Homoclinic Solutions
for Second Order Systems
with Expansive Time Dependence

FRANCESCA ALESSIO ()

SOMMARIO. - Si dimostra l'esistenza di almeno una soluzione omoclina
per sistemi Lagrangiani della forma —ii + u = a(t)VG(u) in RY dove
G € C*(RN R) ¢ superquadratica e o € C*(R,R) soddisfa la condizione
limjy o0 @(t) = 0. Il metodo ¢ variazionale: le soluzioni omocline
del sistema risultano essere punti critici di un opportuno funzionale
d’azione. St dimostra ’esistenza di almeno un punto critico non banale
usando l'analist der problemi “all’infinito” e argomenti di confronto sui
Livells.

SUMMARY. - We prove the existence of homoclinic solutions for second
order Lagrangian systems of the type —ii + u = a(t)VG(u) in RN
where G € C*(RN | R) is superquadratic and o € C' (R, R) satisfies the
condition limy o &(t) = 0. The method is variational: solutions being
found as critical points of a suitable action functional. We prove the
existence of at least one nontrivial critical point using the analysis of
problems “at infinity” and level comparison arguments.

1. Introduction and variational setting

In this paper we study the existence of at least one homoclinic so-
lution for a class of second order Lagrangian systems. In particular
we will investigate the problem

{ —ii(t) + u(t) = a(t)VG(u(t))  in RN

u(t) =0, w(t) =0 as |t = o0 (P)

(*) Indirizzo dell’ Autore: Dipartimento di Matematica del Politecnico di Torino,
C. so Duca degli Abruzzi 24, 1-10129 Torino (Italy).
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where z : R = RN, N > 1, and a and G satisfy the following
conditions:

(H,) G e€C*RV;R), a € C'(R;R) and a(t) > 0 for all t € R,

(Hg) there exists # > 2 such that 0 < 8G(z) < VG(z) - z for all
z € RV \ {0},

(Hs) there results @ := lim supjy o () > a := liminf ;o a(t) >
0 and lim, Lo &(t) = 0.

Moreover we will need an abstract assumption, see condition (A)
below.

Solutions of problem (P) are obtained as critical points of the
action functional

7(0) = 5P = [ a@Gu@)d

defined on the Sobolev space H = H'(R;RY) endowed with the
usual norm

. 1
[ul] = (/R(l‘u(t)l2 + [u(t)]*)dt)z.
It is known, see e.g. [CZR], that if (H;) and (H3) hold then f €

C%*(H;R) and satisfies the geometric assumptions of the Mountain
Pass Theorem. In particular, setting I' := {y € C([0,1]; H) : v(0) =
0, f(v(1)) < 0}, there results:

c:=inf sup f(v(s)) € RT.
V€T s¢[0,1]

Using variational methods this kind of problem has been widely in-
vestigated in recent years assuming various types of time dependence
on the potential. We refere e.g. to [AB], [ACZ], [B] [CM], [CZES],
[CZR], [R], [S1,2] for the periodic case, to [BB], [CZMN], [STT]
for the almost periodic one and to [MNT] in the case of recurrent
time dependence. Furthermore we mention [M] and [ACM] for the
asymptotically periodic case and [MN] for perturbations of periodic
potentials.

For this kind of problem the Palais Smale condition does not
hold. In fact we lose compactness of those Palais Smale (PS for
short) sequences which carry “mass” at infinity, i.e. PS sequences
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(uy,) for which there exists a sequence (7,,) in R such that |7,,| - co
and liminf, oo |un(7,)] > 0. It is an important feature of the prob-
lem that such sequences can be characterized by solutions of suitable
problems at “infinity” associated to (P). Indeed one can show that
the sequence of translates (u,(- + 7,)) weakly converges in H to a
nontrivial solution of one of these problems. In the case of recurrent
time dependence (where with recurrent we include periodic, almost
periodic and perturbations of periodic potentials) the corresponding
problems at infinity have the same structure as the original problem.
Using this fact it is possible to select the sequence (7,) introduced
above so that the sequence (u,(-+ 7,)) weakly converges to a non-
trivial solution of the original problem. For example, in the periodic
case the sequence (7,) can be made up of multiples of a period of «
while in the almost periodic and recurrent cases the construction is
more delicate but still possible.

On the other hand in our case, as a consequence of (Hj), the
problems at infinity are a continuous family of autonomous problems,
and precisely they are

{ —ii4u=pVG(u) in RY

u(t) = 0, u(t) = 0 as |t| = oo, (Ps)

with 3 constant between a := lim inf |y () and @ := lim supy,|_,
a(t). Clearly the argument used in the recurrent cases can not be
applied. In this case we can overcome the lack of compactness using
some level comparison considerations. Indeed, we assume that the
action functionals fg corrisponding to the problems at infinity (F3)
satisfy the following abstract condition:

(A) for every > 0 the mountain pass level c¢g corresponding to fg
is the smallest nonzero critical value.

When (A) holds we can prove that there exists a level ¢* > 0
(determined by the critical levels at infinity cg) such that the PS
condition holds at levels strictly less than ¢* at least for those PS
sequences (u,) which verify the additional property ||u, —ty,—1] — 0
(namely PS sequences).

Condition (A) allows us to characterize the level ¢* and moreover
to ensure the existence of a PS sequence at level strictly less than it
and therefore the existence of at least one nontrivial solution of (P).
The main result that we will prove is the following;:
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THEOREM 1.1. If (H{)—(H3) and (A) hold then problem (P) admits
at least one nontrivial classical solution.

Finally we point out that our arguments are somewhat related
with those in [EL], [I.] and [DN] where the autonomous problem at
infinity is only one, that is (P,.) where a, = limp o @(t). In
these papers existence results are obtained using level comparison
arguments, and variuos kind of hypotheses on the global behaviour
of & are made to ensure the existence of a PS sequence at the “right”
level.

A few comments about assumption (A) are in order. First note
that the mountain pass level cg is always critical for fg (see e.g.
[AB], [C] and [RT]), so that condition (A) only requires that cg be
the smallest critical level for fz. Moreover (A) is always satisfied
in the scalar case N = 1 while in the general case N > 1 it is well
known that (A) holds if G satisfies the condition

(Hy) for all z € RN \ {0} there results VG(z) -z < V3G (2)z - 2.

See e.g. [RT] for a proof of this.

ACKNOWLEDGEMENT. | wish to thank E. Serra and S. Terracini for
their useful comments and suggestions.

2. Preliminary properties

In this section we will collect some preliminary results that will be
used in the sequel.

Note that by (Hy) and (Hs) we have that there exist two con-
stants @ > a > 0 such that

a<at)<a ViteR. (2.1)
Then the following results can be proved (see e.g. [R])
LEMMA 2.1. There results
ig%”u” >0 and ¢ := irél%f(u) > 0.

where K:={u€ H|u#0, Vf(u)=0}.
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Now we begin to study the PS sequences for the functional f.

LEMMA 2.2. Let (u,) be a PS sequence for f at level b € R. Then
(un) is bounded in H and b > 0. Moreover if f(u,) — 0 then u, — 0
in H.

Proof. By (Hz) we have

1 11
flun) = gV (wn) - un 2 (5 = llunll”

Therefore (u,) is bounded in H and we also have that b > 0 and
that if 6 = 0 then u, — 0. &

Furthermore V f is weakly continuous in H, i.e. if u,, — up weakly
in H then V f(u,) = V f(ug) weakly in H.
The next results can be proved as in [STT].

LEMMA 2.3. Let (v,) be a sequence in H such that v, — vy weakly
in H. Then as n — oo we have

(4) /R|G(vn — ) = G(vs) + G (vo)|dt — 0,
(i) sup,enl [ IVG(on = v0) = VG(0n) + VG(uo) | ¢ldt) = 0,

and, in particular
(122) |f(vn — v0) = f(va) + f(vo)| = 0,
(i) IV f(vn = vo) = Vf(vn) + Vf(vo)[| = 0.

In particular it follows

ProposITION 2.1. Let (uy,) be a PS sequence for f at level b € R.
Then there exist a subsequence of (uy,), still denoted u,,, and ug € H
such that:

(1) u, — ug weakly in H,

(12) Vf(uo) =0 and f(uo) < b,
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(131) (un — ug) is a PS sequence for f at level b — f(ug).

Since f satisfies the geometric assumptions of the Mountain Pass
Theorem we can find a PS sequence for f at level ¢ > 0. From
Proposition 2.1, this sequence admits a weak limit point ug € H
which is a critical point for f. Then we obtain a nontrivial solution
of problem (P) if we can prove that uy # 0. Therefore in the next
sections we will study in detail the P.S sequences weakly convergent
to zero.

3. Problems at infinity and compactness properties

In this section we will investigate the problems at infinity associated
to (P). First of all one can prove, like in [CZR], the following result
concerning a nonvanishing property of the P.S sequences.

LEMMA 3.1. Let (u,) be a PS sequence for f at a positive level.
Then

liminf ||up,||eo > 0
n—oo

where || - ||oo is the usual norm in L™ (R;RN).

In particular for every PS sequence (u,,) at a positive level weakly
convergent to zero we can find a sequence (7,,) in R with |7,| = o0
such that liminf,, . |u,(7,)| > 0. Then if we consider the sequence
Uy, = Un(- + 7,) we have that, up to a subsequence, this sequence
weakly converges to a nonzero limit point. In the sequel we will show
using (Hs) that such limit point is a critical point for a functional
fs associated to a suitable problem at infinity.

More precisely, for every 8 € C'(R;R) with @ > () > a > 0 we
define the functional f3 : H — R by setting

o) 1= gl = [ pGwar

In the sequel will prove that from (Hs) it follows that the problems at
infinity are the ones associated to the functionals fg with 8 constant
between a := liminf}; . a(t) and @ := lim sup|, |, a(t).
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From now on we will denote by T : H — H the translation of
parameter 7 € R that to every u € H associates T;u € H defined
by T;u = u(-+ 7). Then we have, as one immediately checks,

fa(Tru) = fr_,p(u),
and
Vfa(Tru)v =V fr__g(u)T_;v,
forall u, ve H, 7 € R and 3 € C}(R;R).
Note in particular that if 5 is a positive constant then the functional

fs is invariant under traslations, i.e. fg(T;u) = fa(u) for all v € H
and 7 € R.

We begin to study the effect of translations on the functional f.
First of all we have the following compactness property of the family
of traslates of a.

LEMMA 3.2. Let (1,) be a sequence in R such that |1,,| — co. Then
the sequence (T, o) admits a convergent subsequence in LS (R;R)
to a constant § € (o, @).

Proof. For every t € R let a,(t) = T,,a(t). Then (a,) is an
equibounded and equicontinuous sequence in C!(R;R). Indeed, by
(Hy) and (Hs) there exist M > 0 and @ > @ > 0 such that

a<a,(t)<a, and |a,(t)| <M VieR, Vn>1.

Then, by the Ascoli-Arzela Theorem, («,,) admits a subsequence uni-
formly convergent on every compact subsets of R. If we consider an
exhaustive family of compact subset in R, with a diagonal procedure
we obtain that there exists a subsequence of (a,,) which converges in

® to a function 8. Since a € C'(R;R) and &(£) — 0 as [¢] — oo
there results a,, € C'(R;R) and &, — 0 as n — oo in Lf°, because
|7,] — oco. This implies that 3 € C'(R;R) and B = 0. Therefore 3
is a constant. Moreover from (Hs) it follows that g € [a, @]. &

Now, about the dependence of fz on 3 we have:

LEMMA 3.3. Let 8 be a positive constant. If (1,) is a sequence in R
such that T o0 — § in L7 (R;R) as n — oo then for any compact

loc

subset B of H there results:
sup |/7,,0(w) = f3(u)] =0 and sup IV f1,,0(u) = Vfg(u)]| =0

as n — 00.
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Proof. From (H3) we know that for all € > 0 there exists § > 0
such that G(z) < ¢|z|* and |VG(z)| < ¢|z| for |z| < 8. Then, since
B is compact in H we can fix Rs > 0 such that

lu(t)| <6 Vie R with |[t| > Rs, Yu € B.

Then we have
| f1r () = fa(u)| = |/R(ﬁ — T, ()G (u)dt]
< Jugn, P~ T @G [ 15 To@iG 0

< sup |ﬁ—TTna(t)|/|t|<R5G(u)dt—|—(ﬂ+6) /|t|>R§G(u)dt

<Cisup 6= Toalt)+ (B+ae [ Ju(o)d
[t|<Rs [t|>Rs
< Cyosup |B—Tra(t)] + Cae
[t|<Rs

where the constants C'; and C5 are indipendent on the choice of

u € B. Since T;,a — 3 in LS. the first term in the last inequality
tends to zero as m — oo while the second one is less than an arbitrary
€. This shows that

sup [ fr,, o (u) = fg(u)| = 0.
uEB

With a similar argument we obtain the second part of the thesis. ¢

Finally, we have the following result that combines the previous
ones.

LEMMA 3.4. Let (u,) be a PS sequence for f at level b > 0 and let
B € la,a], () CR, u € H be such that T, — 8 in L2, and

T, u, — u weakly in H.

Then V fz(u) = 0 and (u, — T_;, u) is a PS sequence for f at level
b— fp(u).

Proof. First we prove that V fg(u) = 0. Since T u,, — uwand V f3
is weakly continuous there results V fg(7;, u,) — V fg(u). Then,
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since V f(u,) — 0, for every ¢ € C5° we obtain

Vis(u) - =V fa(Trun) -+ o(1)
VS (Trytn) @~ V) - Tryip + 0(1)
= Vfs(Tr,un) - © = Vi, o(Trun) - ¢+ o(1)
= (Tr,00 — B)VG(T;,up) - @dt + 0(1) = o(1)

suppe

because T, o — Bin L7° and (T, uy,) is bounded. Then V fz(u)-¢ =
0 for every ¢ € C§° and therefore V fg(u) = 0.

Now we prove that (u, — T_,, u) is a PS sequence for f at level
b— fs(u). Since 15, u, — u and T, «(t) is uniformly bounded in R,
by Lemma 2.3 (i) we have

f(un - T—Tnu) - f(un) = fT-rnoz(TTnun - u) - fT,—na(TTnun)
- _fT‘rnOZ(u) + 0(1)

Then, using Lemma 3.3, we obtain

fun = Tryu) = f(un) + f5(u)

fo(u) = fr,,a(u) + o(1)
= o(1)

and since f(u,) — b we obtain f(u, — T_,,u) = b — fa(u).

Finally we prove that V f(u, — T_,,u) — 0. For every ¢ € H since

T;, u, = uw and T; « is uniformly bounded, like above by Lemma
2.3 (11) and Lemma 3.3 we have

Vi, =T ;u) ¢= Vmea(TTnun —u)-Tr,
=V f(un) -9 = Vig(u) Tro+o(1)]¢l|

= o(W)]lell;
since V f(u,) — 0 and Vfz(u) = 0. Therefore we obtain that
(un, — Tr,u) is a PS sequence for f at level b — fz(u). &

As a direct consequence of Lemmas 3.1, 3.2 and 3.4 we see that
if (uy,) is a PS sequence for f at a positive level weakly convergent
to zero then there exists a sequence (7,,) in R such that the sequence
(T+,un) up to a subsequence weakly converges to a critical point of
a functional at infinity f3 with 8 € [@,@]. We have thus proved the
following result
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ProposITION 3.1. Let (u,) be a PS sequence for f at level b > 0
with u, — 0. Then there exist a constant € [a, @], a function
u € H\{0}, a subsequence of (u,,), still denoted by u,,, and a sequence
(o) in R with |1,| — oo such that

i) Tr,aa — B in LS (R;R),

i) V fa(u) = 0,

(

(43) Tr,un — u weakly in H,

(

() (u, —T_;,u) is a PS sequence for f at level b— fz(u).

From condition (A) we have that for every 5 > 0 the mountain

pass level

cg := inf sup f(vy(s))

7€l s¢[0,1)

where I'g := {y € C([0,1];H) : 7(0) =0, fz(y(1)) < 0}, is the
smallest nontrivial critical level for fz. Moreover note that for every
B € [a, @] there results fg(u) > fa(u) for all w € H so that '3 C I's.
Then we obtain

ez <cg, VYBE|aa] (3.1)

and in particular, by (A), we have

¢z = min min ). 3.2
ge[g,a]ue/cﬁfﬁ() (32)

Therefore, from the previous proposition and Lemma 2.2 it follows
that every PS sequence for f weakly convergent to zero at level
b < cz must converge strongly to zero. Indeed if (u,) is a PS se-
quence at level b < ¢z weakly convergent to zero but not strongly
(i.e. b > 0) then, by Proposition 3.1 (iv), we obtain a PS sequence
at level strictly less than zero, since b— fg(u) < 0 for every nontrivial
critical point u € H of f3 and for every 8 € [, @]. This contradicts
Lemma 2.2. In particular, by Proposition 2.1, this implies that the
PS condition holds at levels strictly less than cg.

COROLLARY 3.1. Fvery PS sequence for f at level strictly less than
cz is precompact in H.
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Proof. Let (u,) be a PS sequence for f at level b < cz. Then,
by Proposition 2.1, up to a subsequence u, — wug weakly in H and
(un, —up) is a PS sequence for f at level b — f(up) which convergs
weakly to zero. But b — f(ug) < cz and therefore, by the previous
remark, it must be u,, — ug strongly in H. &

Considering ¢° defined in Lemma 2.1 and using the previous re-
sult we obtain

COROLLARY 3.2. Let (u,) be a PS sequence for f at level b € (0, c°+
cz). Then the following alternative holds:

(a) either (u,) weakly converges to zero in H; or

(b) (un) is precompact in H.

Proof. Let us suppose that (a) does not hold. Then there exists
a subsequence of (u,,), still denoted by u,, weakly convergent in H
to a nonzero limit point ug € H.

By Proposition 2.1 we have that V f(ug) = 0 and (u,, — ug) is a
PS sequence for f at level b — f(ug) > 0 weakly convergent to zero.

Now, since ug Z 0, we have f(ug) > ¢ and so b— f(ug) < b—¢° <
cz by assumption. Therefore, by Corollary 3.1, we have that (u, —ug)
is precompact and since u,, — ug we obtain that w, — wug strongly

in H. Therefore (b) holds. &

In the next section we will show that alternative (a) in the pre-
vious corollary never occurs for those PS sequences (u,) at level
b e (0,c*), where

c* = min(cy, ¢ + c7),

that satisfy the condition
[[tn = wna]| =0,

namely PS sequences. Therefore it will follow that every PS se-
quence for f at level b € (0, ¢*) admits a subsequence that converges
in H to a nonzero limit point, that is a nontrivial solution of the
problem (P).
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4. The PS sequences

We begin to describe the PS sequences at a positive level weakly
convergent to zero. The next result is a standard characterization
of PS sequences and it can be found in all papers on homoclinic
solutions. In our case it takes the following form:

ProposITION 4.1. Let (u,) be a PS sequence for f at level b > 0
such that u, — 0 weakly in H. Then there exist ¢ € N, q constants
B: € [a, @], q functions v; € H \ {0}, a subsequence of (u,), still
denoted by u,, and q sequences (0;) C R, with 1 <1 < ¢ such that

(1) Vfg(v;) =0 foralli=1,...,q,

(i) un — Yoi_y Ty vi — 0 strongly in H as n — oo,
(idi) b= 35y fa: (vi),

(iv) |0} = oo, |0}, — 61| = oo for alli#j=1,...,q as n — co.

Proof. Since (u,) is a PS sequence at a positive level weakly
convergent to zero, by Proposition 3.1 we know that there exist a
constant fy € [a, @], a function v; € H \ {0}, a subsequence of (u,),
still denoted by u,, and a sequence (7,,) in R with |7,| — oo such
that:

. Tr u, — vy weakly in H,

T, 00— Byin LY

loc?
. Vfﬁl (’01) = 0,
. (u, —T_;,v1) is a PS sequence for f at level b — fg, (v1).

Setting 8! = —7,, two cases may occur:
(I)if b — fg, (v1) = 0 then by Lemma 2.2 [|u, — Tpv1|| — 0 and the
proposition is proved with ¢ = 1,

(IT)if b— fp,(v1) > 0, setting by = b — fg, (v1) and u), = u, — Ty v1,
(u)) is a PS sequence for f at level by > 0 with u), — 0 and we can
apply Proposition 3.1 to the sequence (ul).

n
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To show that this procedure ends, it is enough to prove that for
some ¢ > 1 there results

b= Jon (1) = S (v2) — o~ f35,(v3) = 0. (4.1)

Indeed, since V f3,(v;) = 0 and j; € [a, @] forall i =1, ..., ¢, by (3.2)
we have
fo:(vi) = cg; > c5.

So that after at most [-=] steps we obtain (4.1). This completes the

proof. &

Starting from the previous proposition one can prove like in [STT]
(or otherwise like in [MNT] or [CZMN]) the following result:

PROPOSITION 4.2. Let (u,) be a PS sequence for f at level b > 0
with u, — 0. Then there erists a sequence (1,) in R such that:

(1) Hminf, e |un(7s)] > 0,
(73) im0 | 70| = 00,

(437) limp—oo |Th — Tho1| = 0.

In the previous section we have seen (Proposition 3.1) that for
every PS sequence (u,) for f at level b > 0 weakly convergent to
zero there exist a sequence (7,) in R and a constant § € [, @] such
that, up to a subsequence, T, a — @ in LS. and (75, u,) weakly
converges in H to a nonzero critical point of fg.

This property has been used in all recent papers as a starting
point for the analysis of PS sequences. In the case of a recurrent
time dependence of the potential, it has been used in combination
with Proposition 4.2 in order to show that a suitable subsequence
of (T, u,) converges to a particular nonzero limit point. The fact
that this limit point is the required solution is a consequence of the
recurrence hypoteses: in these cases the original problem coincides
with one of the problems at infinity.

In our case these arguments cannot work due to the fact that the
problems at infinity are all different from the original one. However
the analysis of PS sequences discloses remarkable properties. Indeed
in the next proposition we will prove, combining Propositions 3.1
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and 4.2, that for every 3 € [a, @] and for every PS sequence (u,)
there exists a sequence (7,,) in R such that, up to a subsequence, the
sequence (77, u,) weakly tends in H to a nonzero critical point of
fs. This is the fundamental property which will allow us to conclude
the proof.

PROPOSITION 4.3. Let (u,) be a PS sequence for f at level b > 0
with u, — 0. Then for every § € [, @] there exist a subsequence of
(un), still denoted by u,, a function ug € H \ {0} and a sequence
(1) in R such that:

)

(a) T;, u, — ug weakly in H,

) Vf5(uo) =0,
(¢) (up —T_;,ug) is a PS sequence for f at level b— fz(ug).

(b

Proof. Let (7,,) be the sequence in R associated to (u,) via Propo-
sition 4.2 and let (o}) be a sequence in R such that |o| — oo and
a(oy) — B as n — oo (such sequence exists by (Hs)). By (7¢) and
(727) in Proposition 4.2 we obtain that there exists a subsequence
of (r,,) of (7,), such that |r,, — ox] — 0 as k& — oco. Then, if we
consider the sequence (7, «), there results

T

Tnk

a—p in Lj, (R,R).
Indeed, for all R > 0 and for all £ € [- R, R] we have

Tr,(8) = Bl < [Ty, 0(6) = Tr, 0(8) + [ Toyat) = 5]
= |

F4 1) — ot 4+ o) + ot + o) — 5. P

The first term in the last expression of (4.2) converges uniformly to
zero by the uniform continuity of a. Concerning the second one note
that

la(t+ or) = B] < |al(t + or) — a(ow)| + |a(or) — S
= [a(&) R+ [a(or) = ]
< |a(&r) | R + |a(ok) — Bl

for some & between o, and t+ 0. As |o;| — 0o, we obtain |{;| — oo
and so by (H3) we have that &(£;) — 0. Moreover by construction
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a(og) — f. Then we have that also the second term in (4.2) tends
to zero uniformly in [— R, R].

Consider now the sequence (7%, uy,). Since (T, un,) is bounded
in H, it admits a subsequence, still denoted by T%,, tny, weakly
convergent in H to some ug. From (7) in Proposition 4.2 we have
liminfz_eo |T7.nk Uy, (0)] > 0 hence up # 0 and moreover, as T, a—
B in LS. and T%,, tn, — uo weakly in H, by Lemma 3.4 we obtain

that V f3(uo) = 0 and that (u, — 15, uo) is a PS sequence for f at
level b — fz(uo). ¢

In particular if b < ¢, and if we choose 3 = a in the previous
proposition we obtain:

COROLLARY 4.1. Every PS sequence for f at levelb € (0,c,) admits
a subsequence weakly convergent to a nonzero limit point.

Proof. Let (u,,) be a PS sequence at level b € (0, ¢,) and, arguing
by contradiction, suppose that every subsequence of (u,) weakly
converges to zero. Then u,, — 0 and, using the previous proposition
with # = a, we obtain that there exist ug € H \ {0}, a sequence
(1) in R and a subsequence of (uy,), still denoted by u,,, such that
setting v, = u, —T_;, uo there results V f, (ug) = 0 and (v,) is a PS
sequence for f at level b — f,(uo).

As V fo(uo) = 0 and ug # 0 we have, by condition (A), f,(uo) >
¢y. Moreover, by assumption b < ¢,. Therefore b — f,(up) < 0
and then, since (v,) is a PS sequence at level b — f,(ug), we get a
contradiction by Lemma 2.2. &

In the previous section we have proved that the PS condition
holds at levels in (0, cz). Now, as a direct consequence of the previous
corollary and Corollary 3.2, we have that the PS condition holds at
levels in (0, ¢*) where

c* = min(cy, ¢ + c7).

More precisely the following result holds (compare with Corollary
3.1, noting that ¢* > cz):

COROLLARY 4.2. Every PS sequence for f at level b € (0,c*) is
precompact in H.
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Therefore we obtain a nontrivial critical point for f if we can find
a PS sequence with level in (0,c*). To this aim we recall that since
[ satisfies the geometric assumptions of the Mountain Pass Theorem
we can find a PS sequence at the mountain pass level ¢. Moreover
by a result given in [CZES] for every € small enough there exists a
PS sequence for f at some level b € [c — ¢,c +€]. So it is enough
to prove that the mountain pass level ¢ is strictly less than ¢*. To
prove this we need the following result due to P. Caldiroli (see [Cal],
Theorem 1.1 and Lemma 2.2).

THEOREM 4.1. For every 3 > 0 there exist ug € H and vg € I'g
such that:

(1) Vfa(ug) =0 and fg(ug) = cg,

(#) ug € v5([0, 1]) and max,ejoq1y f5(v5(s)) = fa(up) = cs.

Then we have

LEMMA 4.1. For every 0 < (1 < 33 there results cg, > cg,. More-
over there results ¢ < cz and in particular ¢ < c4.

Proof. First we prove that cg, > ¢g,. Let 3, € I'g, be the optimal
path for fg, given in the previous theorem. Now, since 3; < 32, there
results

fon(u) > fp,(u),  Vu e H\{0}. (4.3)

In particular it follows that v, € I'g,. Then let sq € [0,1] be such

that
Srél[%)i] f/32 (7/31 (S)) = fﬁ2 (7/31 (80)) > CBs -

From (7%) in the previous theorem and (4.3) we have

gy 2 fﬁl (7{31(80)) > fﬁ2 (751 (80)) 2 cp,

since v, (sg) # 0. Then we have cg, > ¢g,.
Now, to prove that ¢ < ¢z, for every € > 0 let v € 'z be such that

sup fz(7(s)) < ca +e.
s€[0,1]
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By (Hs) there exists a sequence (7,) in R such that 7, o — @ in

2. From Lemma 3.3, since ([0, 1]) is compact in H, we obtain

F(Tr7(8)) = fr,,0(7(3)) = falv(s), (4.4)

uniformly with respect to s € [0,1]. Then for n big enough we have
T_;,v €T and as f5(7(s)) < cg+¢ for all s € [0,1] by (4.4) we have
¢ < cz+e. Since € > 0 was arbitrarily fixed, we obtain ¢ < cz. <

We can now prove the existence of at least one solution of problem

(P).

ProOOF oF THEOREM 1.1. From Corollary 4.2 we obtain a non-
trivial critical point for f if we can find a PS sequence for f at
level b € (0,c¢*). But this is certainly the case since by Lemma 4.1
the mountain pass level ¢ satisfies ¢ < ¢z < ¢,. So that ¢ < ¢* =
min(c® + ¢z, ¢a). &
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