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SOMMARIO. - Consideriamo il problema inverso di determinare il coeffi-
ctente di conduttivita a = 1 4+ uxp, D CC Q, u = costante, nell’equa-
zione ellittica div(aVu) = 0 in Q, quando siano assegnati dati al bordo
sovradeterminati per una soluzione u non banale. Mostriamo che la
nonunicita nella determinazione di D implica che una porzione I' di
0D ¢ soluzione di un particolare problema di frontiera libera. Dimos-
triamo alcune proprieta di analiticita di tale frontiera libera e, in con-
sequenza, ottentamo alcuni risultati di unicita per il problema inverso
della conduttivita.

SUMMARY. - We treat the inverse problem of the determination of the con-
ductivity coefficient a = 14+ puxp, D CC Q, p = constant, in the elliptic
equation div(aVu) = 0 in Q, when overdetermined boundary data for
one nontrivial solution u are assigned . We show that nonuniqueness
in the determination of the domain D would imply that a part T' of 0D
1s a solution of a particular free boundary problem. We prove analyt-
weity properties of such a free boundary and, consequently, we derive
uniqueness results for the inverse conductivity problem.
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1. Introduction

We consider the problem of recovery of a domain D CC € entering
the conductivity coefficient a(z) = 1+ uxp () of the elliptic equation

div(eVu) =0 in Q (1.1)
with the boundary condition
u=4g on JN . (1.2)
The additional data are
dou=nh on 'y C 092. (1.3)

where ['g is an open nonempty part of dQ. Here € is a known
bounded domain in R™ n > 2, with smooth (for instance C? ) con-
nected boundary 0f2, v denotes the exterior unit normal, and p is a
constant parameter, g > —1, u # 0. We shall consider both cases
when g is assumed to be known and when g is part of the unknowns.
The question which we are interested in here is the one of unique-
ness, that is whether the data ¢, h appearing in (1.2), (1.3) are
sufficient to uniquely determine the domain . This problem has
attracted a lot of attention in recent years, and most of the results
obtained since now can be grouped into two main categories.

(I) Global uniqueness theorems within “restricted” classes of domains.

(I1) Local uniqueness theorems in “large” classes of domains.

A typical example of the results of the group (I) concerns the
classes of convex polygons, when the space dimension n = 2, or of
convex polyhedrons when n = 3. Friedman and Isakov [F-1] proved
uniqueness results in these classes under additional assumptions re-
lating the diameter of the polygons, or polyhedrons, to their distance
to the boundary 9f2. Barcelo, Fabes and Seo [B-F-S] were able to re-
move such additional assumptions, at the cost of prescribing bound-
ary data on u of a very special type. Also other classes of domains
have been investigated, unions of disks, cylinders, see [I-P].

In this paper, among other results, we shall prove results of the
same flavour of those in [B-F-S] , but with different choices of bound-
ary data which appear to be more practically feasible. Moreover, also
the parameter p will be considered as an unknown and we prove its
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unique determination by the boundary data (1.2), (1.3). See Theo-
rems 5.1, 5.3 below.

Concerning group (II), it has been recently proven, [A-I-P], that,
when n = 2, local uniqueness holds in the class of C'** simply con-
nected domains. Previous results in this direction concerned classes
of planar domains with analytic boundary, [Ch], [B-F-1], [P]. All the
above results were based on arguments of linearization, let us recall
that a study of the linearized problem is due to Lorenzi and Pagani
[L-P]. See also [Is3] for results for a slightly different, but related,
problem with interior sources.

The main issue that we want to address in this paper is whether
there exist domains D which can be uniquely determined in some
“large” class of domains, that is domains on which no, or little,
geometrical assumptions are made.

Consider, for instance, the planar case n = 2, and let us denote
by D the class of Jordan domains D CC 2. We shall find, Theorem
4.1, a subclass D C D, which is dense in the Hausdorff metric, such
that any D € D is uniquely determined in D by the boundary data
(1.2), (1.3). In fact D will be chosen as the family of domains D € D
such that 0D is not analytic at any of its points.

Before proceeding into the discussion of this result, it is necessary
to recall some well-known facts about the direct problem (1.1), (1.2).

Given any measurable set D , and given, for instance, a function
g € H'/?(99), there exists a unique generalized solution u € H'(Q),

which is separately harmonic in the interior 1O) of D and in Q\D.
Moreover % is continuous across dD, in fact, by the DeGiorgi-Nash-
Moser theorem, u € C}) (), with a Holder exponent, A, 0 < A <
1, which depends on n and p only. See, for instance [G-T] or [L-
U]. Higher regularity of u near the two sides of @D is achieved,
provided corresponding regularity of @D is assumed. For instance,
if we assume 9D € C't for some A, 0 < A < 1, then setting

u = ulg\p, u' =ulD, (1.4)
we have u® € C’llotﬁ(ﬂ \ D), u* € Cllo—}c'ﬁ(ﬁ), for some 3,0 < 8 < 1,
see [D-E-F]. Moreover equation (1.1) can be rewritten as

Au*=0 inQ\D, (1.5a)

Au'=0 inD (1.5b)
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u*=u' ondD, (1.5¢)
du® = (1 +p)d,u’ ondD. (1.5d)

Equations (1.5¢), (1.5d) are then called the transmission conditions
for u. Let us also recall that when 9D is merely Lipschitz, then the
transmission conditions continue to hold almost everywhere on 0D,
in this case the normal derivatives in (1.5d) can be interpreted in the
sense of nontangential limits in L2(9D), see [E-F-V] . Continuing now
our previous discussion of the inverse problem, the key step in our
argument will be based on the fact that the study of the uniqueness
problem leads to the following question (see Theorem 4.1 and its
Proof).

Is it possible that there exists a portion I' C dD and a neigh-
bourhood V' of T in which u® can be continued harmonically across
re

If this is the case, then by the transmission conditions (1.5c),
(1.5d) we are led to the following free boundary problem.

Given u® harmonic in V, find a curve (or surface when n > 2)
' C V and u' harmonic on one side of I' such that
w=u" onl,
(14 p)d,u' = d,u° onT.

The fact that «® is harmonic throughout V will imply that, if such
a free boundary I' exists and n = 2, then it is a piecewise analytic
curve, with possible isolated cusps and corners, see Theorem 2.1 .
The transmission conditions (1.5¢), (1.5d) will require an appropriate
reinterpretation when 9D is merely assumed to be a Jordan curve,
this is the content of Lemma 2.2. In the higher dimensional case,
n > 3, the situation is much more complicated, see Theorem 3.1,
Example 3.2 and Lemma 3.3. A complete study of the analogous
n-dimensional free boundary problem remains, in many respects,
open. None the less, given the class D of domains D CC € such
that 9D € C'** for some A > 0 and 9D is connected, we are able
to find a dense subclass D C D of domains which can be uniquely
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determined in D by the boundary data (1.2), (1.3). See Theorem
4.1.

In the following Section 2 we treat the two-dimensional free bound-
ary problem.

Section 3 contains the study of the free boundary problem in
higher dimensions.

In Section 4 we apply the results of the previous sections to the
study of global uniqueness within “large” classes of domains.

Section 5 contains the global uniqueness results in the “restricted”
classes of polygons and polyhedrons.

2. Analyticity of the free boundary, two-dimensional
case

In this section we consider D to be a planar domain. Let us fix
a point 2! € 9D and a simply connected neighbourhood V of z'.
Assume that DNV is a Jordan domain and denote by z = 2(t) a
conformal map from the unit disk B;(0) = {t € C : |{| < 1} onto
DNV and such that z(1) = z!. We recall that being DNV a Jordan
domain, such a map is one-to-one and continuous up to dB;(0). We
denote ' = dDNV. Let u € H'(V) be a generalized solution to the
equation

div((1 4+ pxp)Vu) =0 inV. (2.1)
Accordingly to (1.4), we set

ut = ‘U|V\5 yu' = ulpav .

THEOREM 2.1. Suppose that u® can be harmonically continued from
VA\D ontoV. Let N > 1 be the integer such that u® —u®(z") vanishes
at z' of order N. Then there exists a neighbourhood W of the point
t =1 such that the map z = z(t) can be represented as follows

2(t) = w((t — VN F(t))  for everyt € W N By (0). (2.2)

Here k is a positive integer, f is an analytic function satisfying
f(1) # 0, and w is a conformal map from a neighbourhood of 0
onto a neighbourhood of z'.
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COROLLARY 2.2. Under the same assumptions as above, there exists
a neighbourhood of z' in which I is the union of two reqular analytic
curves having one common endpoint at z' and whose tangents at z'
form an angle which is a rational multiple of 7.

Furthermore, if we assume Vu®(z') # 0 and that, near z', T is a
Lipschitz curve, then, in fact, I is a reqular analytic curve.

The following Lemma will be needed in the proof of Theorem 2.1.

LEMMA 2.3. There exist harmonic conjugates v°, qito u®, u' respec-
tively. They satisfy v¢ € CMNV \ D), v* € CND N V) for some
A, 0 < A < 1 and, moreover, we have

(14 p)v' =v° onl. (2.3)

Proof. We construct a so-called stream function associated to u,
see [B-S] and [A-M] . Consider w € H'(V) to be a solution of the
first order system

Vw = (14 pxp)(Vu)*,

where (-)* means a counterclockwise rotation of 90°. The simple
connectedness of V' and equation (2.1) provide us with the compat-
ibility conditions of solvability, thus such a w exists and it is unique
up to an additive constant. Moreover it satisfies in the weak sense

div((1+4 pxp) 'Vw) =0 inV.

In particular, by the already quoted DeGiorgi-Nash-Moser theorem,
we have w € Cjy (V) with 0 < A < 1. Now, let us set

: 1 _
v =w in V\D, vv=——w in DNV,
1+ u

then v°, v* are harmonic conjugates to u®, u' respectively, they are
Holder continuous, and they satisfy (2.3). The proof is complete.

Proof of Theorem 2.1. Let us introduce the complex analytic
functions

Us=u+iv° inV\D, U'=4'+iv' inDNV.



ANALYTICITY AND UNIQUENESS etc. 357

Recalling that u is continuous in V we have u* = u® on I', and using
(2.3), we obtain

(24 p)U® + pU® =2(14 p)U' onT. (2.4)

Let v be an open arc in dB;(0) which is mapped by z(¢) into I' and
such that 1 € v, hence

(24 p)US(2(1)) + pUc(2(t)) = 2(1 + p) U (2(t))  for everyt € 7.
(2.5)
Since u® can be harmonically continued in V', the same holds for
v®, and therefore U® can be analytically continued in V. Hence
U?(z(+))|y can be analytically continued in B;(0) to a function F}
which is continuous in By (0) U~y. We obtain

Ue(z(t)) = ®(t) foreveryte vy, (2.6)

where ® is an analytic function in By (0) continuous in By (0) Uy. By
taking the conjugates on both sides of (2.6), setting W(#) = ®(¢), and
using the identity £ = 1/t for every t € v, we have U°®(z(t)) = ¥(1/t)
for every ¢ € v, where W is an analytic function in B;(0) continuous
in By (0) Uy. Therefore, setting F3(t) = W(1/t), we arrive at

Uc(z(t)) = Fa(t) forevery tevy, (2.7)

where Iy is an analytic function in the exterior G of the closed unit
disk and continuous in G U~. Hence by the continuation principle,
U*?(z(+)) can be analytically continued to By (0) Uy UG and, in par-
ticular, to a neighbourhood B, (1) of 1 € . Therefore, we may find a
positive integer £ and an analytic function ¢ in B, (1), with ¢(1) # 0,
such that

US(2(t) = US(2") + (t — 1)F¢(t) for every t e B.(1),

1 we also have

moreover, since U*¢ is analytic near z
Us(z) = U(2") + (2 — 2" )Ng(2) for every =z near z',

where g is an analytic function near z', with g(z') # 0. We may
find a conformal map z = w(({) from a neighbourhood of 0 onto a
neighbourhood of z', such that w(0) = 2! and also

g(2) = ¢V, when z = w((), for every { near 0.
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Denoting ((t) = w™!(2(t)), we obtain, for a sufficiently small r,
(CENY = (t=1)*¢(t) forevery te B(1),
hence
Ct)y=(t—D*Nf(t) forevery te B.(1)NB(0),  (2.8)

where f denotes an analytic branch of /N, Applying w to both
sides of (2.8) we obtain (2.2). The proof is complete.

REMARK. Analiticity results for related free boundary problems, like
the obstacle problem and the dam problem, are well known, see for
instance [F]. In particular, the dam problem can be formulated like
ours, however, a quite special geometry of the domain is prescribed
and the choice of u® is very particular (u® = z3).

Proof of Corollary 2.2. The first part of the statement is a
straightforward consequence of (2.2). Consider now the case Vu®(z')
# 0, that is, N = 1. Being z(¢) one-to-one in the closed unit disk,
we have that only two values of k£ are admissible in (2.2), ¥ = 1 and
k= 2. If k= 2 then I' has an algebraic singular point at z;, and
it is locally a Holder, but not Lipschitz, continuous curve. Thus we
are left with the case k = 1, from (2.2) we obtain z/(1) # 0 and the
proof is complete.

3. Analyticity of the free boundary, n-dimensional case

Let us consider now D to be a domain in R"™. Let us fix a point
2! € D and a ball B centered at z;, we denote I' = D N B. Let
u € HY(B) be a generalized solution to the equation

div((1+ uxp)Vu)=0 B. (3.1)

As before, we set u® = u|g\p , v’ = u|prg-

THEOREM 3.1. Suppose that u® can be harmonically continued onto
B. If in addition
Iec*, (3.2)

and
dus(z") £0, (3.3)

then T is a reqular analytic hypersurface near z'.
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The following example shows that hypothesis (3.3) is necessary
in Theorem 3.1. The same example appears, for a different purpose,
in the paper of Kinderlehrer and Nirenberg [K-N].

ExaMPLE 3.2. For any z € R", set z = (z1,22,y) with z1,25 €
R,y € R"2 and let f : R""2 — R be any C'** function. Consider
D={zeR":2y> f(y)} and u(z) = z;. We have

Au=div((1 4+ pxp)Vu) =0 inR",
and also
0,u° = d,u=0 everywhere on 9D,

but the regularity of 0D is the same as the one of f.

The above example suggests the following susbtitute for Theorem
3.1 when condition (3.3) does not hold.

LEMMA 3.3. Suppose that u® can be harmonically continued onto B
and assume (3.2). If in addition

|Vus(z1)] # 0, (3.4)
and also
O,u® =0 everywhere on T, (3.5)

then there exists a neighbourhood V of z' such that T NV can be
represented as a (n — 2)-parameter family of reqular analytic curves.

Proof of Theorem 3.1. Let us denote by h the harmonic con-
tinuation of u® onto B, and denote u = H'T“(h —u')in DN B, we
have

Au=0 in DnNB, (3.5a)
vu=0 on T, (3.5b)
dyu=20,h on T. (3.5¢)

Thus by (3.3), in a neighbourhood of 2! we have Vu # 0 and also

Vu

=t+——
YTV
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hence (3.5¢c) can be rewritten as

[Vul* = Vh-Vu=0 on I. (3.5¢%)

Notice that, if we had the additional assumption v € C?(D N B),
then the proof would follow by a direct application of Theorem 2
in [K-N] to problem (3.5a)(3.5¢’). Under the present regularity as-
sumption (3.2), it seems necessary to reformulate the arguments in
[K-N], based on an appropriate hodograph method, in order to take
advantage of the divergence structure of (3.5a). We follow the track
of Theorem 4.1.4 in [Is1], where similar arguments were used in con-
nection to the inverse problem of potential theory. We can assume

d,h(z') = d,uc(z') <0,

and also that 2! = 0 and v(0) coincides with the negative direction
of the zj-axis . We also set = (z1,2') with 2’ € R"™!. Let us
define the hodograph type map

= y(z), wyi(z)=ulz), y(z)=2", (3.6)

since, by (3.2), we have u' € C'*A(D N B) for some A, 0 < A < 1,
hence also u and the map y = y(z) are of class C'**(D N B) and,
by the Whitney theorem y(z) can be continued to a C'** map on
B. Its Jacobian at 0 is, by (3.5¢), 0z, u(0) = —0,h(0) > 0. Thus,
possibly shrinking the radius of B , the hodograph map from B onto
a neighbourhood V of 0 is invertible, with inverse

y—=z(y), nly)=wly), 2y =y, (3.7)

by (3.5b), and since 9, u(0) > 0, we have that the hodograph map
transforms DN B and I'onto Vt ={y €V :y; >0} and X ={y €
V :y; = 0} respectively. From the results of [Is1], Lemma 4.1.5, we
have that (3.5a) induces the following divergence form equation for
w

1 2 . 1 .
S —— 1 — ! - X - /* .
oy, ((3y1w)2(1 + |Vl )) 2div, (ayley w) 0 in}
(3.8)

This equation can be seen to be elliptic for w provided

Oy, w > 0.
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This condition is satisfied at y = 0, hence everywhere in V', provided
the radius of B is chosen small enough. Thus (3.8) is a quasilinear
uniformly elliptic equation with analytic dependence on its argu-
ments. From (3.5¢’) one can obtain also a boundary condition for w
on X. By differentiation of the identity u(w(y),y’) = y1 we have, for
= z(y),
B 1 1

Oy, w(y)’

and therefore we obtain

Oz u(z)

L4+ |V w|* — (0, h) (0, y) — (Varh) (w,y') - Vyw) Oy, w =0 on ¥,

(3.9)
This is a regular nonlinear oblique derivative condition, with an-
alytic dependence on its arguments. Applying to (3.8), (3.9) the
standard method of difference quotients and the estimates at the
boundary of Agmon, Douglis and Nirenberg [A-D-N], Theorem 9.1,
we obtain w € C**}(V+ U X). Then we can invoke the analyticity
theorem of Morrey, see [M], Theorem 6.7.6’, to obtain that w can
be continued to a real analytic function defined on a neighbourhood
of the origin y = 0. Finally, I' is the graph {z; = w(0,2'}) of the
analytic function w(0,-). The proof is complete.

REMARK. It would be interesting to know whether Theorem 3.1 con-
tinues to hold when (3.2) is replaced by I' € Lip. Related regularity
results are due to Caffarelli, see for instance [C], but unfortunately,
it seems that our problem cannot be directly reduced to his setting.

Proof of Lemma 3.3. Possibly shrinking the radius of B, we may
assume |Vuf| # 0 everywhere on B. The condition (3.5) says that
Vu®(z) is tangent to I' at any z € I'. Therefore, for any z € T, the
line of steepest descent of u® passing through z remains in ['. Hence,
I’ is composed by lines of steepest descent of u® which are regular
analytic curves. The proof is complete.

4. Uniqueness in “large” classes of domains

We consider two classes of domains, D, D, which we define in a
different fashion depending on the space dimension. When n = 2,
we set

D={DCCQ:Dis alJordan domain, } (4.1)
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D ={DeD: foranyz € dD,dDis not analytic

in any neighbourhood of z} | (4.2)
and, when n > 2, we define
D:{D CC Q: Dis a domain, 8D € C'** for some A > 0 (4.3)

and 0Dis connected} ,

D ={D e D:foranyze dD, dDis not a(n — 2)-parame-
ter family of regular analytic curves in any  (4.4)

neighbourhood of z} .

We also impose that the empty set () belongs to both classes D and
D.

_ Observe that it is a rather straightforward matter to prove that
D is dense in D, with respect to the Hausdorff metric.

THEOREM 4.1. Let D € D, and let p be a given constant, —1 <
W, it # 0. Let u be a non constant solution of (1.1). For any open,
nonempty, subset I'g of 092, the data g, h in (1.2), (1.3) uniquely
determine D in D.

REMARK. It might seem that this uniqueness result can be of little
practical use since the condition D € D is unstable under small
perturbations. However, we wish to stress that the principal aim
here is to show the existence of domains D in the larger class D

which are uniquely determined by one data pair g, h.

Proof of Theorem 4.1. Let us denote Dy = D and u; = u. We
assume, by contradiction, that there exists Dy € D, Dy # Dy such
that the solution uy of (1.1), (1.2) when D is replaced with Dy,
satisfies also (1.3). Let G be the connected component of
Q\ (D1 U D3) such that 909 C 0G.

We show that our assumption by contradiction implies that I' =
(0D1 \ D3) N OG has nonempty interior in @D;. Were it not so, we
would have 0G C 02U 0D,, and, being 0D, connected, Dy C Ds.
By [A], Theorem 1.1 , and by the definition of the class D, this last
condition would imply Dy = Ds.

Since w1, ug are both harmonic in G and have the same Cauchy
data on ['g, we have uy = ug in GG. Therefore, using for both wuy, ug,
the notation (1.4) where D is replaced with Dy, Dy, respectively, we
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have that, on I', u{ can be harmonically continued inside D; by the
function u§. Now, u§ is nonconstant, because, otherwise also g and u;
would be constant, thus the set of critical points {z € I' : Vu{ =0} =
{z € I' : Vu§ = 0} has empty interior in I'. Let us now distinguish
the cases, n = 2, » > 2. When n = 2, we may apply Theorem 2.1
to uy, and find a regular analytic arc contained in I'. When n > 2,
either we may find z' € I' such that d,uf(z') # 0 or there exists
an open subset of I' on which 9,uf = 0. Thus, by Theorem 3.1 and
Lemma 3.3, we obtain that I' contains a (n — 2)-parameter family
of regular analytic curves. Thus, for any dimension, n > 2, we have
Dy ¢ D, which contradicts our hypothesis. The proof is complete.

5. Uniqueness in “restricted” classes of domains

In this section we shall consider the unique determination of the
domain D within the class P of, possibly empty, convex polygons or
polyhedrons D CC €, when n = 2, n = 3, respectively. We shall
need some additional information on the boundary data, for instance,
when n = 2, we assume that, roughly speaking, the Dirichlet data ¢
has only one maximum on 9€2. On the other hand, we will be able
to identify also the parameter y. For this purpose, let us denote by
I = (—1,0) U (0,00) the range of values of . Notice that the case
p = 0 is excluded, because in equation (1.1), this case can also be
expressed by setting D = (.

Let us consider first the case n = 2 and let 092 be decomposed
into two arcs v, §. We shall assume that the Dirichlet data ¢ in (1.2)
is nonconstant and satisfies

¢ is monotone on 7 and on §, separately . (5.1)

THEOREM 5.1. Let n = 2, let D € P, and let p € I. Let u be
the solution of (1.1), (1.2) and let g satisfy (5.1). For any open,
nonempty, subset I'g of 092, the data g, h in (1.2), (1.3) uniquely
determine D in P and p in I

We shall make use of the following Lemma.

LEMMA 5.2. Let g satisfy (5.1) and let u be the solution to (1.1),
(1.2). The gradient of u never vanishes in Q\ 0D.
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Proof. See Theorem 2.7 in [A-M].

REMARK. Let us remark that the arguments in [A-M] are based on
an adaptation of the classical index calculus to the gradients of weak
solutions of divergence form elliptic equations. In fact in [A-M], it
is proved that, in a generalized sense, Vu has zero index at every
point of €2, and that this generalized notion of index coincides with
the classical one at points where Vu is smooth.

Let us also notice here that the approach in [A-M] would allow us
to state Lemma 5.2 when different types of boundary data are pre-
scribed on u. For instance, we could replace the Dirichlet condition
(1.2), with the Neumann data

O,u="h on dQ, (5.2)

the monotonicity conditions (5.1) should be replaced by the condi-
tions
h>0 on v, h<0 on 4. (5.3)

Also boundary conditions of mixed type could be considered, like,
for instance, the following one. Suppose that 0€2 is decomposed
into 4 consecutive arcs «, 3, v, &, and prescribe, instead of (1.2), the
boundary condition

u=1lona, w=-lony, Od,u=0onBUS. (5.4)

Consequently, Theorem 5.1 continues to hold when the boundary
condition (1.2), (5.1) is replaced by (5.2), (5.3) or by (5.4) . Of
course, it will be necessary to assume, in place of (1.3), that on Iy,
the Cauchy data Vu|r, are known.

Proof of Theorem 5.1. First we prove the unique determination
of D. Assume the opposite, then there are convex polygons Dy, Dy €
P, Dy # Dy, numbers puq, pi2 € I and corresponding solutions uy, usg
satisfying the same boundary data (1.2), (1.3). Since Dy # D and
since they are convex, there is one vertex z! of one of them (say, of
Dy) which is outside of the second one. Again by the convexity, we
have that Q\ (D1 U D) is a connected open set, on such a set uq, ug
are both harmonic and hence must coincide because they have equal
Cauchy data on I'g. The function ug is harmonic in a neighbourhood
of z1, and by Lemma 5.2, we have Vuy(2') # 0. Applying Corollary
2.2 with u = uy we obtain that 9D is a regular analytic curve near
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21, This is a contradiction because z! is a vertex of D;. Hence we

have Dy = Ds. Let us suppose now p; < pg, then the conductivity
coefficients in (1.1) are ¢y = 1+ p1xp, < az = 1+ paxp,. By
the monotonicity argument used in [A], Theorem 1.1, see also [Is2]
Section 1.1, we obtain that since uy, uy have the same Cauchy data
on I'g, then we must have ¢y = ay. The proof is complete.

Let us consider now the case n = 3. We will prescribe that the
Dirichlet data in (1.2) have the form

9= XE, (5.5)

where F is a given open subset of J€. Notice that in this case,
g ¢ H'/?(09) and the solution u has to be meant as the H! ()
limit of solutions to (1.1) satisfying (1.2) with ¢ replaced with smooth
approximations. Let us just observe that, by our smoothness as-
sumptions on 052, we have that u is continuous up to 92 where g is
continuous, that is on 9\ OF. Here JF denotes the boundary of
relative to 0€2.

Our uniqueness theorem below will be based on arguments of
symmetry, rather than of analyticity, see [F-I] and [B-F-S]. For this
purpose we shall need the following definition. Given an oriented line
a in R? and an angle 6 € (0,27), we denote by R(«, ) the rotation
around « of angle 6.

DEFINITION. Given a positive integer K, we say that the pair of sets
(2, F) satisfies the Sk condition, if there exists a point P, K distinct
lines ay, ..., ax passing through P, and angles 64, ..., 0 such that
we have

R(ag, 0:)=Q, R(ag,0)F = FE, foreveryk=1,..., K. (5.6)

THEOREM 5.3. Let n =3, let D € P, and let p € I. Let u be the
solution of (1.1), (1.2) and let g be given by (5.5). Suppose that
the pair (2, ) does not satisfy the condition Sy. For any open,
nonempty, subset I'g of 092, the data g, h in (1.2), (1.3) uniquely
determine D in P and p in I.

ExaMPLE. Let us show a simple procedure which exibits, for a given
domain ©, subsets F2 C 99 such that the pair (2, ) does not satisfy
the condition S, and hence also S4. This construction is due to

Tuljak, [T].
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Suppose, without loss of generality, that the origin is contained
in ©, and let £ € R be such that (0,0,¢) € Q. Set £ = {2 € 0Q: 25 >
t}. Notice that OF is contained in a plane orthogonal to the z3-axis,
hence E may have rotational symmetries only around lines parallel
to the z3-axis, otherwise 0F would be contained in the intersection
line of two incident planes. Therefore (5.6) may be satisfied with
K =1 at most.

Proof of Theorem 5.3. As in Theorem 5.1, let us assume by con-
tradiction that there are convex polyhedrons Dy, Dy € P, Dy # Dy,
numbers py, o € I and corresponding solutions uy, ug satisfying
the same boundary data (1.2), (1.3). As before, we may assume that
there is one vertex z! of D; which is outside D,. Again we obtain
that, in Q\ (D1 U D), u; = uy. In particular we have that, near
zY uf = uy and this last function in harmonic in a full neighbour-
hood of z'. Let ay,...,ax, K > 3 be the lines containing the edges
of Dy ending at z'. We may then apply a result in [F-1], Lemma 4.1,

and obtain that there exist angles 61, ..., 0k such that we have

uy = ug o R(ag, 0;) in a neighbourhood Bof 2!,

forevery k=1,..., K. (5.7)

Notice that, by composition of the rotations R(ay, %), ug has also
rotation symmetries around the rotated axes R(a;,8;)ay for every
ok =1,...,K,j # k. Being the edges of D; at z' at least 3, we
obtain that (5.7) holds for at least K = 4 distinct axes. Let us fix k =

1,..., K. By the convexity of Dy, we may choose a half line oz;: C ag
starting from z!', which does not intersect D,. Let P, € 02N ay, be
+

the first point of 9 encountered when moving from z' along a; .
Let T}, be a, sufficiently small, tubular neighbourhood of the segment
21 P, and let T{ be the connected component of T N QN R(ag, 0;)Q
which contains z'P,. By (5.7) and by harmonic continuation, we
obtain

uy = ug o R(ag,8) inTj.

Let us show that 0Q N Ty = R(ay, 0;) (02N Ty). Were it not so, we
could find a point () € T} \ R(aw, 0;)(092NT})) and a neighbourhood
V of @) in which uy could be harmonically continued by the function
ug o R(ag,0;), thus uz is continuous near ), hence it identically
equals 0 or 1 on 9Q N V. This is impossible, because by the strong
maximum principle and by (1.2), (5.5), the interior values of ug,
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and hence those of (ug o R(ag,0%))|v, are strictly between 0 and 1.
Therefore, 02N Ty, = R(ag, 0;) (02N Tk) and, in a neighbourhood,
relative to Q, of such a set, we have uy = uy 0 R(ag,0:). We can
repeat the above argument, combining the maximum principle and
harmonic continuation, all around 0. We obtain

99 = R(ay, 0;)0,

uy = uy 0 R(ag,f) in a neighbourhood, relative to Q, of 952 .

Hence, by (1.2) and (5.5), (5.6) holds with K > 4, that is (Q, F)
satisfies the S4 condition, contrary to our hypothesis. Therefore we
have Dy = Dy. Next, we obtain gy = pg by the same argument as
in Theorem 5.1. The proof is complete.

REMARK. It can be noticed that, in view of the arguments used in
Theorems 5.1, 5.3, it is possible to prove with minor adaptations,
the following variation of Theorem 4.1 in which also the parameter
i is unknown, at the cost of searching the unknown domain D in the
restricted class D rather than in D.

THEOREM 4.1°. Let D € D, and let p € I. Let u be a non constant
solution of (1.1). For any open, nonempty, subset I'q of 0S2, the data
g, hin (1.2), (1.3) uniquely determine D in D.
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