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SOMMARIO. - Si dimostra l’esistenza di infinite soluzioni per un problema
di Neumann omogeneco quando il termine non lineare é almost perio-
dico. Il risultato estende quanto € noto nel caso in cut la nonlinearita
€ periodica e la molteplicita si ottiene banalmente tramite traslazione.
L’argomento € variazionale e st basa su una proprieta introdotta da F.
Séré.

SUMMARY. - We prove the existence of infinitely many solutions for a
homogeneous Neumann problem where the nonlinear term is an almost
pertodic function. This result is an extension of the case where the
nonlinearity is pertodic and multiple solutions are trivially given by
translations. The arqgument is vartational and is based on a property
developed by E. Séré.

0. Introduction and statement of the main result

In this paper we describe a method which can be used to prove exis-
tence of multiple solutions to variational differential equations where
the nonlinear terms are almost periodic functions. The method is
quite simple and applies to cases which generalize problems with
periodic nonlinearities.

DEFINITION 0.1. Let be ¢ : R — R a continuous function. Given
€ > 0, anumber T € R is called an e—period of g if

sup|g(t+T) —g(t)] < ¢
teR

(*) Indirizzo dell’ Autore: Universita degli Studi di Milano, Dipartimento di
Matematica, Milano (Italy).
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A function g is called almost periodic if, for every € > 0, there exists
Ae > 0 such that each interval of length A. contains at least one
e—period of g.

All periodic functions are also almost periodic (one can even al-
low € = 0 in definition 0.1). The simplest almost periodic, but not
periodic function is thus the sum of two periodic functions with pe-
riods T and S and % ¢ Q. For more interesting examples of almost
periodic functions, see e.g. [Be].

To illustrate how our method works, we look for solutions of the
homogeneous Neumann problem

—Au(z) = g(u(z))+h(z) 2e€Q
(») { 8
Ez) =0 z € 09

where Q is a smooth open and bounded subset of RN, N > 1, and

g—z is the normal derivative of u with respect to the boundary of

Q2 g:R —> Rand h: Q — R are smooth functions (here we are
not interested in regularity questions). Let G'(z) = [; ¢(¢) dt be a
primitive of g. Our main result is the following

THEOREM 0.1. Assume that

o (HI1) g and G are almost periodic functions,
o (H2) Jq h(z)dz =0.
Then problem (P) admits infinitely many solutions.

Some comments are in order about the conclusions of Theorem
0.1. This result is nontrivial only when the function g is almost
periodic but not periodic. Indeed, in the periodic case, whenever one
has a solution u, one can construct infinitely many others simply by
considering uy = u + kT, for all £ € Z, where T is the period of
g. These solutions cannot be considered geometrically distinct since
the all differ from each other by multiples of T. When ¢ is almost
periodic but not periodic this is no longer true, for tranlations of a
solution do not solve the equation.

To prove theorem 0.1 we use variational arguments, that is, we
think of (weak) solutions to Problem (P) as critical points of the

smooth functional f: H'(2) — R defined by

flu) = %/{JVU(I‘)Pdm—/ﬂG(u(m))dm—/Qh(ac)u(m) dz
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Let us sketch a possible argument for the proof of Theorem 0.2.
Note that, due to (H2)

Flu) > Cl/Q|Vu(ac)|2d:U G, Yue HY(Q)

for some suitable constants positive constants C, Cs.
Since the functional f is bounded from below in H'(€2), we con-
sider a minizing sequence u,:

Uy, := inf
flun) = ¢ Hlln(mf

Assume that u, is bounded in H'(£2). Then we can extract a sub-
sequence u,, such that:

Up, — U in HY(Q)
Due to the compactness of the embedding H'(Q) < L*(Q), the
functional f is weakly lower semicontinuous, and u is shown to be an
absolute minimum point, so that at least one critical point is found.
If w is not a strict minimum point we have infinitely many solutions.
Otherwise there is an open bounded set B containing u and such
that f(u) < infsp f; then we translate B by a suitable e-period of G
so that the strict inequality is preserved, and we minimize f on this
translated set. The same argument yields a new (local) minimizer.
Iterating this procedure the theorem follows.

From the above argument we see that the proof of the theorem
is trivial if minimizing sequences for f are bounded. However simple
examples (see Remark 1.2 below) show that this need not be the case,
so that the procedure has to be modified in order to face a possible
lack of compactness. This is accomplished by means of some ideas
introduced in [CZES], [STT].

More precisely, as one immediately sees, if u, is a minimizing
sequence for f, then Vu, is bounded in L?. Therefore the only loss
of compactness of the minimizing sequences is due to the possible
unboundedness of the mean values w,. This fact is not a problem
in the case of periodic nonlinearities, since one can normalize u,
by requiring that the mean values %, lie in the interval [0,77]; this
normalization yields a new minimizing sequence which is bounded.

If G is not periodic this is no longer true, unless the sequence
of mean values of u, is close to a sequence of e,—periods of G, with
€, — 0. The main part of the paper is thus devoted to show that
it is not restrictive to assume that this property is satisfied, at the
price of losing some information on the levels.

The main result leading to the proof of Theorem 0.2 is the fol-
lowing.



284 M. TARALLO

THEOREM 0.2. Let f be as above, and let ¢ = infgi(q) f. Then for
every € > 0, f has a critical value c. € [c,c+¢€).

In order to prove this result, we need to make slight changes in
the previous arguments.

Since possibly ¢. # ¢, weak lower semicontinuity of the functional
f cannot be used to prove that c. is a critical value. Neverthe-
less, once more due to the compactness of the embedding H'(Q) —
L?(Q), not only f is weakly lower semicontinuous, but it satisfies the
PS condition on bounded subsets of H'(Q) (see the proof of Lemma
2.3). Since we will be able to contruct a bounded PS sequence at
the level ¢, (see Theorem 1.1 and the proof of Theorem 0.3), at least
one critical point is found. Finally, to obtain the multiplicity result
we can argue as we did above.

In Section 1 we prove an abstract result related to Theorem 0.3.
Section 2 is devoted to the proofs of Theorem 0.3 and of the main
result Theorem 0.2, while in Section 3 we add some remarks and
comments.

NoTaTIONS. H := H'(Q) denotes the Sobolev space of L? real
valued function on © whose distributional derivative is (represented

by) an L? function. This is an Hilbert space which we endow with
the norm ||u||* = [o|Vu(z)*dz + [u]?, where @ = |Q|™! [qu(z)dz
denotes the mean value of u € H (|| is the finite Lebesgue measure
of Q).

By “” we will denote both the scalar product in RN and in H.
The context will always rule out possible ambiguities.

1. An abstract result

In this section we restate a result essentially due to E. Séré (see
[CZES], [STT]) in the form which will apply to Problem (P). The
proof of Theorem 1.1 below is given only for the convenience of the
reader, since nearly all the arguments used can be found in the works
[CZES], [STT].

In this section, (H,||-||) will denote a real Hilbert space, and
[+ H — R will be a smooth functional.

THEOREM 1.1. Assume that ¢ ;= inf f > —oco. Then for everye > 0

there exists a sequence u,, in H and a real number c. € [c,c+¢€) such
that

f(un) — C¢
Vf(u,) — 0
[t — wp—1|| — O
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Proof. Let n(u,t) be the global flow on H induced by the field
=V f/(1+||Vfl|), that is, the unique global solution of the Cauchy

problem
3—”(u t) = _=Vim(ut)
VYT A4V F(n(ut))]]
n(u,0) =

Given € > 0, choose u € H such that f(u) < c+e¢, and define o(t) =
fn(u,t)). By definition ¢ is a non increasing, smooth function which
is bounded from below by the value ¢. Therefore it has a finite limit
when ¢ — +4o00: call ¢, this limit. Choose now a sequence of real
numbers s, such that

$p — +00 |$n — Spn—1| = 0.

Applying Ekeland’s variational principle to ¢ yields a sequence t,
such that

|t — sn| — 0 o(tn) = ce ©'(tn) = 0

Now set u,, = n(u,t,). Since n(u, -) is a Lipschitz map with Lipschitz
constant 1, we have

[|tn — 1] = ||77(u7tn) - U(U7tn—1)|| <ltn —tna| =0
Furthermore )
[V (un)l]
o(l) =¢'(ty) = ———=7——
=20 = =T 9
that is ||V f(u,)|| = 0, and the proof is complete. &

With the terminology of [CZES], we can say that for all £ > 0
there exists a PS sequence for f at some level between ¢ and ¢ + ¢.
It is also quickly seen that such an estimate on the level cannot be
improved, in the sense that there need not exist any PS sequences
at level ¢, as the following remark shows.

REMARK 1.1. Let H = Rand f(u) = cos(u)+cos(mu); then infg f=
—2, and it is not attained. Let u, be a minimizing sequence for f,
so that f(u,) — —2; (u,) is unbounded, since f is a continuous map
strictly greater than —2. Clearly cos(un) — —1 and cos(mu,) — —1,
which implies dist(u,, (2Z + 1)7) — 0 and dist(u,,2Z + 1) — 0. It
follows that |u,, —u,_1| — oo along a subsequence, that is, u,, cannot

be a PS sequence.
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2. Proofs of Theorem 0.2 and Theorem 0.3

We begin by stating two simple properties concerning the function
G and the behavior of the functional f when it is evaluated at trans-
lations of a given function.

LEMMA 2.1. If (H1) holds, there exist real numbers Ty, — +oo such
that

sup |G(t +Tk) — G(t)| +suplg(t+Tx) —g(t)] — 0 as k — oo.
teR teR

This means that there exist sequences consisting of e;—periods
(ex — 0) both for GG and for its derivative. For the proof, see [Be].

The next lemma is a direct consequence of almost periodicity.
Since its proof is trivial, we omit it.

LEMMA 2.2. LetT be an e—period of G and g. Then for everyu € H
the following inequalities hold

[fu+T) = f(u)] < ]9
IVf(utT) = V()] < el

Finally, we recall a property which enables one to find local min-
ima for a functional like f.

LEMMA 2.3. Let B be an open, bounded subset of H such that
inf inf
1% < inf f

Then [ has at least one local minimum in B.

Proof. Note first that the Palais-Smale condition holds for f
on bounded subsets of H. Indeed if u, is a bounded Palais—Smale
sequence for f, then it contains some subsequence, still denoted u,,
such that uw, — u weakly in H, u, — u strongly in L%*(Q), and
u, — u almost everywhere. Then, since g is bounded we can pass
to the limit in V f(u,), to obtain that V f(u) = 0. At this point we
have

/ﬂ |V, — Vu|2dm:/Q |V, — Vul|*dz — /Q(g(un) —g(u))dz + o(1)

= (Vf(un) = Vf(u)) - (un —u) +o(1)
=o(1)
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that is, u,, = u strongly in H.

To complete the proof, pick a Palais—Smale sequence u,, in B such
that f(u,) — infp f: since u, is bounded, and the PS condition
holds on bounded subsets of H we can assume (passing if necessary
to a subsequence) that u, — u € B strongly in H. By continuity
f(u) =infp f < infsp f, which also shows that u € B.

We are now ready to prove the theorems stated in the introduc-
tion. We start with Theorem 0.3.

Proof of Theorem 0.3 . The application of Theorem 1.1 yields a

PS sequence u, for f at a level ¢, € [c,c+ €), namely a sequence
such that

f(un) — C¢
Vf(u,) —0
||t — wp—1|| — 0.

Moreover Vu, is bounded in L%(f2), independently of n. If %, is
bounded as well, then u, contains a subsequence, still denoted u,,
such that w,, — u strongly in H, since P.S holds on bounded subsets
of H. By continuity, V f(u) = 0 and f(u) = c.. Note that up to this
point we have not used the fact that ||u, — u,_1|| = 0

It remains to discuss the case of a PS sequence with unbounded mean
values. Assume then that u, is a PS sequence and %, is unbounded.
Choose a sequence T} of %fperiods for G and ¢ (this is possible
by Lemma 2.1); since ||u, — up—1|] — 0 implies [@, — @,—1| — 0,
it is quickly seen that there exists a subsequence u,, of u, such
that dist(@,, ,{T% —1%}) — 0. Passing to another subsequence if
necessary, we can assume for definiteness that |u,, — T — 0 as
k — oo. If now we define vy, = u,,, — 1%, Lemma 2.2 proves that

fox) = flun,) +0(1) = c
Vi(vg) = Vf(un,)+o0(1) =0 as k— o0

Now, however, Ty is bounded (actually, T — 0); therefore vy is
precompact since the PS condition holds on bounded subsets of H
and we find a critical point at a level c.. &

We are now in a position to prove also Theorem 0.2.

Proof of Theorem 0.2. Let ¢ = infy f. If the value ¢ is not
attained, then the conclusion follows trivially from Theorem 0.3, for
in this case we find infinitely many critical levels above c.

Suppose now that there exists u* € H such that f(u*) = ¢. In this
case we can also assume that u* is a strict global minimum point for
f, because otherwise the conclusion holds by construction. With the
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aid of Lemma 2.3 we now produce infinitely many new local minima
for f. First of all, we can find * > 0 such that 0 < § < §* implies

inf _J(u) > f ()

[lu—w*[|=5
If not, for every k& > 0 we can find 0 < & < % such that

inf  f(u)=c

[fu—u*||=5k
Applying Ekeland’s variational principle yields a sequence u* such
that, as n — 400

ub —u*|| =6,  f(ul)—e,  Vf(ul)—0

Since PS condition holds on bounded subsets of H, by passing to
a subsequence we can assume u* — «* in H as n — +oco. Clearly
[|u* — u*|| = & and f(u*) = c. Since & — 0 as k — oo, this
contradicts the assumption that «* is a strict global minimum point.

Take now a sequence T, of %fperiods of G and ¢, (T, — o0) and

define &, = ‘% Applying Lemma 2.2 yields a subsequence T),, for

which the same strict inequalities hold around »* 4 T}, , namely

inf > f(u*+T,,).
T SETIE O R AT Y

The application of Lemma 2.3 in the sets By = {u / ||u — (u* +
T.,)|| < 6x} yields a sequence uy of local minima of f such that
[lug — (w*+T,,)|| < — 0. To conclude the proof, we have to show
that the sequence uy contains infinitely many different points of H.
This follows from ||ug|| = ||u* + Ty, || + o(1) — 400, for T, — 400
by construction. &

3. Further comments

As we already said in the introduction, nearly the same arguments
can be used to deal with different problems.

For instance, the method used to solve Problem (P) applies with-
out changes to the search of periodic solutions for a single second
order equation with periodic forcing term. More precisely we can
state:

THEOREM 3.1. Let g, h: R — R be continuous. Assume
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e i) g and G (a primitive of g) are almost periodic;
e ii) h is T -periodic and foT h(t)dt = 0.

Then the problem

{ —i(t) = g(u(t)) + A(t)
u(t+7T) = u(t) Vit

admits infinitely many solutions.

The proof of this result is exactly like that of Theorem 0.2, once
one chooses H = H%_peT(R; R), the Sobolev space of L? real val-

ued T-periodic functions whose derivative is (represented by) an 2
function, and

T

Flu) = %/OThl(t)Pdt—/OTG(u(t))dt—/O h(t)u(t)dt

Note also that this type of problem is a generalization of the forced
simple pendulum, and that no assumption on the norm of A or the
period are made.

Another problem which we can face using PS sequences, instead
of just the PS ones, is looking for non trivial solutions to

—i(t) + u(t) = a(t) VG (u(t))
lim w(t)= lim u(t) =0
t—too t—too

where a : R — R is a smooth, almost periodic and positive function

which is bounded away from zero, and G : RN — R is a smooth,
globally super—quadratic function (see [STT]). In this case H =

H'(R;R") and the functional

flu) = 5 [P+ [ uw)Pd - [ a@®G®)d:

has a mountain—pass level at a positive level ¢. Due to the super—
quadraticity of GG, each PS sequence u, at the level ¢ is bounded in
H'(R;RYN). Hence, it is not restrictive to assume that u, — u in
H'(R;RN). It is easy to show that such a u is a critical point of f,
but possibly is the trivial one (u = 0).

Now, due to ¢ > 0 the PS sequence u, cannot vanish on R
(see [STT], [CZR]) and u = 0 means that u, vanishes on compact
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subsets of R. Roughly speaking, this happens if the “mass” of u,
concentrates at infinity when n — +oc.

To find a non trivial critical point also in the case u,, — 0, we
can try to follow the “mass” of u, by looking for a sequence of real
numbers 7, such that

Uy (-4 7,) is a PSS sequence

lun ()] > 6 >0

Indeed, if we can produce such a sequence, let be v, (t) := wu, (t+7,).
Of course ||v,|| = ||u,|| and, due to the boundeness of u,, it is not

restrictive to assume that v, — v in H'(R;RY). Once more v is
a critical point of f (as a consequence of the first one of the above
requirements), but now v # 0 (as a consequence of the second one).

When « is a periodic function, such 7, can be easily found in the
form 7, = k,T, where k, is an integer number and 7T is the period
of a (see [CZR]).

In [STT] the authors prove that the sequence 7, can be found
also in the case « is an almost periodic functions, as a consequence of
the fact that one can work with a PS sequence u,, (at a level which
is as close to ¢ as we like), instead of just a PS one (at the level ¢).
First of all, a considerable amount of work in [STT] is devoted to
prove that a choice of 7, which fulfils the second one of the above
requirements can be done in some uniform way, in the sense that

||tr, — Un—1|| = 0 implies |Th — The1]| = 0
Of course 7, is unbounded (otherwise u,, /4 0), and if we choose a

sequence T}y of ex—periods of «, with e — 0 and T — 400, there
exists a subsequence 7,, of 7, such that:

dist(r,,, {T% , —T%}) — 0
ie. 7, is a sequence of e} —periods of «, with ), — 0. Such a
subsequence 7, satisfies the first one of the above requirements.

For what we said before, at least one non trivial critical point of f is
found.

REFERENCES

[Be] A. S. BrsicoviTcH, Almost periodic functions, Dover Publica-
tions, 1954.



[CZES]

[CZR]

[STT]

ALMOST PERIODIC PROBLEMS etc. 291

V. Coti ZuLATI, I. EKELAND and E. SERE, A variational ap-
proach to homoclinic orbits in Hamiltonian systems Math. Ann.
288 (1990), 133-160.

V. CoT1i ZELATI and P. H. RABINOWITZ, Homoclinic orbits for
second order Hamiltonian systems possessing superquadratic poten-
tials, Jour. of AMS 4 (1991), 693-727.

E. SERRA, M. TARALLO and S. Terracini, On the existence of ho-
moclinic solutions for almost periodic second order systems, Preprint
Politecnico di Torino, 1994.

Pervenuto in Redazione il 22 Ottobre 1996.



