A Model of Frost Heave with Sharp
Interface between the Unfrozen and
the Frozen Soils
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SOMMARIO. - Quando un suolo umido é sottoposto ad un processo di con-
gelamento, si osserva in generale un’espansione di volume. L’aumento
di volume ¢é dovuto principalmente ad una migrazione di acqua dalla
base del suolo verso il fronte di congelamento, che separa la zona non
congelata, in basso, da quella, superiore, completamente congelata. Il
processo accoppiato di trasferimento di massa e calore st accompagna,
in determinate condizioni, alla formazione di strati segregati di ghiac-
cio puro (“lenti di ghiaccio”). In tal caso, il fronte di congelamento
rimane fermo. Se il processo di congelamento é troppo rapido o il peso
sovrastante che agisce sul campione di suolo é rimarchevole, la crescita
della lente di ghtaccio non avviene e il fronte di congelamento si sposta
in basso verso la base del suolo (“penetrazione del ghiaccio”). In questo
lavoro st discute un modello che ammette una netta interfaccia fra le
regioni del suolo.

SUMMARY. - When a moist soil freezes, a volume expansion can be gener-
ally observed. The increase of volume is mainly due to a water migra-
tion from the base of the soil up to the freezing front, which separates
the lower unfrozen part of the soil from the upper frozen one. The
coupled heat-mass transfer process is accompanied, under certain con-
ditions, to the formation of pure ice segregated layers (ice lenses). In
this, case, the freezing front keeps at rest. If the freezing process is too
fast or the overburden pressure acting on the column of soil is relevant,
the ice lens growth does not occur and the freezing front moves towards
the base of the soil (frost penetration). In this paper a model admitting
a sharp interface between the two regions is discussed.
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1. Introduction

In a porous medium saturated by water and cooled on the top by a
freezing temperature, two regions will be observed: a lower unfrozen
part (soil grains and water) and the upper frozen soil (soil grains and
ice). The size of both regions changes with respect to time. In the
unfrozen soil a water migration coming from the permeable base of
the soil occurs. Sometime, the growth of a pure ice layer (ice lens) can
be observed in proximity of the area where the change of phase takes
place. The increase of the total volume of the medium, due to the
incoming water which goes up and freezes, is known as frost heave.
In this paper, we will assume that the unfrozen and frozen soils are
separated by a sharp interface, corresponding to the freezing front.
Referring to the classification introduced in [5], [4], we will deal with
a primary frost heave model. The main assumptions of the one-
dimensional model we are going to study from the mathematical
point of view are the following (for more details, see [6], sect. 4.1,

[3]):

(Hq1) The porous matrix of the unfrozen soil is non-deformable.

(Hz) The volumetric flux of water in the unfrozen part is governed
by the Darcy’s law.

(Hs) The change of temperature with respect to time is very slow
and the process can be approximated as a sequence of quasi-
steady states.

(H4) The freezing temperature is related to the water pressure at
the interface by means of the Clausius-Clapeyron equation.

(Hs) The interfacial effects between water and ice at the interface
are described by the Kelvin-Laplace equation.

(Hg) The mechanism by which a lens starts to form is based on the
evaluation of the water pressure (hence of the freezing temper-
ature, by (H4)) at the freezing front and of the front speed.
More precisely, when the freezing temperature attains a given
value depending on the soil, the freezing front penetrates the
soil and no ice lens will form (frost penetration).

(H7) In case of frost penetration the speed of the ice particles and of
the soil grains immediately over the freezing front is the same.
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In [2] and [1] the evolutive case of the model (i.e. quitting (H3))
is detected, respectively in the case of lens formation and frost pen-
etration; the existence of the solution is proved. In [3] the model
(H1) — (Hg) is studied, adding the assumption (which replaces (H7))
that the soil grains are at rest even in the frozen soil, whenever frost
penetration occurs.

2. Statement of the problem

Let us choose an upward increasing coordinate z such that z = 0
coincides with the fixed base of the soil, zg(t) is the freezing front and
z7(t) is the top of the soil. Call Q, = {0 < z < z5(t)} the unfrozen
soil and Qy = {z5(t) < 2z < z7(t)} the frozen soil. In [6],sect. 4.1 we
showed that the equations corresponding to the model (H;) — (H7)
are the following;:

z5(t)qu(t) = —Kopu(zs(t),1) (2.1)
T(2s5(t), 1) = %piw(zjf)’t) (2.2)
picr(t) = puwu(t) = (pi — pw)eoZs(t) (2.3)

g - T(s(,)
)= s enl = =02t

T(z5(8), 1) = h(t)

+ ky
z5(t)
(Pu(zs(t), ) = pe)2s(t) = 0 (2.5)
55() <0, pules(t)0) — pe > 0 (26)
Guw(t) 20 (2.7)
2s(t) > 0 (2.8)
25(0)=b>0, 2r(0)=c>b (2.9)
T(0,1) = h(1)

Lrlontn) oo (210

The unknown quantities of the problem are the free boundaries zg(#)
and z7(t), the freezing temperature T'(z5(t), ), the water pressure at
the interface p,(zs(t),t), the volumetric water discharge ¢, (¢). The
positive constant K¢ (hydraulic conductivity), L (latent heat of water
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per unit mass), Ty (= 273, 15), py, p; (Water and ice densities), &, k¢
(thermal conductivities of the unfrozen and frozen soil), g (porosity
of the unfrozen soil) are known. The critical value p., which we
assume to be negative and constant, is related to the characteristics
of the soil. Equation (2.1) comes from (H;) and (H3), while (2.2)
corresponds to (Hy). Equations (2.3) and (2.4) are the mass and the
heat balances at the freezing front zg. Equation (2.5) together with
the constraints (2.6) are the switching conditions for the process of
lens formation and frost penetration: indeed, whenever the front zg is
at rest, an ice lens is forming at the height z = zg; if 25 < 0, a frost
penetration process is occurring: in this case, the water pressure
at the freezing front and the freezing temperature T'(zs5(t),t) are
known, owing to (2.5) and (2.2). Conditions (2.7) and (2.8) are
introduced in order to get solutions which are consistent from the
physical point of view. Finally, (2.9) and (2.10) settle the initial
position of the freezing front, the initial height of the soil and the
boundary temperatures, at the base and on the top of the soil.

REMARK 2.1. Once system (2.1)-(2.10) has been solved, the temper-
ature in each point of the soil and the water pressure in the unfrozen
soil can be evaluated by means of the formulas (see [6], eq. (4.16)):

T(z,t) =
T(zs(t), )Z:(t) +T(0,1) (t)(; zs(t) — 2. e,
Z—z (t) zs(t) — =
Tles(t) ) o @) + T (zr (1), )Wa z €8y
P (z,t):%,(ot)z, zeQ,

We find it convenient to write the system (2.1)-(2.10) in terms of
zs(t), zr(t) and Ts(t) = T'(zs(t),t) only:

Tst) _
TOjS(t) - (pl — Pw

pitr(t) + Kopi L )eos (t) (2.11)
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(Ts(t) — Tf)zs(t) =0 (2.13)
Ts(t)—=Tf >0 (2.14)
25(t) <0, =zg(t) >0 (2.15)
Ts(t) <0 (2.16)
25(0)=b>0, 27(0)=c>b, (2.17)
T(0,t) = h(t), T(zr(t),t) = g(t)
In (2.14) we defined
Ty = %ﬁc <0 (2.18)

As for the boundary temperatures h and g, we make the following
assumptions (HG):

i) h(t),g(t) € C'[0, 00);
i) h(t) >0, g(t) < Ty;

A solution of the above written problem in the interval [0, 7] will
be a triplet (25(t), zr(t), Ts(t)) with zs, zr € C'0,7], Ts € C°[0,7]
and such that eqq. (2.11)-(2.17) are satisfied. If a solution of (2.11)-
(2.17) is such that Zg = 0 (respect. Zg < 0) in some interval, we
will call it a lens formation-type solution, or LI (respect. frost
penetration-type solution, or F'P).

3. Constant boundary temperatures

In order to discuss the solvability of system (2.1)-(2.10), we start by
stating the following result, dealing with the case when the boundary
temperatures (2.10) are constant.

ProposITION 3.1. Given the initial conditions (2.9) and the temper-
atures at the extremities of the soil T'(0,t) = hg > 0 and T (27 (t),t) =
go < T¢, where hg and gy are constant, we have:
i) if
kyho(e —b) + kgbgo > 0, (3.1)
then system (2.11)-(2.13) has no solution consistent with (2.14)-
(2.17);
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kyho(c —b) < —kfbgo < kyho(c —b) + 17 (3.2)
where

I(Opc

nb,c) = (e - b)x

(3.3)
X (Lpwb + Co(b)ky) + k Co(b)b) > 0,

Tob
Co(b) = .
0( ) prI(O

(3.4)

then the unique solution of (2.1)-(2.10) describes a LI process
for any t > 0 and the height of the soil to the value z7°, where

oo _ kt90 : .
25 = <1_kuh0)b>c if hg > 0; (3.5)
2 =400 if ho = 0;
iit) if
— kbgo > kyho(c—b)+ 1, (3.6)

then the unique solution of (2.1)-(2.10) is of F'P-type up to a
finite time t, when 2g(t) = 0. Fort =t there is a switch to a

LF process and the lens formation process proceeds as in point

Proof. We start by remarking that zg is a linear function of Tk,
as we deduce from (2.12):

Zs=als+j3 (37)

where

1 KopwL 1 k ky
OZ(ZS,ZT) = — ( op — 4+ f )

50,0111[/
ﬁ(257 2T, h07 gO) =

To zs zr—zg =zg
1 ( kfgo i kuho)
50,0111[/ 2T — 28 Zs

Hence, for any given zg, zr and any pair of data hg, go the equation
zg = 0 admits the unique solution

T =—4/a. (3.9)
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The physical problem makes sense as long as zz > zg (actually, we
will show that this is a property of the solution of (2.11)-(2.17));
therefore:

25 <0(>0)if Ts >T (<T). (3.10)

Let us consider now the problem (2.11)-(2.13). Formally, we have
the two solutions of such system, corresponding to Ts(t) = T and
Ts(t) = T. Indeed, if Ts = Ty eqq. (2.11)-(2.12) give a pair of
0.D.E.s for zg, zr, which determine univoquely the two boundaries.
On the other hand, if Ts = T, we can express by means of (2.11)
Ts as a function of Zr and, by substitution, we see that eq. (2.12)
reduces to an O.D.E. for zp.

Our next aim is to show that the assumptions (2.14)-(2.17) make us
exclude one of the two formal solutions of (2.11)- (2.13), so that the
uniqueness of the whole problem will be achieved.

Putting together (3.10) and (2.14)-(2.16), we get:

{Zs(t):() if TfST:Té*SO (311)
25(t)<0 if TS:Tf>T '
Evaluating T for t = 0, we have:
kfgob —|— kuho(c — b)
T|i=o =T(b,c,h = 12
|t 0 ( y G 0790) k(C—b)—}-kfb (3 )
where Koo L
=29 4 g,
T +ky >0

We have the following possibilities (let us call T'(b, ¢, ko, go) = T(0)):

a

) T(0) >

b) T; < T(0) < 0;
¢) T(0) < Tf <0
d) Ty = T(0).

In the first case, none of the formal solutions of (2.11)-(2.13) can be
accepted, owing to (3.11). In case b) the solution of (2.11)-(2.13)
corresponding to T's = T can not be accepted, once more by virtue
of (3.11) (we recall that Ts is required to be continuous up to t = 0).
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Similarly, in the case ¢) the solution with Ts = T must be excluded.
In order to discuss the occurrence d), we write eqq. (2.11)-(2.12) in

the following form:

i(t) = i+£
_iﬁg) yl()t)
y(t) = NORETD)

where z(t) = zs5(t), y(t) = zr(t) — zs(t) and

Lpwy — ku(Ts(t) — h(t))

where we set

LT
v = —Kop. = —Kopy—2L > 0.
To

After easy computations, we can see that
Bpivy
Pw

AD - BC = — >0,

A = A(TS, ho) = 80,0 L > O
Iy Y
( 5790) gopr (go S) <
ku Ts — h N 1— w
C = C(TS7 hO) = ( S O)E(Opp( p'LEO) + p 50) n
(1—eo)yL
-—)— <0
€0L <
k —_T (1 — y
D= D(Ts7g0) — _ f(gO S)g(opp( p}Lé‘O) +p 50) S o,

(3.13)

(3.14)

(3.15)

(3.16)

This means that as long as & = 2¢ < 0, it is y > 0. Hence, since h

and ¢ are constant, we have from (3.9), (3.8):

@ _ k¢(iy — 29)(kgo — kuho)

S 0if#<0.
dt (ky + kyx)? fos

(3.17)

Thus, the solution of (2.11)-(2.14) with Ts(t) = Tt can not be ac-
cepted; actually, for ¢ > 0 we would have Z5(t) > 0. We conclude
that when T'(0) = T the solution of (2.11)-(2.14) is of LF-type (i.e.

Ts(t) =T, Zs(t) = O).
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Recalling (3.12), (2.18) it easily seen that the conditions T(0) >
0,7f <T(0) <0, T(0) < Tf < 0 correspond respectively to condi-
tions (3.1), (3.2) and (3.6).

We are going now to integate the system (2.11)-(2.17) in order to
conclude the proof of proposition 3.1.

Assume that for ¢ = 0 (3.2) holds. The solution of (2.11)-(2.17) is,
at least in some right neighboorhood of ¢ = 0, of LF-type; as we
mentioned above, the mathematical problem is reduced to solving
the following O.D.E. for the top of the soil z7:

3 (t) o p_u) —kfbg() — kuho(ZT(t) — b)
{ T( | CI0 =D Epub Cob) + 10 (3.18)
zr(0) =¢

where C(b) is defined by (3.4). Once (3.18) has been integrated, the
temperature T's(t) = T is evaluated by means of (2.11).
Expressing the conditions (2.14) and (2.16) in terms of zr, one gets:

_ Pw I(Opc

< z7r(t) <
0<:zr(t) < s

(3.19)

Obviously, the previous formula computed for ¢ = 0 gives again (3.2).
If it is 27(0) = 0 (that is T(0) = 0), the unique solution of (3.18) is
zr(t) = ¢; this entails that the water pressure in €, and the freezing
temperature T'(b,t) are identically zero.

If 27(0) > 0 (that is 7(0) < 0), the solution of (3.18) is the following,
when hg > 0:

Lpyb+ Coky kfbpi
Coky(go — ho) + Lpwbgo In kyho(z7(t) — b) + kfbgo _y
(kuh0)2 kuho(C — b) + kfbgo

Examining the implicit equation (3.20), we easily see that the solu-
tion z7(t) of (3.18) is strictly increasing and tends to the asymptotic
value defined in (3.5). The thickness of the lens tends to 23 — c.
The initial value of the hydraulic flux is

—kfbg() — kuho(C — b)
(¢ = b)(Lpuwb + Coky) + kCob

4w (0) =
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and is such that tl}g_qoo ¢ (t) = 0T therefore, if (2.7) (or, equivalently,
(2.16)) holds for t = 0, it holds for any ¢ > 0. Correspondingly,
the water pressure tends to the stationary profile pi¥(z) = 0, while
Ts(t) = T(b,t) tends to zero by increasing and starting from the
value T'(b,0) = —Tobqy,(0)/LpwKo. The asymptotic profile of the
temperature T is

T(zt)=3 "7 . (3.21)

Consider now the condition, equivalent to the second one in (2.6),
Ty < T. If it holds for ¢+ = 0, (that is if the second inequality of
(3.2) holds), then it will be fulfilled for any ¢ > 0: indeed, Ty < T is
equivalent to the second inequality in (3.19) and Z7(t) achieves its
positive maximum for ¢ = 0.

If we take hg = 0, the solution of (3.18) is

ZT(t) =b+

—¢9 + \/gb% — P <m2t — (¢1(c —b) + 2k Cob)(c — b))
+

pi
¢

where

o1 = prb—}— Coky >0, ¢ = kaob > 0.

The upper surface zr does not tend to a finite value but increases
as t1/2. Nevertheless, the water flux, the freezing temperature and
the water pressure have the same properties as in the case hg > 0.
In particular, from (3.21) we deduce that the temperature tends to
vanish everywhere in €,; the same property holds for each point
fixed in Q.

We conclude that the solution of (2.11)-(2.17), whenever (3.2) holds,
is globally a LF-type solution, without swtiches to F'P solutions.
Let us pass now to examine the solutions of (2.11)-(2.17) of F'P-type.
Assume that (3.6) holds. Taking T's(t) = T and writing (2.11)-
(2.12) as in (3.13), we see that the coefficients defined in (3.14) are
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constants. By virtue of (3.10), condition Ty > T'(0) is equivalent to

y(t) B(Ty, go)
o0 < _A(Tj:,ho)' (3.22)

Condition (3.6) is nothing but (3.22) evaluated for ¢t = 0.
When h and g are constant, system (3.13) is autonomous and the
orbits are given by:

LN —Asu® + (Cr = By)u+ Dy B+ G
—b\? —b 4Arw
—Aj <Cb ) ‘|‘(Cf_Bf)CT‘|‘Df !

| oA YTy oA, ¢ e
Xnu+Bf—cf+wc—b+Bf—cf_ =%
24, b 24,
t
where u(t) = y() and
z(t)

Ay = ATy, ho), By = B(T},90),Cy = C(Ty, ho), Dy = D(T}, go),

4A; Dy + (By — Cy)?
w =
1A

Recalling (3.16), we see that

—Afu2—|—(Cf—Bf)u+Df = —(Afu—l—Bf)u—I-(Cfu—}-Df) > 0, (3.23)
B
ifu<—=L. Noticing that
Af

|By — Cy|

Bf-C B
S s<ou< —=L (3.24)
24,

<w,u+ 2Af Af

it is easily seen that the orbits starting from one point (z(0),y(0))
verifying (3.6) can be written in the following form:

. ¢_Af(c—b)2+ (Cy = By)(e=b)b+ Dsb? (3.25)

—Aju+(Cy = BrJu+ Dy



236 F. TALAMUCCI

By + Cy

c—b By-Cy By - Cy - 4A 0
(b MYy +“) (“+ 24,

(b MYy “) (” oA, ¢

The orbit (3.25) satisfies (3.22) as far as zg = z is greater than z,
say for t =t < 400, with Z = F(—=Bj/Ay). By virtue of (3.23) and
(3.24), we have z(t) > 0 for 0 < t < t. We have (t) = Z5(t) = 0
and #(t) > 0 for t > ¢: thus, the solution can be accepted only as
long as ¢t < ¢, since (2.5) is violated for ¢t > ¢. Finally, we remark
that the thickness of the frozen part y(t) = 2p(t) — zs(t), 0 < t < ¢
is increasing, by virtue of (3.16). The height of the soil for t =1 is

zr(t) = y(t) + =(t) = (1 - By/Ag)z.

It can be checked that for ¢ > ¢ a process of lens formation occurs.
Actually, consider the system (3.18), updating the data at the time
t =t, that is replacing b with z and ¢ with zp(¢). For t =t we have

X

= F(u)

— krgoT = kuho(2r(t) — 7) + n(z, 21(1)); (3.26)

in other words (3.2) holds. The equality in (3.26) means that for
t = t the water pressure at the front zg is the critical one p. (or,
equivalently, the freezing temperature is 7). The system describing
the process of lens formation which sets up at ¢t = ¢ is obviously:

_ pw_ —kgrgo — kuho(ar(t) — 7)
pi (z7(t) — Z)(Lpw® + Coky) + ksCoZ

ZT(i):( —i—;)m

Toz

prI(O ‘
The process of lens formation develops as we described above. The
asymptotic height of the soil is

00 kgo _
o :<1_kiho)$

zr(t)

where Cy = According to (3.26), we have Zp(t) > O.




A MODEL OF FROST HEAVE etc. 237

Notice that Ts(t), 2s(t), 2r(t) are continuous at the switch time #:
namely, the triplet (7s, zg, z7) obtained by attaching the F'P-type
solution with the LF-type one at ¢ = ¢ is solution of (2.11)-(2.17),
as the requirements specified in section 2 are satisfied. &

4. Boundary temperatures depending on time

Assume now that the boundary temperatures depend on time. We
have:

ProPOSITION 4.1. Let h and g satisfy the properties (HG ) listed in
section 2. Then:

i) if
kuh(0)(c—b)+ ksbg(0) > 0, (4.1)
then system (2.11)-(2.13) has no solution consistent with (2.14)-
(2.17);
i) if
kyh(0)(c —b) + ksbg(0) <0, (4.2)
then (2.11)-(2.17) has, at least locally, a unique solution for
t>0.

In particular, defining n and Co(b) as in (3.3) and (3.4), we have that
the process starts with a LF-type solution in the following cases:

kyh(0)(c —b) < —kgbg(0) < kyh(0)(c—b) +n, or (4.3)
— ksbg(0) = kyh(0)(c —b) + 1 and G(0) >0 (4.4)
where
G(t) = (kpg(t)z(t) + kuh(D)y (1)) (ky(t) + kra(t)) + (4.5)
iy (AL | B0

B (C(Tfl,)h(t)) N D(ff_v!i}(t))) m(t)> (kg(t) — kuh(t))

and A, B,C,D are defined as in (3.14); the process starts with a
F P-type solution if:

— kbg(0) > kyh(0)(c—b)+ nor (4.6)

— ksbg(0) = kyh(0)(c —b) + 1 and G(0) < 0. (4.7)
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Proof. As in the previous case, Zg(t) is a linear function of T,
but the function 8, defined in (3.8), depends on ¢ through A(t) and
g(t). Thus, we have T = T(zs, 21, h(t), g(t)), where T has the same
meaning as in (3.9). Moreover, (3.10) still holds. Each of the two
solutions of (2.13) Ts = Tf and s = 0 (that is Ts = T) determines
univoquely the solution of (2.11)-(2.12), by virtue of the assumption
HG, i) stated in section 1.

Consider now T(0), that is defined as in (3.12), where, instead of
ho and go, h(0) and ¢(0) must be replaced. Cases (4.1), (4.3), (4.6)
correspond respectively to T(0) > 0, Ty < T(0) < 0, T(0) < T < 0
and they can be proved exactly as we did for cases a), b), ¢) of
proposition 3.1, by excluding one of the formal solution of (2.11)-
(2.13).

Let us pass to examine the case Ty = T(0). Eqq. (2.11)-(2.13) can
be still written in the form (3.13), with the only difference that the
coefficients A, B,C, D depend on time through A(t) and g¢(¢) (i.e.
A = A(Ts,h(t)), etc.). Making the derivative of T w. r. t. time,
one gets, instead of (3.17):

AT _ ky(dy — 29) (kg = kuh) + (ksga + kuhy) (ky + kyz) (4.8)
dt (ky + kyz)* -

Inequality (3.16) (and the consequence written just below that for-
mula) is still valid.
Now, it is sufficient to remark that if

a7
dt

then the solution of (2.11)-(2.13) of LIF-type (respect. of I'P- type)
must be excluded, since T's would be smaller than T (respect. Zg
would be positive).

By virtue of (3.14), it easily seen that inequalities (4.9) are equivalent
respectively to conditions (4.4) and (4.7) (notice that G(0) can be
computed once the data (2.17) are known).

Let us examine now the case Ty = T(0),G(0) = 0. We have that sys-
tem (2.11),(2.12),(2.17) has at most one solution which is phisically
consistent, i.e. which satisfies (2.13)-(2.16). Indeed, assume, con-

trary to our claim, that two distinct triplets (ng), Z;F), TéF) =1Ty)

(FP-type solution) and (sz) = b, Z%L), TéL) = Tr,) (LF-type solution)

(0) < 0 (respect. > 0), (4.9)
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can be found such that eqq. (2.11)-(2.17) are fulfilled. In particular,
it would be (cfr. (3.11),(2.14)):

Tr <T;<Tn, Tp#Ty T Ty (4.10)
where (cfr. (3.9))

(F) _(F)

T /6(25 y 2T 7h(t)7g(t)) _ ﬁF
Tr= - (F) _(F) T T ap
s o) " (4.11)
A ﬁ(bWZT 7h(t)7g(t)) _ ﬁL
== () T Tar
a(b, zp”) aj,
Since z‘gF) <0 (cfr. (3.11)), it is
2P =p> 0, (4.12)

The comparison theorem applied to equation (2.11) yields, recalling

(4.10) and that p; < py, the inequality z(TL) < Z(TF), hence

y @ = AP <y ) ) (4.13)

and therefore (see (3.8))
pr < Br. (4.14)
We calculate now the derivative w. r. t. time of a:
o k3 k1 (C, D)
dt — eopwl 2? * eopuLy? \z  y )’

(4.15)

From (3.14) and (4.10), we see that the following inequalities hold:
C(Ts, h) < C(Ty,h) <0, D(Tp,q)> D(Ty,g) > 0. (4.16)

From (4.12), (4.13), (4.15) and (4.16) and taking into account that
ar(b,¢) = ap(b, c) we deduce:

aj, > aF. (417)

From (4.14) and (4.17) it would follow T > Ty, which is not con-
sistent vith (4.10).
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On the other hand, it can be proved that it is not possible that any
of the two formal solutions of (2.11)-(2.13), (2.17) is not consistent
with the constraints (2.14)-(2.16).

Actually, let us assume, by contrary, that in some interval (0, 7] it is

ag,

ap
Owing to (3.11), it would be

(F)

sz):b<zS = z(F)

F)

L2 >0, te(0,7]. (4.19)

From (4.18) and (2.11) we deduce, arguing as in the previous case,
7 > ) hence

y B >y s s B te (0,7]. (4.20)

Equation (4.18) yields C(Tr,h) < C(Ty,h) < 0, 0 < D(Typ,g) <
D(TY%, g) and, togheter to (4.19), (4.20):

C(TL,h)+D(TL,g) C(Tf,h) D(Tf,g)‘

<
Therefore:
ar, < afp, (4.21)
but (4.20), (4.21) are not consistent with (4.18). &

REMARK 4.1. The last part of the proof of proposition 4.1 provides
existence and uniqueness of the solution of (2.11)-(2.17) even in the
case T(0) = Tf, G(0) = 0. Nevertheless, it can not be predicted,
at least maintaining the present assumptions, which type of solution
will take place (LF or FP), or if it will ascillates between the two
formal solutions of (2.11)-(2.13). Obviously, additional conditions
involving higher derivatives of the data (which have to be required
more regular) can be given in order to predict if T(¢) will be greater
or smaller than 7 in a right neighbourhood of ¢ = 0.

The rest of this section is devoted to the qualitative analysis of
the evolution in time of the solution introduced in proposition 4.1. In
particular, we are interested in showing that, contrary to the case h,
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g constant, subsequent switches from L F-type solutions to F'P-type
solutions and wice versa are possible.

Let us assume, as an example, that condition (4.6) holds. Owing
to proposition 4.1, we are induced to solve (3.13) by imposing T's(t) =
T¢ in (3.14) and looking for the boundaries z(t), y(t).

Secondly, we pass to solve the following system with respect to ¢:

A(Ty, h(t)) (4.22)

It is worth to notice that it is not possible for z(¢) to reach the base
of the soil 2 = 0 in a finite time (even if A vanishes). Actually,
as long as # < 0, condition (3.22) holds (with A(t), ¢(¢) instead of
ho, go); thus, the temperature ¢(¢) should go to —oco in a finite time,
contrary to assumption HG.

Therefore, if (4.22) has not any solution, we have that

lim zg(t)=4¢, 0</¢<b. (4.23)

t—+oo

From (2.11) we see that this case is consistent only with z7 un-
bounded.

In order to construct an example for (4.23), we could consider a
function g(t) with the property, for each time ¢:

g(t) < min {F(2), F2(t)}

where
B2cop,L (A B
Fi(t)= —20 (24—
10 (c—b)ka<b+c—b)
Agopr<C D)
Fy(t) = - —2w2 (2
2(0) bky \% T o=y

where A, B,C, D are computed in T, h(t) and ¢(t). Moreover, we
take h constant and ¢(0) so that (4.6) is fulfilled. After some com-
putations, one can see that & < 0 for all ¢t > 0 and that ¢ defined in
(4.23) is zero.

Assume now that (4.22) has solutions and call #; the smallest
time such that (4.22) is verified. For t = ¢ (3.22) (with h(¢;) and
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g(t1) instead of hq, go) is violated, since #(t1) = 0. If (¢) for t > #;
is again negative, then the process of frost penetration goes on (the
temperature T is equal to Ty only for ¢ = t;, then it becomes again
lower than T%).

If, on the contrary,

&(t) >0 fort>ty, (4.24)

(that is T > Ty for t > t;), then the solution of (3.13) we computed
is no longer acceptable.

We are induced to examine the possibility that for ¢ = ¢; a lens
starts to form. Call b, = z(t,), ¢; = y(t1) + b;. Since T > T; for
t >ty (cfr. (4.24) and (3.10)), we are in the case (4.4) of proposition
4.1, obvioulsy taking ¢ = t; as the initial time. The solution of
(2.11)-(2.17) is found by solving the O.D.E. (3.18) in the unknown
zr(t) = y(t) + by, with the following modifications: h(t), g(t) instead
of hg, go, b1, Co(br) (see (3.4)) instead of b, Cj.

Notice that T's(t), 25 and Zr are continuous at ¢ = ¢, so that the
F P-type solution starting at ¢ = 0 together to the LF-type solution
starting at ¢ = t; give the solution of (2.11)- (2.17) satisfying the
requirements of section 2.

The LF-type solution of (3.18) (modified) develops according to
one of the following possibilities:

Kop.
i) 0<2T(t)<—’0w 0Pc 45 4,
pibi
.. . *\ . * . pr(Opc
i1) Z7(t*) = 0 for a certain t* > #; and 0 < 27(f) < — 2
pidl
<t <t Z
. . pwl(Opc . .
i) Zr(te) = — for a certain tp > t; and 0 < 27(¢) <
Pi01
Kop,
—M, t <t <ty
pibi

The first case is equivalent to (cfr. (3.19)) T; < T < 0 for each
time ¢t > t1; the process of lens formation goes on for each time
t> 1.

In the second case, T (b, z(t*, h(t*), g(t*)) = 0. If the front speed
Z7(t) is again positive for ¢ > ¢*, then the lens formation process
goes on; if, on the contrary, 27(f) < 0 when ¢ > ¢*, the solution is
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no longer acceptable. Obviously, no F'P-type solutions can exist for
t > t*, since Ts(t) is required to be continue.

Finally, in the third case the water pressure reaches the critical
value p, for t = ty, that is T(by, 2(t2, h(t2), g(t2)) = T.

If p(bs,t2) is simply a minimum point, the pressure py,(b;,t) will
verify (2.6) also for t > 5 (i.e. T < Ty for t > t3). If, on the contrary,
we have
pwl(Opc

pibi
then the constrain p,,(b;,t) > p. is no longer satisfied.

In that case, one examines the possibility that a new frost pene-
tration process will occur for ¢ > t5.

Actually, we are in the case (4.7) of proposition 4.1, setting the
initial time at ¢t = ¢5.

Hence, for t = t5 a second process of frost penetration starts. The
development of such as process is exactly as we already described for
the first one. It is evident that choosing opportunely the boundary
temperatures h and ¢ we can simulate a process where the forma-
tion af pure ice layers alternates with the penetration of the freezing
front towards the base of the soil. The solution of (2.11)-(2.17) is
constructed by attaching the LF solutions and the F'P solutions,
since the regularity required is preserved.

The frost heave process stops when one of the following circum-
stances occurs:

Zr(t) > — , >, (4.25)

i) the boundary zg(t) tends asymptotically to the base of the soil
zg = 0, as it happens in the example following (4.23);

i7) there is a time
9 > 0 such that Ts(72) = T(2s5(72), 20(72), h(72),9(72)) > T
and z7(72) has a maximum (in that case the last process is lens
formation).

The graph in fig. 4.1 shows the simulation of a transition process
where two lenses form, alternating with the penetration of the freez-
ing front. The system (2.11)-(2.13) has been solved by using Mathe-
matica software and imposing the following boundary temperatures:

{h(t):e—f+1, t>0

g(t) = —Bext' —5HFE-12A -y 5 g (4.26)
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Figure 4.1: a transition process obtained by a numerical simulation. The lower
moving boundary is the freezing front zg, the upper one is the height of the soil
zr. The intermediate parts are formed by pure ice (lenses). In the interval of
time [0,¢1) a first process of frost penetration takes place; for ¢ = ¢; the growth
of the first lens starts. When ¢ = ¢, the front penetrates again through the soil,
until ¢ = ¢3, when it is z's(tg) = 0 and the formation of the second lens starts. For
t > t4 the last process of frost penetration occurs. The diagram has been plotted
by solving numerically the systems (2.11)-(2.17) and (4.22), once the boundary

temperatures have been assigned as in (4.26).

REFERENCES

[1] DING Z. Z., The problem of primary frost heave with frost penetration,
Mathematical Methods in Applied Science, vol. 18 (1995), 995-1011.

[2] DiNG Z. Z. and Tarnamucct F., The existence of the solution for the
problem of primary frost heave with lens formation, Stability & Applied
Analysis of Continuous Media, vol. 2, n. 4 (1993), 485-500.



[3]

A MODEL OF FROST HEAVE etc. 245

DiNnGg Z. 7. and TaLamucct F., Primary frost heave: a quasi-steady
approach, Canadian Applied Mathematics Quarterly, vol. 1 (1996), n. 4.
FowLER A. C., Secondary frost heave in freezing soils, STAM J. Appl.
Math., vol. 49 (1989), 991-1008.

MILLER R. D., Freezing phenomena wn soils, in: D. Hillel ed., Applica-
tions of Soil Physics, Academic Press, chapter 10 1978, 254-299.
Taramucct F., Analysis of coupled heat-mass transport in freezing sat-
urated soils, accepted for publication on Surveys on Mathematics for
Industry, Springer-Verlag, 1997.

Pervenuto in Redazione il 4 Ottobre 1996.



