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SOMMARIO. - FEstendendo risultati noti solo per il fibrato tangente, si
da una definizione equivalente di gruppo di olonomia infinitesimale,
definizione che permette di descrivere tale gruppo in modo esplicito.
Successivamente st mostrano alcune applicazioni e un esempio.

SUMMARY. - Extending results previously known only for the tangent bun-
dle, we provide an equivalent definition of infinitesimal holonomy group,
which represents an efficient way to explicitly describe it. Then we offer
some applications and an example.

0. Introduction

Holonomy groups play an increasingly important role in Differential
Geometry: in fact they provide the natural reduction of a given
connection and thus, they lead to a deeper understanding of its
geometry. This makes especially interesting to determine effective
computation procedures.

In this paper, extending results previously known only for the
tangent bundle, we provide an equivalent definition of infinitesimal
holonomy group, which, at the same time, represents an efficient way
to explicitly describe it.

(*) Indirizzo dell’ Autore: Dipartimento di Matematica “Ulisse Dini”, Uni-
versitd di Firenze, Viale G. B. Morgagni 67/A, 50134 Firenze (Italy); e-mail:
Bitossi@udini.math.unifi.it
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The argument is developed through a linear representation of the
structure group, but same ideas work directly on principal bundles.

Given a linear connection V of a vector bundle £ 5 M with
standard fibre F', and using also a connection D over M, we can
define V in this way

(Vo) (X,Y) = Vi (a(X,Y)) = a(Dy, X, ) — (X, Dy, Y)

where a € A2(M) ® F and Vy, (a(X,Y)) = [Vy,,a(X,Y)].

In this way it is possible to demonstrate that infinitesimal holon-
omy of V is generated by the curvature of V and its successive co-
variant derivatives.

In the second part, we offer some applications and some explicit
computations.

This paper is dedicated to Franco Tricerri, under whose guide I
took my degree and I began this work.

1. Covariant derivatives

Let G = GL(m,R) act on R™ by linear transformations and let
P = P(M,G) be a principal bundle; then ' = P xgR™ is called
vector bundle of rank r associated to P. Let o be a section of £. Any
element u of P, = #='(z) can be interpreted as a map u : R™ — F,
simply setting u(£) = [u,&] (see [dB]). We can define a function
f: P — R™in this way

F(u) =™ (o (m(w)).

Given an element X of T, M, let X* be the horizontal lift of X with
respect to X as the vector given by

Vxo = u(X*f) (1)

(see [KN], vol. I, p. 115).

At the end let us consider a global section ¢ of F and a vector
field X on M. We define the covariant derivative Vxo of o with
respect to a vector tangent field at M as

(VXU)I = VXEU-
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It can be proved that Vx is a linear connection over F. Viceversa
it is possible to prove that given a linear connection V over F it
always exists an unique connection form w over P that induces V.

Let F be a vector bundle associated to P and, how we know,
E®@ FE* = End (F) with standard fibre End (R™). If we calculate the
covariant derivative of a section F of K ® F* as described above, we
will obtain

(VxF)(o) =[Vx, o,

where the bracket is the commutator of the operator Vx and F.

2. Infinitesimal holonomy of a connection of a vector

bundle

Let M be a smooth manifold and let us consider a principal bundle
P(M,G) with a connection I'. We denote by ®(u) the holonomy
group of T' with reference point u of P and by ®°(u) the holonomy
restricted group of I' with reference point uw. Moreover ¢’ is the in-
finitesimal holonomy and ®'(u) the connected Lie subgroup of the
structure group G called the infinitesimal holonomy group at u. An
important fact is the following:

ProposIiTION 2.1. Ifdim ¢'(u) = constant, then ¢'(u) = g(u).

Let us consider a vector bundle F over M with standard fibre F.
If V is a connection over I and D a linear connection over M (in
the applications it will nearly always be the Levi Civita connection),
given o € A2(M) ® F, we can define a connection V in this way:

(ﬁvl a)(X,Y) = Vv, (a(X,Y)) - a(Dy, X,Y) — (X, DyY)
where Vy, (a(X,Y))(0) = [Vv,,a(X,Y)](s), and, more generally,
(651...%04) (X,Y) = VVk((@]xifle o) (X,Y)) +
(V@l 1Vk 1 ) DVk‘/Y Y) +
= (Vip v, 0) (X, Dy Y) +
1

. i
- (Vv'l..l.vvkw...vk_la) (X,Y),
1

(
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where
Vv (Vi Ly, @) (X, V) (0) = [V, (Vi Ly, @) (X, V)] (o).
To calculate the infinitesimal holonomy we have the following

THEOREM 2.2. The Lie algebra ¢'(u) of the infinitesimal holonomy
group ®'(u) is spanned by all the elements of the form

where R is the curvature, X, Y, Vi, ..., Vi are in T, M and 0 < k <
00.

Proof. The proof is obtained by two lemmas. We state that
(Vy,...Vy,(Rxy))(e) =[Vv,,Vv,_, ...Vy, Rxy](o) .

LEMMA 1. By tensor field of type Ay (resp. By) we mean a tensor
field of type (1.1) of the form Vv, ... Vv, (Rxy) (resp.(VY, v, R)xv),
where X, Y, Vi, ..., Vi are arbitrary vector fields on M. Then any
tensor field of type Ay (resp. By) is a linear combination (with dif-
ferential functions as coefficients) of a finite number of tensor fields
of type B; (resp. A;) with 0 < j < k.

Proof of Lemma 1. For induction on k.

LemMmA 2. If X, Y, Vi, ..., Vi are vector fields on M and if X*, Y™,
Vi, ..., Vi¥ are their horizontal lifts in L(M), then

(Vv - Vv (Bxy))eo = wo (Vi ... VI (2QX " Y)))you™ (o),
with x = 7(u) and o section of E @ E*.

Proof of Lemma 2. This lemma follows from Section 1 and
from the fact that RxyZ = u(2Q(X*, Y*))(u™'Z) (see [KN], vol.
I, p. 133); we take Rxy and 2Q(X™*,Y™*) as ¢ and f like in Section
1 and we procede for induction on & (2 is the curvature form).

By definition g’(u) is spanned by the values at u of all the End (R™)
-valued functions of the form f =V, ... V1 (Q(X,Y)) (k=0,1,2,...),
where X, Y, Vi, ..., V} are arbitrary vector fields on P. The Theo-
rem 2.2 follows from the two previous lemmas.
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3. Normal holonomy

Let (M,<,>) be a Riemannian connected manifold, i : M — N
an immersion with N of constant curvature, and let N (M) be the
normal bundle of M induced by . We denote the metric of N and
the usual metric on the fibres of N(M) both <,>. Moreover we
denote by X'(M)*+ the C*-sections of N(M).

Let Rt be the normal curvature, that is to say
Rxy€ = [Vx, V¥lé = Vixy€

where V1 is the normal connection and £ is in X' (M)L, and let A¢
be the Weingarten operator with reference the vector normal field &.
It is necessary to consider a point p of M and a curve v : [0,1] —
M piecewise differentiable such that v(1) = p.
Let us denote by P, the parallel displacement along v with ref-
erence to the normal connection and let us define the tensor v*(R*)
of type (1,3) in N (M), in this way

Y (RY) (v, w)z = Py (Ry (P (v), Py (w)) P (=)

where 7(0) = g and Ry (£1,62)8 = Y7oy Ry (Ag, (€5), Ag,(€5))Es, &,
&, & in XY(M)* and ey, .. .e, orthonormal base of T,M.

If § is the subspace of the tensors of type (1,3) of N(M), spanned
by all the y*(R1), then

THEOREM 3.1. The Lie algebra of the restricted normal holonomy
group ®* at p coincides with the linear space

{R(u,v) : Re S, u,v € N(M),}

Proof. See [OL], p. 815 and p. 817.

4. An example

We want to calculate normal holonomy of SO(n), thought as sub-
manifold of R™" (any element of SO(n) is a real matrix n x n).

The tangent plane at the identity is 7.50(n) = {A € R™" : A =
— AT},
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Let us consider the left product L, : @ — az, for translation we
obtain that the tangent plane of SO(n) at z is

T,SO(n) = {zA: A= —AT}.

Now, we take two vector fields X and Y that are tangent to
SO(n) at z
X, =24 A= —-AT
Y, =2B B=-BT
and we consider the Levi Civita connection @ in R™. Then

PropPosITION 4.1. dxY = zAB.

Proof. Let us consider two vector fields X and Y tangent to

SO(n) at z:

0 J . .
X =2A=2An; —8%&_]' = X;; —8$ij with 24, Ap; = Xi5,
Y B B —6 Y; —6 ith B Y;
=ID = ZTimDOmj = Ty Wi LimDPmj = Yij,
I 8:62']‘ / 8:62']‘ I I
then,
IxY = Y X,L-j—(:chmBmk)i
ihm 0% Owh
0
= XiiBjr—
ZZJ% TR 9
3}
— XimBrj 77—
Z I 0z
27]7m
It follows that
OxY = XB—=uzAB
in fact
0 0
> XimBmj Doy > ik Akm B P TAB.

Z7J7m Z7J7m



ON THE EFFECTIVE CALCULATION etc. 299

Let us define a metric on the manifold SO(n) with those inducted
by the Euclidean metric of R™". We know that the metric of R™" ig
given by

<A B>= Z a;;b;; = tr (ABT) =tr (ATB) ,
0]
with A = (aij) ,B= (b”) in R™"™,
So given X, Y vector fields tangent to SO(n) at z, we define
<X,V >=tr(XY7T).
We note that, because of zzT =id

<X,)Y > =tr(XYT) =tr(zA(zB)T) = tr (. ABT27)
=tr(ABT) =< A,B>=< X_,Y. > .

REMARK. T.SO(n)t = {A € R™" : A = AT}, i.e. the orthogonal
complement of T.50(n) is spanned by symmetric matrices. In the
same way T,SO(n)t = {zA: A€ R"" and A = AT}.

Let X and Y be vector fields tangent to SO(n) at z. In the
Proposition 4.1 we have seen that dxY = zAB.
It is possible to split dxY into the tangent part and normal part.

PRroPOSITION 4.2.

tan (0xY) = —z(AB — BA)

| — | =

nor(0xY) = —z(AB + BA)

2
Proof. First of all we observe that

1 1
32 (AB — BA) + §m(AB + BA) =zAB = 0xY
and so
% (AB - BA)T = %(BTAT — ATRBT)
1

1
= 5 (BA—AB) = -3 (AB - BA)
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i.e. 1 2(AB — BA) is in T,SO(n). Moreover

% (AB+ BA)T = % (BT AT 4 ATBT)
1 1
so +z(AB + BA) is in T,50(n)*. &

Then, if we denote by V the Levi Civita connection in SO(n)
and with « the second fundamental form, it is clear that

VxY = —2(AB — BA),

— N =

a(X,Y)=-z(AB+ BA).

[\

Now, let X be a vector field tangent to SO(n) at 2 and £ a vector
field normal to SO(n) at z, with

X=z2A A=-AT
&¢=zN N=NT

ProPosITION 4.3. dx§ = zAN.

Proof. 1t is similar to those of Proposition 4.1.

It is possible to split dx& into tangent part and normal part.

PROPOSITION 4.4.
tan(0x¢) = 12(AN + NA),
nor(0x€) = Lz(AN — NA).
Proof. 1t is similar to that of Proposition 4.2.

Then, if we denote by A¢ the Weingarten operator and by V+ the
normal connection in SO(n), by the Weingarten formula we obtain

1
A¢(X) = =5 2(AN + NA),
1

Vxé = 5 P(AN = N 4).

If R%y is the normal curvature in SO(n), we have
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PROPOSITION 4.5. R%y& = 1 z[N,[A, B]].

Proof. As

[X,Y]=2z[A,B]=2AB — zBA
and
Rxy€ = Vx(V§8) - Vi (VxE) = Vix r)é

the proof is only a calculation. &

For the Theorem 2.2 the infinitesimal holonomy ¢'(u) of SO(n),
that coincides with holonomy algebra of SO(n), being dim g'(u) con-
stant, is spanned by (V%/l.“VkRL)XY where, in this case, I is the
normal bundle of SO(n) and V = V*.

ProPOSITION 4.6. (Vy,RY)xv€ = 0.

Proof. Let us consider Vi, X, Y vector fields tangent to SO(n)
at z and & vector field normal to SO(n) at z, with

Vi=aV V=-VT,
X =zA A=-AT,
Y =zB B=-BT,
&=zN N=NT,

We know that

Vié = %m(AN—NA),
1

R%(Yg = Z:C[N7 [A7B]]7
1

DxY = S 2(AB - BA),

(Vvi R xvE = [Vvi, RxvIE = BB, xyv€ = BX.py, vE-

Calculating separately these terms we obtain

[Vt Ryl = < (VIN,[4, B] - [N, [4, BI]V) +

- é 2[VN = NV, [AB]]

Rp, xy& = z2[N,[VA - AV, B]]

O] = 00| =

Rx p,,v€ = £ 2[N,[A, VB - BV]].
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Then .
(Vv, R xy¢=0.

&

Let so(n) be the Lie algebra of SO(n). Then the normal holon-
omy g of SO(n), considerated as submanifold of R™", coincides with
so(n):

ProposITION 4.7. g(e) = so(n).

Proof. For Proposition 4.6 and for Proposition 4.5 it is clear that

g(e) = g'(e) = Span {Rxy|1q} = Span {ad[4 5}

with A and B in so(n).

But the Lie algebra g = so(n) of SO(n) is simple for n # 4 and for
n > 3. Then the derived algebra [g, g] coincides with g.

If n =4 then so(4) = so(3) ® so(3) and again [g, 9] = g¢.

It follows that g(e) = so(n). &
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