An Elliptic-Parabolic Problem
in Bingham Fluid Motion
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SOMMARIO. - Si studia un’equazione ellittico-parabolica che descrive la
distribuzione degli sforzi all’interno di un viscostmetro rotante riempito
con un flurdo di Bingham. St prova Uesistenza e l'unicita delle soluzioni
e alcuni risultati sulla continuita della frontiera solido-liquido.

SUMMARY. - In this paper, we consider an elliptic-parabolic equation rul-
ing the stress distribution inside a rotating viscometer filled with a Bing-
ham fluid. FExistence and uniqueness of the weak solution and some
results concerning the continuity of the boundary of the solid region are
proved.

1. Introduction

A Bingham fluid is a particular type of non-Newtonian fluid where
the constitutive relation relating stress and strain is such that,roughly
speaking, the continuum behaves like a rigid body for small stress
and like a Newtonian viscous fluid for high stress. Moreover this
transition between the two different behaviours is sharp, and ideal-
ized to happen suddenly when the modulus of the stress equals a
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fixed threshold value. A thoroughly account of the mathematics of
Bingham fluids can be found in [5].

Equations of motion for a Bingham fluid are obtained from mass
and momentum conservation plus a contitutive equation, in differ-
ential form, for the stress tensor. These give a system of partial
differential equations. In some cases, assuming some symmetry of
the solutions and that the motion is laminar, this system can be
reduced to a scalar equation plus the constitutive equation.

Two interesting cases are the longitudinal motion of a Bingham
fluid along a pipe or between two parallel slabs under the effect of
a pressure gradient, and the tranversal motion between two rotating
coaxial cylinders (viscometer) generated by the rotation of one of the
two cylinders (typically the internal one, called “bob”).

In the last two cases, the slab and the viscometer, the velocity
depends only upon one spatial variable. For the slab we have

pUs =0, +p, (1)

where v is the longitudinal componenent of the velocity, ¢ is the
shear stress and p the pressure gradient. The constitutive law for o
is
o= pv, + k|Z—r| when |v,| > 0, |o| <k when |vz| =0, (2)
x
see [2, 11]. Combining (2) with (1), we see that the motion of a
Bingham fluid can be either a rigid motion if v, = 0, or the motion
of a viscous fluid if v, # 0. These two behaviors can coexist, as it can
be easily seen computing the stationary solution of (1) between two
slabs at rest, under a uniform pressure field: if the pressure gradient
is not too strong, the fluid has a rigid core (moving with spatially
constant speed) and two transition layers between the core and the
slabs where the velocity has the classical parabolic profile of the
viscous fluid motion. It is important to notice that v, is continuous,
and this is also the case for the solution of the evolution problem.
Equations (1) and (2) give a scalar parabolic equation of degen-
erate type, which can be treated either tranforming it into a varia-
tional inequality [5, 11], or rewriting the problem, in the region where
|vz| > 0 (the fluid zone), as a free boundary problem, [2], the free
boundary being the boundary of the region where |v;| = 0 (the solid
zone). The free boundary conditions can be derived directly from
the equation of motion of the solid zone. The resulting problem
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is Stefan-like and can be treated in the framework of the classical
solutions of one-dimensional free boundary problems for parabolic
equations as in [8], see [2].

For the viscometer, after substituting the constitutive law, we
have

1 r
por = =5 (rter + k2 ) 3)

jwr]

where now w is the angular velocity v/r, and r ranges between the
radius of the internal cylinder and the radius of the external one. No
pressure gradient is present in this case.

This problem can be transformed again into a free boundary
problem for an uniformly parabolic equation, see [4]. The free bound-
ary conditions are rather complex, and in general are of non local
type. Moreover there exists a big qualitative difference between the
behaviour of the solutions of (1) and those of (3). In fact the so-
lutions of (1) have a rather simple structure, reducing in almost all
cases to a problem with only one free boundary, where the parabolic
equation is satisfied only on one side of the free boundary (like the
one-phase Stefan problem). On the contrary, the solutions of (3) can
exibit a very complex structure with many solid and fluid regions al-
ternating inside the spatial domain, and this can occur under quite
natural boundary conditions (it is enough to vary with time the bob
speed in an appropriate way), see [3].

It is then useful to have a more flexible definition of solution in
order to obtain global solutions indipendently of the a priori knowl-
edge of the free boundaries.

We introduce here a transformation which will give an elliptic-
parabolic equation for a new unknown closely related to the stress.
This can be done for both (1) and (3).

Let consider equation (1). We introduce a new variable w(z, t)

defined by

Hvz——vz<0
p o p
Lk k
w(z,t) =< [-=, =] v=0 . (4)
e
Hvx—}——vr>0
p " p

We can now take the inverse of the monotone graph in (4) expressing
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v, as a function of w by
ve=C(w)={0 we [-£E] (5)

Finally, differentiating (1) with respect to z and substituting (5), we
obtain an equation for w

0
aC’(w(x7 1) = wes (2, t), (6)

which is an elliptic-parabolic equation, i.e. a partial differential equa-
tion which is of parabolic type when w ¢ {—%, ﬂ and it is of elliptic
type for values of w inside the interval. A quite similar mathematical
problem arises from a model describing water filtration in saturated-
insaturated soils, which was studied in [6]. The only difference is
that now (5), (6) is a “two-phases” elliptic-parabolic problem, since
the elliptic zone for the values of w is a bounded interval instead of
an half line as in [6]. Another problem which shares some similarity
with our problem is that studied in [10] in connection with the the-
ory of superconductors, where the parabolic zone is the interior of
an interval and the elliptic one the rest of the real line.

A similar transformation can be performed for the viscometer

problem (3)

L <u—}— 2 ) u < —Ep2
pr® ,
w, =C(u,r)=< 0 u € [ %r{ﬁrﬂ (7)
# u——rQ) U > ];7“2
The resulting equation for u is now
S Cutr0),r) = (st t)r>r, (8)

which is again an elliptic-parabolic problem. From the mathemati-
cal point of view, the major novelty now is the dependence on the
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space variable of the relation expressing the derivative of the angu-
lar velocity w, in term of the “stress” w. This is the main reason for
the more complex behavior of the solution and it also the source of
mathematical difficulties.

Equation (8) has to be complemented with initial and boundary
conditions. The initial condition is given for the spatial derivative of
the angular velocity, C'(u(z,0)) = vo(z). This is consistent with the
assignment of the velocity field in the original problem. Both Dirich-
let and Neumann conditions on the lateral boundaries make sense.
Giving the value of u on a later boundary means that on this bound-
ary the stress is controlled (this is the case for the interior cylinder in
“stress controlled” experiments.) A Neumann condition comes out
if the fluid velocity is assigned at the boundary, which is a natural
condition, expecially at the exterior cylinder, which is generally kept
still (a no-slip condition is assumed for the fluid motion). In fact, if
w(ry,t) = wi(t) is a given differentiable function, then the value of
ur(r1,t) is obtained from (3) differentiating wy (t). Notice that this
takes automatically care of the sign of w, and works for w, = 0 as
well.

REMARK. Equation (8) and relation (7) give a simple way to cata-
logue stationary solutions of the viscometer problem. In fact from
(8) it follows that all stationary solution have the form

W(z) = arr* + ag, (9)

where a; and ay are arbitrary constant. Comparing (9) with (7) we
obtain the “structure” of the stationary solution, i.e. we can deter-
mine where the Bingham fluid is actually in the rigid state (“solid”)
or in the fluid state (“liquid”).

Accordingly we can have one of the following situation

1. the viscometer is filled with solid;
2. the viscometer is filled with liquid;

3. a unique solid zone exist near the internal radius, followed by
a liquid zone;

4. a liquid zone exist near the internal radius, followed by a solid
zone and then by a new liquid zone;
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5. a liquid zone exist near the internal radius, followed by a solid
zone extending up to the external radius.

However, only the first two cases and the last one are compatible
with the choice of the constant a; = 0, i.e. with constant W (z) = as.
The latter are the solutions which correspond to the condition w, = 0
on both the lateral boundaries, i.e. those which correpond to constant
angular velocity at the the bob (r = r1) and the cup (r = r3). These
are then the “true” stationary solution of the viscometer problem.
The velocity profile can be recover from integration of (7), imposing
the boundary conditions on the velocity. For instance, imposing
w(rz) = 0, one obtain a relation between velocity of the bob w(ry)
and the constant stress needed to substain this velocity gradient, see
[13, 1].

In the two remaining cases, the costant stresses applied on the
two lateral boundaries do not equilibrate and the solution exibit a
constant incresing (or descresing) angular velocity.

2. Existence and Uniqueness of Weak Solutions

In this section we consider a generalization of the equations described
in the introduction.

(C(u,z))s = (a(z)uy)., in Qr=1[1,2]x[0,T], (1)

where

cr(u,z) u < vi(z)
Clu,z)=40 vi(z) <u<wy(z) (2)
ca(u, ) va < u

¢ and ¢g are two smooth functions, such that
Jdc; )
O<cm§a—§cM,z:1,2,f0ranyx, (3)
U
ci(vi(z),z)=0,i=1,2, (4)

and
v (z) <vp <0<vy <vaz). (5)
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We consider the problem of finding a function u(z,t) satisfying
(1) (in a weak sense to be defined), the initial condition:

C(u(z,0)) = co(2), (6)

and one of the following boundary conditions:

u(i,t) = f;(t), i=1,2,t€[0,7T], (7)
ug(i,t) = g:(t), 1=1,2,t€[0,T]. (8)
U(Lt) = fl(t)7 uw(27t) = g2(t)7 te0,7]. (9)

We assume that the data satisfy the following

fiygs € WL([0,T]), i=1,2, co € WL([1,2]), (10)
the zero order compatibility conditions (c.c.) (11)
are satisfied for b.c. (7)
the first order compatibility conditions (12)
are satisfied for b.c. (8)
the zero order c.c. at = 1 and the first order c.c.  (13)

at & = 2 are satisfied for b.c. (9)

In the following we prove that a unique “weak” solution exists for
each of the three problems: (1), (6), (7) (which we refer as Dirichlet
problem, (DP), in the following); (1), (6), (8) (Neumann problem
(NP), in the following); and (1), (6), (9) (Dirichlet-Neumann prob-
lem, (DNP) in the following).

The definition of weak solution is quite standard: a function
u(z,t) defined a.e. in Qr and such that C(u(z,t),z) € C(Qr) is
a weak solution of (DP) if w —uw € L%(0,T; H}(1,2)) where 7 is a
smooth function taking the values f;(t) on the boundaries, and u
satisfies the identity:

//QT{a(:c)uxcbx—C(u,:c)@} dz dt:/Ol co(z)d(z,0) dz, (14)
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for all ¢ € CY(Qr) which vanish on 2 = 1,2 and on t = T. The
function u(z,t) is a solution of (NP) if w € L%(0,T; H'(1,2)), and u
verifies:

//QT{a(:c)ug:% — C(u,2)¢y} da dt

1 T
= /0 co(z)p(z,0) dz + /0 {a(2)g2(r)o(2, 7)+
—a(l)gi(r)o(1,7)}dr

for all ¢ € C'(Qr) which vanish on ¢t = T. Finally the function u is
a solution of problem (NDP) if: u € L%*(0,7T; H'(1,2)),the trace of
u — f; on 2 = 11is zero and wu satisfies the following relation:

//QT{G(J‘)%% — C(u, 2) s} du dt
N /01 co(z)(z,0) dz + /OT{a(z)gQ(r)fb(z, 7))} dr

(15)

(16)

for all ¢ € C1(Qr) which vanish on z =1 and on t = T..

To prove the existence of a solution we follow the scheme settled
in [6] for the filtration problem: we start with a standard parabolic
regularization of the problem obtained substituting C'(u, z) by C),(u,
z) such that: C,, € C*(R?), M > 0C,,/du > 1/n, |0C,,/0z|
< M with M indip. of n, and the sequence C),(u,z) converges
uniformly to C'(u, z).

Problems (DP), (NP) and (DNP), with C substituted by C,, are
easily solved using the classical nonlinear parabolic results of [12].
To each of the €, then it corresponds a u,, which is a solution of the
regularized versions of (1), which we denote by (1,), with appopriate
boundary conditions.

In order to pass to the limit, we need some a priori estimates,
which we prove only for (DP) and (NP), the case (DNP) being
treated similarly.

The first estimate concernes the uniform boundedness of u,:

In the case of Dirichlet boundary conditions, a standard appli-
cation of the maximum principle gives |u,| < maxg,q, [u,|. We will
prove later the L> estimate for the solutions of (NP).

The second estimate is the uniform boundedness of u,,:

In the case of Neumann boundary conditions, it is sufficient to

observe that z = a(z)uy,, solves a parabolic equation to which the
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strong maximum principle applies, giving an uniform a priori esti-
mate for |u,;|.

In the case of Dirichlet boundary conditions we first need to
construct barriers for wu,, on the lateral boundary. These can be
choosen in the form

) / o5 T ). (17)

(17) gives respectively a super-solution u;' and a sub-solution u;,
for A large enough but independent of n, both equal to f; at z = 2.
This gives a bound for |u,.(2,t)| independent of n.

Similarly, defining

—:FA/ dfiB/ —d£+f1() (18)

we obtain a super-solution u] and a sub-solution uy, for A large
enough, and B even larger, but both independent of n. u} and u]
are both equal to f; at z = 1. This gives now a bound for |, (1,1)]
independent of n. Finally we proceed as in the case of Neumann b.c.
Using the technique of [6], (see proof of Lemma(4) there), we can
prove that the boundedness of u,, implies that

Coplup(z,t+h),2) — Cpun(z,t), z)
e <M (19)

where M does not depend on n. Moreover M does not depend on
the L° norm of u,. As a consequence we can deduce an a priori
estimate for |u,| also for the Neumann case. Moreover, since C,
tends to infinity if u,, tends to infinity, {v, = C(u,,.)} is a sequence
of uniformly bounded, uniformly Hélder continuous functions.

The above estimates ensure the weak convergence (modulo sub-
sequences) of the sequence {u, —w} in the space L?(0,T; Hi(1,2)) in
the Dirichlet case and of {u,} in L?(0,7; H'(1,2)) in the Neumann
case. Moreover {v, } converges in C%(Qr). Proceeding like in [6] we
can prove that v = lim v, = C'(u,.) where v = lim u,, and that u is
a solution of (14).

Some more regularity of the solution can be obtained multiplying
(1,,) times u,; and integrating by parts.
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8C'n(un,33) 2 2
—F—u,, +1/2 sup / a(z)u, .
//QT ou ! / te(0,T) 7/ Q@x{t} (=)

<M+ /OTa(l)unx(l,t)unt(Lt) + /()Ta(Q)unI(Qvt)unt(Qvt)

The left hand side of the above inequality is obviously bounded in the
case of Dirichlet boundary conditions, while in the case of Neumann
b.c. it suffices to integrate by part the integrals inside the absolute
values, obtaining

IC, (up, ) 4 / 9
—F— U, + su a(z)u,, < M. 20
//QT o S 20

From (20) we get an uniform bound for the L?(Q7)-norm of ;.
Suppose now that #; and uy are two solutions of one of our problems.
Then we can subtract the equations, in weak form, satisfied by wuy
and us obtaining

//QT{Q(JL‘)(ulI—uQI)(bI—(C(ul,ac)—C(uQ,m))(bt}dac dt = 0. (21)

Uniqueness of the solution can be proved substituting a suitable test
function,

p(z,t) = { (w2, 8) — ug(z,8))ds, 0<t <t <T, (22)
0, otherwise,

where £ is a arbitrary time in (0,7), see [6] for the details of the
proof. Notice that the only relevant property required to prove
uniqueness is the monotonicity of C(u,z) with respect to u. Fol-
lowing the proof in [6] then we have u;, — ug; = 0 a.e., from which
uniqueness follows for the Dirichlet problem. For the Neumann prob-
lem we come back to the equation and we get (C'(uq,-) —C'(ug,-)): =
0, and then C'(uq,-) —C'(ug,-) = 0. This gives the uniqueness for the
problem in the case of Neumann boundary condition. The stronger
form of uniqueness, i.e. u; = ug, can be obtained only if the values
of the initial datum belong to the parabolic region for an interval, in
which case we can reconstruct u starting from C'(u, -).
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Another consequence of the monotonicity of C'is the (weak) com-
parison principle:

ProOPOSITION 1. If coa, fia, Cob, fip are two sets of admissible initial
and boundary data such that coq < cop, fia < fip then the correspond-
ing solutions u, and up satisfy

Clug(z,t),2) < Clup(z,t), 2). (23)

3. Regularity of the free boundary

In this section we investigate the qualitative properties of the “free
boundary”, i.e. the boundary of the set where C(u(z,t),z) = 0.
Notice that this definition makes sense because of the continuity of
C'(u(z,t),z). Here are some surprising differences with respect to the
case of filtration equation in [7]. In the case of the filtration equation,
some sort of strong maximum principle can be proved. This implies
that no internal satured zone (which is the counterpart of our solid
region) can exist, so that the saturated part is always connected to
the lateral boundary. As a consequence, the most general situation at
a given time ¢ is the presence of a satured zone, followed by a unique
unsatured zone, and finally a new satured one; each of the three
can be missing. This reduces the analysis required for proving the
regularity of the free boundary essentially to the case of a single free
boundary, where the flux (u; in our notation) is known as a function
of the distance of the free boundary from the fixed lateral boundary.
This makes relatively easy to find the barrier functions needed to
prove the continuity of the free boundary, and the application of the
inverse function theorem to prove its extra regularity, as a level set
of the pressure function.

In our case none of the previous properties are true anymore.
The ”free boundary” is the boundary of a level set of C'(u,z) and,
even assuming the continuity of u, we can have either u = vy ()
or u = v3(z) on the free boundary. Moreover, no strong maximum
principle is available for ', and an internal zone with C' = 0 can
exists even when C has the same sign on both sides of this zone.

This makes the task of proving regularity properties a rather

difficult task.
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Here we present some results about the regularity properties of
the free boundary. We denote by S the region where C'(u(z,t),z) =
0, which we will call the ”solid” in the following. We will also call
“fluid” the region F where |C| > 0. The free boundary is the bound-
ary of the region §, i.e. the transition points from solid to fluid.

Let ¢ > 0 and denote by F(t) the set {z : |C(u(z,t),z)| > 0}.
Since C'(u(z,t),z) is a continuous function, F(¢) is open and there-
fore is the union of at most a countable number of intervals. Let F;(t)
denote one of this interval, and F; the open connected component of

F which contains F;(t).
LEMMA 1. F; N opQ: # 0.

Proof. We can assume, without loss of generality, that C' > 0 in
F;. Then v(z,t) = C(u(z,t),z), as a function of (z,t), satisfies the
uniformly parabolic equation

v = ar(m)U v(z ,t ,z)+
+ a(z) t),z)(a(z)Uc(v(z, 1), T)va)at (1)
EngLy( (x,t)),m)vr—l—aw(m)Uy(v(m,t),m)—l—
t )

in F;, where U(c,y) denotes, for each y, the inverse function of
c2(u,y) with respect to the variable u. In order to apply the maxi-
mum principle to (1), we assume that

a;(2)Uy (v, 2) + a(2)Uyy (v, 2) = g(v, 2) + f(2) @)
with ¢(0,2) =0 and f(z) <0,Vz.

Then if ;0 0pQr =0, C = 0 on 0pF; and consequently C' < 0 in
F;, which is a contradiction.

Notice that (2) is satisfied in the case of the viscometer equation
(8) of Section 1.

REMARK. The previous lemma says that either a fluid zone exists
at the initial time or it originates from the boundary of the domain.
In other words, fluid zones cannot be generated inside a solid zone.

LEMMA 2. Let T and § > 0 be such that (T — 6,7 + ) C S(t).
Then there exists € > 0 depending on &, but not on t, such that
Rs=(T—-6/2,74+6/2) x (t,t+¢) CS.
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Proof. For the sake of simplicity we give the proof for a(z) = 273

and v; = (—1)z?, i.e. having the form of the corresponding data for
the viscometer equation, see (7) and (8) of Sect. 1. The proof is
easily extended to more general form of the coeflicients, provided
the condition (—1)'v;(x)a(z) is a strictly decreasing function, holds.
This excludes the case of constant coefficients. But in that case a
solid interval can not exist in between two fluid regions having C' of
the same sign because of maximum principle (in this case u would
be constant in the region C' = 0 and this region would immediatly
disappear.)

Define vy (z,t) = u(z,t) + 22 and v_(z,t) = u(z,t) — 2. Because
of the assumptions on C(u,.), a constant A > 0 can be found such
that vy > AC(w,.) when v < 0 and v_ < AC(u,.) for u > 0.
Moreover vy (z,t) > 0 implies C'(u(z,t),z) > 0 and v_(z,t) < 0
implies C(u(z,t),z) < 0. Define also 2, = —az* + 2% — 38 and
z_ = az? — 22+ = —z;. It can be easily checked that, for any a
and 3, z; and z_ are stationary solutions of the equations satisfied
by vy and v_ respectively. We can choose o > 0 and 8 > 0 in such a
way that z is positive in (Z —43/2,7+6/2) and negative outside and
the converse is true for z_. Because of the Holder continuity of C' we
have that a ¢ > 0, depending only on §, o, 3 and the Hélder constant
of C, exists such that AC(u(z +8/2,7),2 4 6/2) and, consequently,
vy (T £+ 8/2,7) are greater than 24 (T £+ §/2) for any 7 € (¢t,t + ¢).
Then vy (y,7) > 24 (y,7) > 0in (T — /2,74 6/2) x (¢t,t+¢), which
implies that C' > 0 in the same rectangle. Since z_ = —z4, we can
repeat the above argument to prove that C' < 0 in the same domain.
Consequently Rs C S.

We now give a partial result concerning the continuity of the free
boundaries, to this purpose we state the following extra-assumptions.

Hs: for any t, the distance between two points belonging to the
fluid region which are separated by a solid region is always greater
than &, for a given positive §.

Note that, because of assumptions Hg, the number of intervals
which compose S(t) is a bounded function n(t) with integer value.
Then, at first, we can focus our attention on an interval (f1,%3) in
which the function n(t) = N is constant.

In (t1,%2) we can define the interfaces o;(f) between solid and
liquid counting the boundary points of S(¢) starting from the left.
Notice that the number of these interfaces is a constant, and then
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each o; is a function defined on the whole interval (¢1,12).

The first step is to prove that, for any ¢ € (¢1,%2), 0; has limit
at t both from below and from above. We assume, without loss of
generality, that C' vanishes on a right neighbourhood of ¢;. Sup-
pose that there is no limit from below, i.e. liminf;q;0, = 2, <
lim sup,4;0; = w2. Let &, be a sequence such that t, — ¢ and
0:(t,) — z1. Then from the assumption H;s we have C'(u(z,t,),t,) =
0 for z € (04(ty), 0:(tn) + 6). Now lemma 2 ensures that C' vanishes
in (o;(tn) + %, oi(tn) —I—S%) for a time interval (¢,,t,+¢) wheree > 0
depends only on 4. This contradicts the assumtion lim sup_4, 0; > 1.

Similarly we can prove the existence of the limit from above.

Moreover the limit from above must be less or equal to the limit
from below, otherwise we would have a contradiction with Lemma
2.

It remains to exclude the case in which zy = lim.q 0;(7) >
limyy 0;(7) = 2.

In this case we can find a ' < ¢t and z1, 23 € (T, zn) such
that |C| > 0 in [z, 2] X [t/, 1), so that the equation satisfied by the
function C'is uniformly parabolic in this rectangle; it can be easily
proved that the solution of this parabolic equation is analytic with
respect to the space variable (at least in the physical case, more
in general we have to assume that the functions a(z), C(u, z) are
analytic) and hence |C| # 0 on (z4, ) X t, which is a contraddiction.

This concludes the proof of the continuity of o; at ¢ and hence,
since t is arbitrary, in the whole interval (¢1,%2).
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