _o, (1.6)

(W + 1)u(0,z) = (% + 1u(l, z), (1.7)
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where q is a positive constant and k is a real number to be precised
later.
If we take X = Cy([0,7]) = {u € C([0,7]) : u(0) = u(m)}, K is

the realization of 3%27 with domain

02 o2
D(K) = {u € C([0,); u(0) = u(r) = -—u(0) = +—u(r) = 0} ;

then we take M = K + 1, L = aM + (k — a)I. It is well known that
the elements of o(M) are all simple eigenvalues 1 — s2, s € N, so
that zM + L has a bounded inverse provided that M + ';L;ZI has a

|k—al
7

This yields that if “63;“' < a, that is, —2a < k < 4a, then Theo-
rem 1.1 applies with o = 8 = 1; therefore for all

bounded inverse, and this holds precisely if |z + a| >

£ eCh(0,1:Co(0, 7)), 0<O<1,
problem (1.5)-(1.7) has precisely one strict solution u with regularity
0%u)0z? € C2([0,1); Co ([0, ])).

Extensions of the method to higher dimension are allowed by
using the general theory elliptic operators in spaces of continuous
functions to be found in Lunardi [12].

2. Thecasea=(=1

In this section we shall prove that if the linear operators L, M satisfy
assumption (ii) in the complex Banach space X with « = 8 = 1,
then for all f € C%([0, 1]; X), not necessarily 1-periodic, the problem

& (Mu(t)) = ~Lu(t) + f(1), 0<t<1, (5)

has precisely one classical solution

u € C((0,1); D(L)), Mue C([0,1]; X) N C*((0,1); X)

satisfying (2). Indeed, we prove the following statement.
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THEOREM 2.1. Let X be a reflexive Banach space and let L, M be
two closed linear operators from X into itself such that

| M (zM + L)oo < C(L+[2)) 7!, Rez > 0.

Then for all f € C?([0,1];X), 0 < 6 < 1, the periodic problem (5),
(2) has a unique classical solution.

Proof. The assumptions above imply, according to Favini [6], that X
splits into the direct sum representation X = N(T') & R(T')*, where
N(T) denotes the null space of the operator T = ML ! € L(X),
R(T) is the range of T and R(T)® is its closure in X.

Moreover, if we use S to denote the restriction of T' to R(T)%,
then —S~! generates an analytic semigroup in N(T)* =Y. If P is
the projection operator onto N(T'), letting Lu = v, problem (5), (2)
reads

%(5(1 _PY) + (I— Pyolt) = (I — P)f(t), 0<t<1, (21)
S(I = PYu(0) = S(I — Po(1), (2.2)
Pu(t) = Pf(t), 0<t<1. (2.3)

Since f € C?([0,1]; X), any classical solution (I — P)v(t) to (2.1)
is expressed by

(I—P(t) = S lexp(—tS ™)z +
t
45 / exp(—(t — $)S~1)(I — P)f(s)ds,
0

where z € Y. Hence (2.2) holds if and only if

1
(I — exp(—S 1))z = / exp(—(1 — )5 )(I = P)f(s)ds.
0
The key step consists in proving that 1 € p(exp(—S~1)).
Since —S~! generates an analytic semigroup, by Davies [4] it
is known that this reduces to verify that 2win ¢ o(—S 1) for any
integer n.
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Now, in view of the assumptions, for all n € Z,
2minTv+v=feX
has the unique solution (27winT + I)~'f if and only if
2minS(I — P)v+ (I — P)v=(I — P)f
has the unique solution
2ninS +I) "I - P)f = S '(2rin + S~ 1)1 (I — P)f.

Hence 27in € p(—S~!). This completes the proof. O

THEOREM 2.2. If X is a reflexive Banach space and A is a multi-
valued linear operator in X satisfying

Iz + A) Hlzxy SCA+ 27T, Rez 20,

Then for all f € C?([0,1];X), 0 < 6 < 1, the periodic problem
d
%u(t) + Au(t) 3 f(t), 0<t<1, (6)

u(0) = u(1), (7)

has a unique classical solution.

Proof. If A=' = T, then problem (6), (7) transforms into the system

d
a(TU(t)) +o(t)=f(t), 0<t<1l, Tv(0)=Tuv(1).
In its turn, this is equivalent to (2.1)—(2.3), that is solved noting that
1 € p(exp(—S~1)), where S is restriction of T' to R(T)®.
We remark that this in fact implies that 1 € p(e=*), for

1
e =_— [ e¥(z—A) "z,
27 J,
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where 7 is the contour in the complex plane parametrized by z =
c(l+y|) + iy, —oo < y < o0, so that

1

e = 33 7e_ZT(zT—I)_ldz
1 —Zz -1
= — TT -1 I—-P
57 76 (2 ) ( )dz
1
= — [ e*8(zS—1)"'(I - P)dz
2w J,
1 —z —1y—-1
- - I-p
57 | € (z—=87)7( )dz

= exp(—-S (I - P).

Therefore
I—eA=T—exp(=S H)(I—P)=P+ (I —exp(—8 1))(I - P).

Hence, since I — exp(—S~!) has a bounded inverse (in L(Y)), we
obtain that I — e~ has the inverse (I —e~4)~! given by

I—e?) ly=Py+ (I —exp(-S')) '(I-P)y, ye X.
It follows that problem (6), (7) has the unique classical solution
1 t
u(t) = e (I — e 7! / e =94 1 (s)ds + / e =1 (s)ds |
0 0

for 0 <t < 1.
Notice that since fol e~ (1=9)Af(s)ds € D(A), if we put

w=(T—e 4! /1 e~ (1941 (5)ds,
0

then w = e~ 4w + fol e~(1=9)4 £ (s5)ds yields that w € D(A). There-
fore, in view of Favini and Yagi [7], p. 364, we conclude that

1
w(0) = (I — e=4)~1 /O e~ (=94 f(9)ds = u(1).

This concludes the proof. O
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3. The highly degenerate (hyperbolic) case

In this section we shall show that the operational method described
in Paragraph 1 can be adapted to treat problem (1), (2) in the
strongly degenerate case where operators L, M satisfy much weaker
assumption || L(zM + L)_1||L(X) < p(|z|), with p(z) a polynomial
and Rez > —§, § a certain positive constant.

More precisely, we shall use the following result from Favini [6],
pp- 434-438.

PROPOSITION 3.1. Let E be a complex Banach space and the closed
linear operators B, L, M from E into itself satisfy commutativity as-
sumption (iii) and

(iv) (B — z)fl||L(E) < C( +|2|)? for all complex numbers z such
that Re z < ag, where ag > 0, p > —1.

(v) D(L) C D(M), L has a bounded inverse and
LM + D)™ 1) < C(L+ [2)™

for all z € C, Rez > —6, 6 being a positive constant, and
m > 0.

If n =min{s € N; s >m+p+ 1}, then equation (E) has a unique
solution u for all h € D(B™).

Though we can discuss the case LP(0,1; X), 1 < p < oo, as in
Theorem 1.3, for sake of brevity we confine our discussion to solutions
of (1), (2) in the space of continuous functions on the interval [0, 1].
In other words, we shall take E = C([0, 1]; X).

We first have the theorem as follows.

THEOREM 3.1. Let X be a complex Banach space and let L, M be
closed linear operators from X into itself such that D(L) C D(M),
L has a bounded inverse and for some constants m >0, § > 0,

IL(zM + L) M|rx) S C(L+ [2])™, V2 €C, Rez > —46.  (3.1)

If n is the smallest integer greater than m + 1, then for all f €
c™([0,1); X) with f(0) = fO(1), i =0,1,... ,n — 1, problem (1),
(2) has a unique strict solution wu.
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Proof. By using notation as in Section 1, take k = 2§, B = By +
k. Identifying L, M with the operators induced by them in F =
C([0,1]; X), problem (1), (2) reads equivalently BMu+(L—kM)u =
f.

On the other hand, it is readily checked that assumption (3.1)
guarantees that

|2M (zM + L — kM) |,y < C(L+ |2))™, Rez > —k/2.

Then Proposition 3.1 gives directly the desired result. O

COROLLARY 3.1. Let X be a complex Hilbert space with inner prod-
uct (, ). If L, M are two self-adjoint operators in X, M >0, L > 0,
D(LY?) C D(M), then for all f € C3([0,1]; X), f®(0) = (1),
i=0,1,2, problem (1), (2) has one and only one strict solution.

Proof. If zMu + Lu = f € X, then z|| MY/ 2u|? + | L'/ ?u|? = (f,u),
that is

Re 2| M Pull® + | L2l = Re(f,u),
| Imzl[| M2l = | Im(f,u)]

where we used ||u|| to denote the norm of u € X.
Summing up both the members of the preceding equalities we
obtain

(Rez + | Tmz)|[M2ul® +ILV2ul* = Re(f,u) +|Im{f, u)]
< CIIfNILYul.

Since M is L-bounded (according to Kato’s notion), with L-bound
equal to zero, it is known that zM + L is closed and its adjoint
(zM + L)* coincides with ZM + L. We refer to Weidmann [15], p.
109.

Therefore, for all z in the region {Rez + |Imz| > 0} U{|z| < €},
for suitable positive €, there exists the inverse (:M + L)~! € L(X)
with ||M(zM + L)~"||(x) < Const.

Then Theorem 3.1 is applicable with m = 1. O
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COROLLARY 3.2. Let X be a complex Hilbert space with inner prod-
uct (, ) and let L, M be two closed linear operators in X such that
D(L) C D(M), 0 € p(L), M (respectively, M*) is L-bounded (re-
spectively, L*-bounded ) with L-bound (respectively, L*-bound ) equal
to 0. Moreover, suppose that

Re(Mu,Lu) >0,  for allu € D(L),
Re(M*f,L*f)y >0,  forall f € D(L").
Then for all € > 0 and every f € C3([0,1]; X), f®(0) = (1),
1 =20,1,2, the problem
©(Mu(t) = (L + eMyu(t) + f(1),  0<t<1,
Mu(0) = Mu(1),

has a unique strict solution.
Proof. Let (#M + L+ eM)u = f € X. Then
(Rez + €) || Mu||® + Re(Lu, Mu) = Re(f, Mu)

implies that |Mu| < (Rez + €) 7L ]|, where Rez > —e.
On the other hand, setting (z+¢€)u = v gives Mv+ (z+¢€) "' Lv =
f, so that

Rez+e—1Tmz
|z + €2

(Mv, Lv) + 1L = (f, Lv).

Therefore, by taking real parts, in view of the assumptions, we have

Rez+ ¢
|z + €|?

This implies that zM + L 4+ eM is one-to-one for these z’s and has
a closed range. Applying the same trick to the adjoint equation,
since the assumptions assure that (zM + L)* = ZM* + L* as well,
we deduce that (z + €)M* + L* is one-to-one, that is, the range of
zM + L + eM is everywhere dense in X.

This concludes the proof that zM + L+eM has a bounded inverse
for all z with SRe z > —e. Moreover, condition (3.1) is verified with
m = 1 if we take a suitable . |

ILol® < IFIIILoll, Rez > —e.
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REMARK 3.1. We observe that Corollary 3.2 can be viewed as a
linear degenerate version, that ensures regular solutions as well, of
Corollary 9 in Haraux [11], p. 175, where existence of weak and strong
1-periodic solutions to the multivalued equation v’ + Av +ev > f(t),
€ > 0, is established, A being a maximal monotone operator in a
Hilbert space.

The case € = 0, the resonant one, needs more attention and shall
be considered elsewhere.

Propositions 1.1 and 3.1 have a large range of application. In
particular, they allow to handle periodic problems of different type,
as it is shown in the next result, where we confine us to prove only
the affirmation corresponding to Proposition 3.1.

COROLLARY 3.3. Let the closed linear operators L, M satisfy as-
sumption (3.1) in the complex Hilbert space X. Then the elliptic
problem

d2
gz Mu(®)) — Lu(t) = f(t), 0<t<1, (32)
d d
(Mu)(0) = (Mu)(1), = (Mu)(0) = - (Mu)(1), (3.3)

has a unique solution u, with Lu € L*(0,1; X), Mu € W%2(0,1; X),

for all f € WXm:2(0,1; X), £ (0) = £(1), i =0,1,...,2m + 1.

Proof. Define an operator B in E = L?(0,1; X), by

D(B) = {veW?(0,1:X):0(0) = v(1), (0) = Z1))
By = —227: =—v", weD(B).

Then B is a positive self-adjoint operator in E, as readily seen (Ha-
raux [11], p. 188).

Hence we can conclude applying Proposition 3.1, with p = —1,
solving (3.2), (3.3). O
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Before establishing the next statement, we recall that if z = 0 is
a polar singularity for the resolvent (z + ML~1)~! of order m + 1,
m =0,1,..., in the Hilbert space X, that is,

IL(2L + M)~ I ex) 0 <[z] <¢,

= T
for suitable positive €, then
JEGM + L)) < Clol™,  Vaz,J2] > 1/e.

Moreover, the representation X = N(T™!)@ R(T™*!) holds, where
R(T™*1) is a closed subspace of X and T = ML~!. We refer to
Yosida [17], p. 229.

Since we always assume that D(L) C D(M), we know that 27+ 1
has a bounded inverse for any z, |z| < m

Hence, if € > ||T'||z(x), then Theorem 3.1 applies directly. In the
particular case m = 0 we are even allowed to use Theorem 1.1, as it
has been done in Example 1.2.

But in general € is small and thus resonance phenomena may
arise. To deepen in some detail this case, we want to give a more di-
rect approach to (1), (2), introducing the projection operator P onto
N(T™*!), and the restrictions T; and Ty to N(T™*!) and N(T™*1!)
respectively. The change of variable Lu = v, together with the well
known commutativity of the involved operators 77 and T with P,
leads that problem (1), (2) splits into the two systems

S(TPu(0) = —Po(t) + P, 0<t<1, (3.4

T1P’U(O) = T1P’U(1), (35)

and

5 (2 = P)u(t)) = =(I = Pp(t) + (I = P)f(t), 0<t<1, (3.6)

To(I — P)u(0) = TyPu(1), (3.7)
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where (3.4), (3.5) is a problem in N(T™*!) and (3.6), (3.7) is con-
sidered in R(T™*1).

Since R(T™*) = R(T") forall 7 € N, r > m + 1, Ty has a
bounded inverse in R(T™*!) and (3.6), (3.7) is equivalent to

d _ _
(T =Py)(t)) = =T; (I = Pyo(t) + Ty (I = P)f(t),  (38)
0<t<1,
(I — P)v(0) = Po(1). (3.9)
Moreover, since T = 0, to solve (3.4) we necessarily need to

request regularity like f € C™([0, 1], X), so that
Pu(t) = Pf(t) — Ty PfO8) + TEPFA (1) — ...+ (—1)™TPF™(1).
Hence, (notice that if m = 0, then TP = 0), for 1 = 0,1,

T\Pv(i) = T\Pf(i)—T2PfOE) 4 ...+ (1)t fm=1(5)
PITf(E) — T2V @) + .. 4 ()™ fm=D )],
Let us consider now the regular system (3.8), (3.9).
In view of Haraux [11], Corollary 9, p. 157, we know that it

has a 1-periodic solution (I — P)v(t) if and only if for each j € Z,
l7] < %HTQ_l”L(R(T?’nJ’-I))’ the integral

1
‘/QERI—PHSEJMWBGRHEL+%ﬁD,
0

that is,
1 ..
/ (I = P)f(s)e 2™i%ds — (I + 2njilo)(I — Pz;,  (3.10)
0
for certain elements z; € X, 0 < |j| < ag = #||T2_1||L(R(Tm—1))'

Now, by Yosida [14], p. 228, (3.10) is equivalently written

/%I—Pﬁ@k””%k:UFIMI+%ﬁTWﬁ
0
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or else
1
/ f(s)e 2™ ds — (I + 2mjil)z; € N(T™), 0 < |j] < ao. (3.11)
0

Combining these results, we can establish the following one.

THEOREM 3.2. Let z = 0 be a polar singularity of order m + 1 for
(z—T)7, with T = ML™, and M, L closed linear operators from
the Hilbert space X into itself, D(L) C D(M), L~ € L(X).

Let ap = %HTQ_IHL(R(TWLH)). If f € C™(]0,1]; X) satisfies the com-
patibility relations (3.11) and (if m >0)

m ) e d—1
Do) (e O = S D)) € R

i=1

then problem (1), (2) has at least one strict solution.

Henceforth we shall illustrate use of the theorems above by means
of some examples from ordinary and partial differential equations.

ExAMPLE 3.1. Let f,g,h € C([0,1]). Then the algebraic differential
problem

dv
T = —u®)+ 1),
0 = —o(t)+g(t),
dv 1 dw

S+ o= () = —w) +h(t), 0<t<,

v(0) =v(1), w(0) =w(l),
has obviously a solution if and only if g € C*([0,1]), g(0) = g(1) and

1 1
/ €275 (h(s) — g'(s))ds = / €27i3 ((s) + 2mig(s))ds = 0.
0 0
The solutions are then given by
u(t) = f(t)—g'(t),
o(t) = g(t),

¢
w(t) = e 2 hy —|—27m'/ e~ 209 (p(s) — ¢'(s))ds,
0
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where hg is an arbitrary complex number.

Here M(u,v,w) = (v,0,v + ﬁw), L=1I,sothat T=M,z=0
is a polar singularity of order 2 for the resolvent (z — M)~!, N(T?)
is the space generated by the vectors (1,0,0) and (0,4, 2mi), R(T?)
is the space generated by (0,0,1). Hence, P(u,v,w) = (u, v, —2miv),
(I — P)(u,v,w) = (0,0, w + 2miv).

Thus the conditions in Theorem 3.1 read, since 5 = —1 only,
T(f(0) — f(1),9(0) — g(1),h(0) — h(1)) =
= (9(0) — g(1),0,4(0) — g(1) + %m(h(()) —h(1)) € R(T?)

and there exists (u,v,w) such that
1 .
(/ f(s)e’™ds + 7 — 2miv |
0
1 . 1 .
/ g(s)e*™ds + 7, / h(s)e*™ds — 27m'§> € N(T?).
0 0
The first one reduces to g(0) — ¢g(1), and the second one becomes
1 -
/ f(s)e’™ds +u — 2wiv  arbitrary,
0

1 1
—271 (/ g(s)e*™ds + ﬁ) = / h(s)e*™Sds — 2miT,
0 0

that is precisely the aforementioned compatibility relation.

Sometimes we can substitute assumptions on the operator T' =
ML™! by corresponding hypotheses on M only. This happens, for
instance, when M and L have a common domain and commute ac-
cording to (z — M) 'L = L Y(z — M) ! for all z € p(M). The
following two examples clarify the typical situation.

ExamMpPLE 3.2. Let K be a densely defined closed linear operator
from the Hilbert space X into itself, kg € R, such that z = 0 is a
polar singularity of order 1 for the resolvent (z+ ko + K)~!, and the
spectrum of K consists of a countable set of (real) eigenvalues, —ko
being the greatest one among them.

Let 6 € p(—K) N R, and consider the periodic problem
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(ko + Kpu(t)) = Ku(t) + 0u(t) + f(), 0<t<1, (312

(ko + K)u(0) = (ko + K)u(l), (3.13)
where f € C([0,1]; X). Let M = ko + K, so that, denoting by P the
projection operator onto N (M), problem (3.12), (3.13) reduces to

d -
5 (M(I = Pyu(t)) = (3.14)

= M(I = P)u(t) + (6 — ko)(I — P)u(t) + (I = P)f(t),

0<t<1,
(I - P)u(0) = (I — P)u(1), (3.15)

1

Pu(t) = -

Pf(t), 0<t<1,

M being the restriction of M to R(M). Now (3.14) is equivalent to
d

%KI—PW@D=(@—kwﬁfl+IXI—PW@%+M“WI—PV@%

and thus we are allowed to apply Haraux’s result [11], Corollary 9,
p. 158, according which (3.14), (3.15) has a 1-periodic strict solution
if and only if Vm € Z, |m\ <ap= (27‘!‘)71”I + (5 — kO)MilnL(R(M))a

/1(1 — P)f(s)e 2™sds € R((2mim — 1)M — (6 — ko)) ;
0
that is,

1
/O F(s)e=2msds € R((2mim —1)M — (0 — ko))
5~ ko

© 2mim — 1

— RM ).

If m = 0, this reads

/1 f(s)ds € R(K + ) = X.
0
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On the other hand, if m # 0, since § — kg # 0 in view of the assump-
tions, then R(M — ;2-%0_) = X again. Hence problem (3.12), (3.13)

. . 2mim—l7
admits one 1-periodic solution.

In particular, the present argument applies to X = L?(f2), where
Q) is a bounded domain in R" with smooth boundary and K = A,
with D(K) = H}(Q) N H3(Q).

ExaMPLE 3.3. Let K be a densely defined closed linear operator
from the Hilbert space X into itself, satisfying the same properties
as in Example 3.2, that is, 2 = 0 is a polar singularity of order 1
for the resolvent (z + ko + K)~!, where ky € R, and the spectrum
of K consists of a countable set of (real) eigenvalues, —kq being the
greatest one among them.
Let § € C and consider the equation

%((ko + K)u(t)) = iKu(t) + du(t) + f(t), 0<t<1, (3.16)
with periodic condition (3.13). By using the same notation as in
Example 3.2, system (3.16), (3.13) splits into

d  ~
= (M(I = Pyu(t)) = (3.17)

= iM(I — P)u(t) + (8 — iko)(I — P)u(t) + (I — P)f(t),

(I — P)u(0) = (I — P)u(1), (3.18)

(iko — 6)Pu(t) = Pf(t), 0<t<1.

Let us denote by —kj, 7 = 0,1,..., the eigenvalues of K and
assume d # ikj, j = 0,1,.... This guarantees, between other things,
that last equation has a unique solution Pu(t). Obviously, we main-
tain that f(¢) is a continuous X-valued function.

Application of Haraux’s result [11], Corollary 9, p. 157, leads that
(3.17), (3.18) has a 1-periodic strict solution if and only if Vm € Z,
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Im| < ao = 5=|I1 — (i6 + ko) M~ || ,(r(ary).
1
/ (I = P)f(s)e™>"msds € R((2mim — 1)M + (i6 + ko)),
0
that is,
1 .
/ F(s)e=2m3ds € R((2mim — 1)M + (i + ko).
0

On the other hand, the last range coincides with the range R(K +
Znimkotid) - Hence, if Jmd # —kj, then it is all of X. Analogously,

2mim—1

this is the case if Jmé = —k; and
—9‘{e67é27rm(k0+kj), j=12...

Instead of, if Imd§ = —k; and —Red = 2mm(ko + k;), 7 = 1,2,...,
we have resonance situation.

EXAMPLE 3.4. Let H be a complex Banach space with norm || - ||
and inner product (, ). Let A, B,C be closed linear operators from
H into itself such that

A=A*>0, D(A°‘=H, C=C*>0, D(C) =H, (3.19)
D(AY?) C D(B)n D(B*), (3.20)

Re(Bu,u) > collul?, Re(B*v,v) > col|v||?, (3.21)
u € D(B),v € D(B"),

where ¢ is a positive constant.
Given f € C([0,1]; H), the second order differential equation

d du du
- _ _ = <t <
7 (C(dt>>+3dt+Au fir), 0<t<1,

is formally written %(Mw( )+ Lw(t) = F(t), 0 <t < 1, where
1))

t)
w = (u,v), F(t) = (0,f(t), L(u,v) = (—v,Au + Bv), (u,v) €
D(L) = D(A) x D(AY?), M(z,y) = (z,Cy), (z,y) € D(M) =
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D(A'Y?) x H = X. The space X is a Hilbert space with respect to
the inner product ( , )x given by

((z,9), (@1,91))x = (A2, A'221) + (y, 1)

In view of assumptions (3.19), (3.20), it is seen that L is a closed
linear operator from X into itself. Moreover, given Rez > 0, if
zMw+ Lw =h = (f,g9) € X, w = (u,v), multiplying the equation
by w with respect to the inner product in X and taking real parts,
we obtain

Re 2{||A2ul? + ||C*?v||*} + Re(Bu, v) <
< Re{(AV2f, AV2u) + (g,v)} ,

that is, in virtue of (3.21),
min{Re z, co }||w||x < kl|hllx (3.22)

On the other hand, the adjoint operator L* of L is given by L*(u,v) =
(v,—Au + B*v), so that the estimate

min{Re z, co H|w||x < k[|(ZM" + L*)w|x (3.23)

holds as well. Combining (2.22) and (2.23) we conclude that zM +
L has a bounded inverse for Rez > 0 and ||(zM + L)_1||L(X) <
k(min{Re z,co}) " .

Hence, for all ez > —£ we have ||L(zM + L + eM)_IHL(X) <
k(1 + |z|) ensuring that Theorem 3.1 applies, with m = 1, provided
that L + eM, with € > 0, takes the place of L.

Summarizing up, by translating the result to the original prob-
lem, we have proved that under assumptions (2.19)—(2.21), for all
fec3(o,1]; H), fD(0) = f0(1), i = 0,1,2, the periodic problem
%(C(%)) + (B + 260)2—: +(A+eB+€EC)u=f(t), 0<t<1,
du du
E(O) =C E(l)

has a unique strict solution v € C([0,]; D(A)) N C*([0,1]); D(B)),
C‘é—g € C'([0,1]; H). Notice that the conclusion is true in the partic-
ular case of the operator C = 0.

u(0) =u(l), C
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We shall indicate two concrete examples of partial differential
equations to which our result is applicable.

The first one concerns a Poisson wave equation with damping
in a bounded region 2 C R*, n > 1, with a smooth boundary 9f2.
Indeed, it is the equation of hyperbolic-parabolic type

Ou

2 (m(x)%) + (n(z) + 2em(@) 2 +
(A en(e) — Emla)yu = f(t,1),

in [0,1] x Q,
u =0, in [0,1] x 092,
u(0,z) = u((1L,z), in €,
u ou .
m(x)E(O, iL') - m(x)a(l,a:), m Qa

where m(z) is a continuous nonnegative function on €, n(z) is con-
tinuous, real valued on Q, n(zx) > ng > 0 for all z € Q. Here
we take H = L2(Q), A = —A, D(A) = H}(Q) N H2(Q), so that
D(AY?) = H{(Q), C is multiplication by m(z) and B is multiplica-
tion by n(z), with the maximal domain.

Obviously, all what remains to do is to add some conditions guar-
anteeing that (3.20) holds. Since for all ¢ > 1

[nermrar < ([ wppova) ([ )

we see that if
/ n(z)¥dz < 0o, q> 1, (3.24)
Q
then the Sobolev imbeddings
1 2n
H (Q) C LP(Q), 2§p§—2, ifn>2,
n—
HY Q) CLP(Q), 2<p<oo, ifn=2,

imply that if n > 2 and (3.24) is verified with 2¢ > n, then H}(2) C
D(B). On the other hand, if n = 2, then (3.24) with ¢ > 1 suffices
to have the continuous imbedding H}(2) C D(B) as well.
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The case n = 1 can be improved a bit. In this case Q@ = (a,b),
where a < b are any real numbers. We can estimate the integral
Jo n(@)?u(z)[*dz by

wd | O e ([ W) do+
v f ;w ap -2 ( [ b )Py ) ds | <

b
< kQ/ W () %dz, u € H}(a,b),
a

provided that the integrals

(a+b)/2 b
/ n(z)?(z — a)dz and / n(z)?(b — z)dz
a (a+b)/2

converge. For instance, this is the case when n(z) = (x —a)™7(b —
z)~ 7, where 0,7 < 1.

The second example below shows that our assumptions allow us
to consider differential operators in the role of B, too. For sake of
simplicity, we confine to the one dimensional situation Q = (0, 1),
H = L?(0,1). The operator A is —%, with D(A) = H}(0,1) N
H?(0,1), the operator C is the multiplication by m(z) > 0 as above
and B is given by

where ¢ is an arbitrary positive number. Since
* 1 * du
DB*)={ue H(0,1); u(l)=0}, B u:—d——i-eou,
i
all the hypotheses (3.19)-(3.21) are clearly satisfied.
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