An Introduction to the
Microlocal Analysis of
Hypercomplex Functions

A. FABIANO (%)

SOMMARIO. - Questo lavoro fornisce una panoramica sullo stato dell’arte
nel settore dell’analisi microlocale di funzioni ipercomplesse e sul tipo
di problemi studiati in questo contesto. L’ introduzione é essenzialmente
autonoma.

SUMMARY. - We provide a survey on the state of the art in the area of
microlocal analysis of hypercomplex functions and on the kind of prob-
lems which appears in this context. We intend to propose an essentially
self-contained introduction.

1. Introduction

A key result in the classical theory of analytical functionals is the
duality theorem (algebraic) which associates to every analytical func-
tional (with compact real carrier K') a function, the Fantappié indi-
catrix, holomorphic in C'\ K, [Fa].

Kéethe, in [Ko] has subsequently extended this same result to the
realm of topological vector spaces. Later it has been observed (essen-
tially by Martineau) that this duality theorem actually establishes
an isomorphism between the space Bg of the real hyperfunctions
which have support in the compact set K and the space (A(K))’ (of
analytic functionals carried by K).

(*) Indirizzo dell’ Autore: Dipartimento di Matematica, Universita della Cala-

bria, Arcavacata di Rende (CS) (Italy).
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P. Levy, in his classic [L], and independently Fichera in [Fi],
proposed the construction of an analogous theorem for the case in
which the holomorphic functions are substituted by regular functions
of a quaternionic variable.

Gentili, Struppa and the author in the recent [FGS], have shown
how this is possible and have constructed a quaternionic analogue
of the sheaf of hyperfunctions; this sheaf is used, specifically, to
demonstrate a Kéethe duality theorem for the quaternionic case.
The same type of approach used in [FGS] has been employed by
the author in a recent work [F], in which monogenic functions with
values in a Clifford algebra from the point of view of sheaf of theory
have been considered. Specifically the author constructs a sheaf of
boundary values of monogenic functions.

In this work we have gathered many basic results in this field, so
that it can be considered as a first step for the systematic study of
Clifford hyperfunctions.

The interest in such an approach is also justified by several el-
ementary problems in the theory of ordinary differential operators
which act upon such hyperfunctions. These problems, specifically,
lead us to an examination of the localization of the singularities of
such objects, and, therefore, to the so-called microlocalization of the
sheaves which define them (cf. [KKK], [SKK]).

It would therefore seem opportune, at this point, to provide a
“survey” on the state of the art in this sector, and on the kind of
problems which have to be confronted. In this work, we intend to
propose a completely autonomous introduction, in the hope that this
will stimulate the research in this sector, which seems to us to be
promising.

We shall now describe the structure of this work: the second sec-
tion is dedicated to a quick introduction to Clifford Algebras and to
monogenic functions. The case of quaternions and of regular func-
tions are treated as a special case. In the tird section the sheaf of
regular functions will be studied while in the fourth the sheaf of
monogenic functions will be studied. Section five contains some new
and exciting results which point to a generalization of the theory to
the case f several variables. Section six is dedicated to the microlo-
calization of the sheaves introduced in the two preceding chapters
and to some applications to the study of ordinary differential equa-
tions. Finally, we conclude the paper with an analysis of some recent
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work of Sommen in a very related area [S1] [S2]. The author is grate-
ful to the referee for pointing out some important references.

2. Introduction to monogenic functions on Clifford Al-
gebras

In this paragraph we shall introduce monogenic functions first in the
space of quaternions and later on in Clifford algebras. The standard
reference is [BDS]. With H we denote the algebra of quaternions,
with the standard base {1,%,7,k} in which ¢, j, &k are immaginary
units (i2=j2=k*= -1 and ij =k, jk=1,ki=j, ji=—k kj=
—1, 1tk = —j.

We shall denote the generic quaternion ¢ € H by

q=x0+12; + jro + kz3.
In the following # will have the Euclidean topology of R*. We define
the right and left Cauchy-Feuter operators by:
9 0 .0 .0 i d
8q a$0 8 T 8332 a$3
& d 0 . d
aq &ro 8331 8:62

DEFINITION 2.1. Let U C H an open set, f : U — H a differentiable
function in the real sense. We say that f is left regular if it satisfies

af

=0
dq ’
and we say that f is right regular if
Oy
&I .
dq

REMARK 2.1. The simplest examples of regular functions are the
regular polynomials such as

($0 — ’L';ﬁl), ($0 — 2£2) s

and their powers. On the other hand, the space of regular functions
enjoys some surprising properties, such as the fact that the product
of two regular functions is not regular (see Remark 2.1), and so, for
example, f(q) = ¢” is not regular as well.
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We shall denote with R;(U) and R,(U) respectively the spaces
(on which H acts by external multiplication) of left and right regular
on U.

If U is an open set in H, we shall indicate with £7(U) the vector
space of the C* p-forms on U with real values. The elements of
EE(U) == EP(U) ®r H will be called C* p-forms with values in H.

We shall introduce some forms which will be useful later:
dg = dxg + 1dxy + jdxo + kdzs
dg = dxg — 1dxy — jdxy — kdxs
Dq = dxy AN dxg ANdrs — idzg A dxg A des — jdog A dzy N dzs +
— kdzg N dxy Ndzg,
¥ = dxg A dxqy Adagy Adas.

It can be noticed that dq € £};(H), Dq € £ (H), while 9 € £4(H)
is the canonical volume form, which satisfies the following identity:

dgNDg=—-DgANdg=479.

REMARK 2.2. The product of two regular functions is not necessar-
ily regular, indeed

a(fg) of

dg ~.,09 .,60g dg
== — — — 4+ kf—.
00 = 00 oug a0, T any T Gas
The theory of regular functions in one variable has been devel-
oped in close analogy with the classical theory of one complex vari-

able.

In particular, it is possible to prove results which are in the same
spirit as the usual Cauchy formulas, where the customany integration
over a closed path is replaced by integration over a closed 3-manifold.

THEOREM 2.1. (Cauchy-Feuter 1) Let f,g:U C H — H be two C*
functions such that f € Ri(U), g € R.(U). If V is an open set with
piecewise smooth boundary, and V C U, we have

/ gDqf =0.
oV
Specifically, if a C*-function f: U — H is left reqular then

Dqgf=0
av

for each open set V.
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THEOREM 2.2. (Cauchy-Feuter I1) Let f : U C H — H be a C1, left
reqular function, and let V C U be as above. Then for any qo € V,
and for

Glo) =i m =1
we have )
ﬂ%)=§;aéma—q®Dqﬂ®-

THEOREM 2.3. (Morera) Let f : U C H — H be a continuous
function such that

Dqf =0
av

for every domain V with piecewise smooth boundary and V C U.

Then f e R(U).

The other area in which the theory of regular functions mimiks
the theory of holomorphic functions is the one concerned with ex-
pansion in power series. In this case, however, the difficulties due
to the lack of commutativity make the computations and the results
more unpleasant. We therefore need a bit of notations.

Let m > 0 be an integer and let o, be the set of all the triples
V= [ml, ma, m3] of non negative integers so that my +mq+msz = m;
set eg =1, €1 =1, e = j, e3 = k, and define

1 . .
Pla) = = 3 (woir, = 21,) ++(@oin, = 21,)

where the summation is extended to all the m-tuples (Aq,...,An)
such that 1 < Aq,..., A, < 3 and so that the number of the A;
which is equal to A is exactly my for h = 1,2, 3.

We can observe that the polynomials P, are homogeneous of
degree of m over R. Moreover, each P, left regular.

As a consequence of Theorem 2.2 one has

THEOREM 2.4. Let f: U C H — H be a reqular function. Letp € U
and set § = dist (p, 0U).
Then, if |qo — p| < & we have

flq) = i > Pq—D)a2,

m=0vEom
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where
1

) =53 /lq_pH Gu(q—p)Dqf(q).

REMARK 2.3. Unfortunately it is not possible to obtain a “good”
extension of Theorem 2.4 to the case of more variables and thus no
expansion in powers series is known for regular functions on H”, at
least for the moment. It is also true however, that every regular
function is harmonic and thus real analytic with quaternionic vari-
ables on H™ = R*": thus a powers series exists, but in the 4" real
variables not necessarity in the n quaternionic variables.

We shall now introduce monogenic functions with values in a
Clifford’s algebra.

Let V,, (0 < s < n) be a real n-dimensional linear space with a
base (ey,...,e,) and a bilinear form (V,W), for < VW > in V, g,
such that

(e:,€;) 0 for idifferent from j,
(e:,€i) 1 fori=1,...,s,
(ei,e;) = —1fori=s+1,...,n

Considering the 2" dimensional linear space C'(V,, 5) with basis given
by {ea: A= (h1,...,h), 1 < hy <...<h, <n}, wecan define the
product

#ANB\S(_1)p(AB), |

€, e = (—1)
where S is the set {1,2,...,n}, #(X) indicates the cardinality of a
set X, and

p(A,B) =Y p(A,5), pAj)=#{icAi>j}.
JEB

DEFINITION 2.2. The real associative (not commutative) algebra
C(V,,s) is called the Universal Clifford Algebra over V(n,s). When
s = 0, we obtain the so-called Clifford Algebra which is denoted by
A, or simply A when no confusion can arise.

Let C), be the linear subspace formed by all the products e 4, with
#A = p, whose elements are called p-vectors.

We shall define the elementary operations of inversion and of
transposition over C'(V,, ;) as follows:
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— for each vector v in C),, we shall define its inversion by
v = (=1)Pv.

— for each product e4, we shall define its transposition by

(eq)t = (_1)(#A_1)#A\2€A )

DEFINITION 2.3. We shall define the involution, combination of the
inversion and the transposition previously defined, as

€4 = (EA)*L‘

for each vector e 4 in the base, then extend it linearly to every Clifford
number, expressed as a combination of these products.

In a natural way, it is also possible to define the conjugation of
a function f : U — A from an open set U of R™*! with values in

Clifford Algebra A.

DEFINITION 2.4. Let # = (zq, ..., %) be the generic point of R™+1.
The Cauchy-Riemann operator on the space of Clifford Algebra val-
ued functions is defined as

D =eyd/0x1+ -+ €,0/0x,, .

REMARK 2.4. Since a Clifford Algebra is not commutative D f and
S D are different functions. We can also define a conjugated operator
D, in an obvious way, substituting every e;, with its conjugated form.

DEFINITION 2.5. A function f in C'(U, A) is called left monogenic
inUif,on U, Df = 0.

A 1-form differential with values in A, which we will frequently use
in the sequel is given by

ds = eqdzg — erdzy + - - -+ (—1)"epdzy, .

THEOREM 2.5. Let f and g respectively, be right and left monogenic
on the open set U. Then, for each (m + 1)-chain ¢ contained in U
one has

fdsg =0.
de



208 A. FABIANO

Precisely, let F be the so-called Cauchy kernel defined in R™+1\ (0)
by

1 T
F(g)—— "~
(r)wn+1 |£C m+1 "’
where )
Wpt1 = o (m+1)/2 —
r(=)

indicates the area of the unitary sphere S™ in R™t'. The function
FE is obviously both a right and a left fundamental solution for the
operator D.

THEOREM 2.6. (Cauchy’s integral formula) Let f be a left-monoge-
nic function over U and left ¢ be a compact (m + 1) dimensional
orientated differentiable variety contained in U.

a) sex €int(c) [;, F(y—x)dsf(y)= f(z)
b) sexeU\c [, E(y—z)dsf(y) =0.

THEOREM 2.7. (Morera’s Theorem) A function f is left monogenic
in an open set U if and only if it is continuous in U and if it satisfies

dsf =10
a1

for every closed hypercube I in U.

3. The sheaf of regular functions and their boundary
values

In this chapter we shall tackle the study of the sheaf R; of left regular
functions of a quaternionic variable. We begin with some notations:
If U is an open set of H”

- Ri(U) (respectively R;(U) denotes the right-sided vectoral space
(left) of the regular left-sided functions over U.

— R; denotes the presheaf {R;(U)},U C H” with the usual restric-
tion applications

pov :Ri(U)—=R(V), VCU
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— HI(U,R;) will indicate the j-th cohomology group of U with co-
efficients in the sheaf R;.

It is well-known that
HY(U,Ry) = T (U, Ry) = Ru(U) -

The result that follows is a generalization on the well-known Mittag-
Leffler theorem, and is demonstrated analogously.

THEOREM 3.1. Let U be an open set in H. Then
HYU,R) =0.

REMARK 3.1. In general this theorem is false for open set sets in
H" n>1.Soif U C H" and K is a compact set contained in U, it
can be demonstrated that

HY U\ K,R)) #0.

We will discuss this phenomenon in more detail in Section 5.

Now we shall focus our attention on a single quaternionic variable
and define a sheaf of boundary values of regular functions.

To justify this approach we shall begin by giving a quaternionic
version of Painlevé’s theorem which is a simple consequence of the
quaternionic version of Morera’s theorem.

Let HY ={q€ H :20>0},H  ={q€ H : 29 < 0} and

H={qeH :2o=0}.

THEOREM 3.2. Let U be an open set H and let Ut = UN HT,
U-=UnH-;if Fe Ry(UTUU), F C C°U) then F is reqular

over U.

DEerFiniTION 3.1. For U open set in H and V open set in H so
that U is relatively closed in V, we shall define the space of left
H-hyperfunctions over U as

RV \U)
0= TRy
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It can be observed that (in virtue of Theorem 3.2) the notion of
H-hyperfunction exactly represents the difference of boundary values
of a function F € R;(V \ U) along the boundary H.

The definition of F(U) does not depend on the choice of the open
set V, as it can be shown using the Mittag-Leffler Theorem in the
standard way (Theorem 3.1).

We can now consider the natural presheaf defined over H by
associating to each open set U in H the space F(U). Using again
the Mittag-Leffler Theorem we obtain the following result:

THEOREM 3.3. The presheaf {F (U)} is a flabby sheaf.

If K is a compact set in H and € is an open set in H we shall
denote with Fx () the space of H-hyperfunctions over © whose
support is contained in K.

DEFINITION 3.2. Let f € Ry(Q2) and let I € Ry(V \ K) be defining
function for f. We shall define the integral of f over €2 as

/Qqu:/quF

where I' is a closed smooth three-dimensional boundary variety of a
quadridimensional set 3 diffeomorphic to a ball containing K and
such that ' C V.

The classical theory of hyperfunctions shows that the space Bx
(R) can be naturally identified with the space of analytic functionals
carried by K. It is now possible to prove a similar result for the case
of H-hyperfunctions.

DEFINITION 3.3. Let K be a compact set in H. We define the space
of germs of right H-analytic functions on K by setting

G(K) = indlim R, (U)
UDK
Uopen
and endowing G/(K) with its natural topology of the inductive limit.

The classic Fantappié-Kéthe-Martineau-Sato duality theorem can
be generalized as follows:
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THEOREM 3.4. Let K be a compact set in H and let V' be an open
set containing K. Then

e

where ((G(K))' denotes the space of left continuous H-linear fun-
ciotnals over G(K)

COROLLARY 3.1. IfK is acompact set in H, then (G(K))' = Fx (H).

We note that this last theorem, together with his corollary, is
a generalization of the classic treatment of analytic functionals to
the case of regular functions of a quaternionic variable. Note more-
over, that, as already happens for analytical functionals, the spaces
{G'(R)} do not define a sheaf, and therefore it is not possible to
spreak properly of support of an H-functional.

4. The sheaf of monogenic functions and their bound-
ary values

With the same approach, considering the monogenic functions with
values in a Clifford algebra from the point of view of sheaf theory,
we now introduce a sheaf of boundary values of monogenic functions
with values in a Clifford algebra.

Let U C R™! be an open set, let A be a Clifford algebra and
denote by LM (U, A) the right-sided A-module of all left monogenic
functions from U in A.

DEFINITION 4.1. We shall indicate by LM the presheaf { LM (U, A)},

for U in R™*! with the usual restriction applications
vaiLM(U,A)%LM(V,A) VCU;
LM defines a complete presheaf and, therefore, a sheaf on R™+1,
It can be noted that the stalk of LM ay the generic point z in

R™*! is not a ring but only an abelian group with respect to the
usual sum of the functions.
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For each open set U in R™*! we shall indicate with H(U, LM)
the j-th cohomology group of U with coefficients in the sheaf LM.

As it is well known the Oth-cohomology group is the group of the
global sections of the sheaf, which coincides with the left A-module
of the monogenic functions over R™*!: such a space is also known
as the space of left entire functions. The following version of the
Mittag-Leffler Theorem is valid in this case.

THEOREM 4.1. Let U be an open set in R™+1. Then

HYU,LM)=0.

We shall now try to characterize the boundary values of mono-
genic functions.

We can write the coordinates in the (m + 1)-dimensional open
set as z = (g, ..., Zy) and set Uy = U N (2o = 0) for every open set
U in R™HL

DEFINITION 4.2. An open neighborhood U of Uy in R™! is called
0-normal if for each z in U the intersection of U with the segment
(z + teg) is connected and contains exactly one point of Up.

Given a set U, we define, Ut = {z € U : 29 > 0} and U~ =
{z €U : 20 < 0}.
The Clifford algebra version of Painlevé’s Theorem is thus

THEOREM 4.2. Let U be an open set in Rm‘H._If a function F be-
longs to LM (U UU_) and is continuous over U, then F is mono-
genic to the left over U.

DEFINITION 4.3. Let V' be an open set in (zg = 0),U a 0-normal
neighborhood of V. We define the A-module of Clifford hyperfunc-
tions by V

LMU\V)
FV)= —/————=

) LM(U)

It can be easily shown that F (V) constitutes a flabby sheaf over
the space (zo = 0), which allows a definition of the notion of support
for a Clifford hyperfunction.
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DEeFINITION 4.4. If K is a compact set in (zg = 0) and V' is an open
set in (zo = 0), we shall denote with Fx (V) the space of the Clifford
hyperfunctions over V whose support is contained in K.

DEFINITION 4.5. Let f € Fg (V) and let
FelMV\K,A).

Then the integral of f over V can be defined by

/Vf(ac)dm:/rdsF

where I' is a smooth, closed m-dimensional variety diffeomorphic to
a ball containing K and such that I' C U.

Now we shall introduce a sheaf of “real monogenic” functions as
the inductive limit over (zg = 0) of monogenic functions over R™+1.

DEFINITION 4.6. Let K be a compact set in R™+!. We define the
space of the germs of right Clifford analytical functions over K by

G(K) = ind lim RM(V, A)
VDK
vV open

and giving G(K) the usual inductive limit topology.

The following result is a generalization of the Kéethe duality
theorem and of Theorem 3.4.

THEOREM 4.3. Let K be a compact set in R™t! and let V be an
open set containing K. Then

(G(K ))/ = LZ\g](\X(‘\/fZ)A)

CoROLLARY 4.1. If K is a compact set in (zg = 0) then (G(K)) =
f]{(Rm) .
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It is known that the product of two monogenic functions is not
necessarily monogenic because of the non-commutativity of A. How-
ever it is possible to define a different notion of product which makes
A an algebra. With this aim, we shall introduce the so-called C-K
product (the Cauchy-Kowalewski product).

Let 2 be a point in (zg = 0) and let f be a monogenic function
in an open set U which contains z, we denote the boundary values
of f in z from above and from below with f(z+0) and with f(z —0)
respectively. For each open set V' in (2o = 0) and for each function
[V — A there exists a 0-normal open neighborhood U of V and a
unique function f*, left monogenic in U, such that f*(z+40) = f(z);
the proof of this general fact is given in [BDS].

DEFINITION 4.7. Let V be an open set in (zg = 0) and let f be an
A-valued analytic function A. The maximal left monogenic extension
f* of f, described earlier, is called left C'-K extension of f.

Let f and g be left entire functions (but the same can be done
in the case where f and g are left monogenic functions over some
open set which has a non-empty intersection with zo = 0); then
the restrictions of f and of g to (z¢g = 0) are A-valued analytical
functions (29 = 0) A and so their product.

Such a product therefore a left C-K entire extension: this exten-
sion, indicated by f#g is called C-K product of f and g.

In [BDS] it is shown that LM (R™*! A), supplied with the C-K
product, is a real algebra.

This product coincides with the usual product of two holomorphic
functions when we take m = 1 and when A is the algebra of the
complex numbers.

Now we proceed to discuss ordinary differential linear equations
with A-valued analytical coefficients.

Observe that by writing f = [F] we indicate that f is a Clif-
ford hyperfunction and that F’ is a left monogenic function which
represents f (in a non-unique way) in the quotient

_ LMU\Y)
FVI="Tawy

It is then obvious that Clifford hyperfunctions can be added by just
adding the corresponding representatives.
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More interesting is the fact that differential operators can be
defined in an analogous way.

If z; (i = 0,...,m) are real variables in R™*! then it can be
shown that the C-K extension of the later m coordinates are

Z; = T;€0 — To€; r=1,...,m,

and we can use this fact to extend the differential operators from the

space (zg = 0) to all R™*!. Precisely the operator air, is extended

in a natural way to the operator % defined by

0 _<i)e _<i)€.
0z  \ox;) ° Dzg) "

On the other hand, each analytic function f on an open set in (zg =
0) extends (in an unique way) to its C-K extension which we have
denoted with f*. We can then consider linear operators which act
on the sheaf of the Clifford hyperfunctions over an open set V as
follows: if

p_P(i.>_E ()i
= dac’x _|I|<ma1x dol

Whel‘eE— E,...,m

tions, then
d d
Pe) =P (@) ]

where z = (21,..., 2y), the symbol # denotes that we have consid-
ered the C-K product and % = ( .. )

D217 "0 Dz
We use this definition to show how some things become simple
in this environment.

d _ ( 9 9 ) and a;(z) are A-valued analytic func-

THEOREM 4.4. Let V' be an open subset in (xo = 0). If f belongs to
F (V) then there exists g in F (V) such that

P(%,x)g:f.

THEOREM 4.5. Let W be an open subset of the open set V', contained
in (zg = 0). If f belongs to LM (V'), then every solution h in LM(V)
to the equation P (%,m g = f can be extended to a solution g in
LM(V) to the same equation.
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5. The Cauchy-Fueter complex

In a recent work [ABLSS], some new important have been obtained
by studying regular functions of several quaternionic variables as
solutions of a specific system, the so-called Cauchy-Fueter system.

The idea, which goes back to Ehrenpreis Malgrange and Palam-
odov, [E], [PA], but see also [S] and [K], consists in looking at a reg-
ular function as being a differentiable function of 4n real variables,
which satisfies an overdetermined system of differential equations,
i.e. the Cauchy-Fueter system.

In particular, a function f :H* — H can be seen as a four-vector
of infinitely differentiable functions f = (fo, f1, f2, f3) which satisfies,

for every variable ¢; (t = 1,...,n) the system
3}
9 _y.
g,

However, by writing explicitly the expression for the Cauchy-Fueter
operator and for f = fo + ¢f1 + 7 f2 + kfs, we obtain that a regular
function of several quaternionic variables is the solution of

o) o) o) 2]
300 "Bz Bz 9z | | Jo 0
2 92 9 9 0
31‘1 31‘0 81’3 81?2 fl J—
Qo2 2 9 9 f2l 10
31‘2 31‘3 31?0 31‘1 2
92 9 9 9 f3 0
31‘3 31’2 3131 31?0

This fact gives us immediately an exact sequence of sheaves as given
below:

0 (& = @' B e (5.1)

where P denotes the system of partial differential equations writ-
ten above and where we note that we could choose the sheaf &
of infinitely differentiable functions because of the ellipticity of the
Cauchy-Fueter system (see e.g. [BDS]).

The interesting problem, therefore, is to see in which sense it
is possible to resolve the complex written above. This is a classi-
cal problem in the algebraic theory of systems and the interested
reader is referred to [K] for details. What the authors have done in
[ABLSS] is therefore an algebraic translation of the complex (5.1)
which gives the following complex in which S denotes the ring of
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polynomials in 4n complex variables (complex (5.2) is essentially the
Fourier transform of complex (5.1)):

0— 54 g1, (5.2)

In this complex, if we fix e.s. n = 2, the matrix A is of course given
by

To1 —211 —T21 —T31
11  Tol —T31 ZT21
T21  IT31 To1 —ZT11
A= r31 —Z21 Ti1  Zol
To2 —T12 —T22 —T32
T12 T2 —T32 22
To2 IT32 To2 —T12
T32 —T22 T12 202

It is well known (see e.g. [M-S]) that an exact resolution of (5.2) can
always be done if and only if the matrix A has torsion free cokernel,
but in general it is not too easy to verify whether A has torsion free
cokernel.

In [ABLSS] the authors have however found an important crite-
rion which we state here:

LEMMA 5.1. Suppose A is an m xn matriz of mazimal rank m (m <
n). Then coker(A) is torsion free iff the n x m minors are relatively
prime.

The specific case we have to deal with, the matrix A has maximal
rank (as it is immrediately seen) and because of its special shape, the
god of its 4 X 4 minors is one, so that its cokernel is indeeed torsion
free.

An immediate consequence of this fact is (see [M-S]) the following
result on the removability of compact singularities:

THEOREM 5.1. Let be K compact, K CH*, H'\K connected, n > 2.
If f € R(H™ \ K) then there exists f € R(H)", s.t. f = f on H" \ K.

This result, in particular, extends to the case of Clifford algebras,
thus showing the lack of compact singularities for all monogenic func-
tions of more than one variable.
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By general algebraic analysis, we now know the existence of a
matrix B such that:

0— 544 gin B

is exact at S4".

It is however impossible to explicitely write the form of such
a matrix, or even its range, unless we use some computer algebra
package. In [ABLSS] CoCoA was used to find out specific form for
B when n = 2 and 3. In the case of n = 2, in particular, it can be
shown that the complex can be completely resolved and one has

0551488 ¢85 g1 4

where C' is again a Cauchy-Fueter type system. More interestingly
the sequence is exact at all levels (except of course that the last map
is not surjective) so that one can claim that for the Cauchy-Fueter
system both the first and the second Ext groups vanish. This, in
particular, allows us to show the following fundamental result:

THEOREM 5.2. Let K C H? be a compact convex set such that
dim H' (K, &%) < oo, j=1,2

then
H3(H? B2\ K; R) = (R(K)).

This last result shows how our own duality theorem (which we
proved for one quaternionic variable) can be generalized at least to
the case of two quaternionic variables.

It is of course of great interest to investigate how to utilize the
methods described in [ABLSS] to obtain similar characterization for
more than two and three variables. Let us conclude this section by
noticing the similarity between these results and the usual resolu-
tion of the Cauchy-Riemann system (where both the first and the
last operators which appear are indeed Cauchy-Riemann operators).
The difficulty in extending these ideas to the case of the Cauchy-
Fueter system consists in the lack of anything which could replace
the Dolbeaut sequence which exists for the case of the holomorphic
forms.
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6. Microlocalization

In this section we introduce the study of the sheaf of the singularity
of the H-hyperfunctions and we construct the natural sheaf of the
H-microfunctions.

These sheaves have been extensively studied in [F] and [FGS].

Let us begin by giving some concrete examples of H-hyperfun-
ctions.

Let F' € Ry(Ht). The function

~ F su
+ _
F_{O su H~

clearly belongs to R(H \ H), and in this way it defines an element in
F(H) which represents the boundary value of F.

Using a notation which is classic in the theory of hyperfunctions,
we can write

by F = [F*] = F(izy + jog + kz3 +0).
In an analogous way we can define
b_F = F(izy + jrg + kxs — 0) = [F7]

for F € R(H™), where

~ O su |t
F su H~

and it is clear that if F € R(H\ H), then
[Fl=byF —b_F.

If f € G.(H) or f € G.(U) for an open set U in H, again we see
that in a natural way f defines a H-huperfunction over H, or over
U, which is obtained by considering a regular extension F' a suitable
0-normal neighbourhood of U in H.

Then there is a natural injection of sheaves

O<—>g<i>f
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where the sheaves are defined over the topological space H. With
the aim of studying the singularity of the elements of the sheaf F,
we shall introduce over H the sheaf F/igG.

As it is well-known, F/iG is not necessarily a sheaf (the quotient
of the sheaves is not necessarily a sheaf). In this specific case it is
possible, however, to show that F/iG is actually a sheaf.

However, it is known from the real analytic case, that the sheaf
F \ iG does not provide any new information on the singularities
of hyperfunctions. The reason is that only by looking at their mi-
crolocal behaviour (i.e. their behaviour on the cotangent bundle) it
is possible to derive substantial information.

Our next step will be to prove that the microlocalization proce-
dure (i.e. the lifting up to the cotangent bundle) can be successfully
performed even in the quaternionic case. We now lift our objects
from H to S*H, its spherical cotangent bundle.

We think of S*H as the topological space (H,+oc0)][(H, —o0)
with the induced topology of the bases (I, +o0) [[(J, —o0) for I, .J
open sets in H.

We wish to define a sheaf of quaternionic microfunctions over
S*H whose objects are the singularities of hyperfunctions.

In this regard we provide the following definition:

DEFINITION 6.1. Let 2o € H. A hyperfunction f defined in a neigh-
borhood of zg is called microregular in (zg + ic0) if, in a (possibly
different) neighborhood of zg, f is the boundary value from above
of a regular function F.

DEFINITION 6.2. Let F € 7. We shall define its singularity support
ss(f) as the set of the points of S*H in which f is microregular.

DEFINITION 6.3. For each open set U C S*H we shall define

F ()
{fe FH) :ss(f)nU =0}

C(U) =

Definition 6.3 implies that the section of C are the (microlocal)
singularities of sections F. Moreover, if f € F(H), then it induces
an element [f] € C(S*H) such that supp([f]) = ss(f).

It is now possible to prove that {U,C(U)} for all the open sets U
in S*H, gives a sheaf over S*H, which we call the sheaf of quaternionic
microfunctions.
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THEOREM 6.1. The following short sequence of sheaves on H is ex-
act:

0-G—>F—>nC—0,

where 7 is the canonical projective m : S*H — H.

THEOREM 6.2. The sheaf C is flabby.

It can be observed that the flabbyness of C is important for ap-
plications of the theory of differential equations while the exactness
of the short sequence is analogous to Sato’s theorem on the micro-
functions sheaf. A complete discussion of the sheaf C is too lenghty
and complex to be given here.

7. Sommen’s monogenic differential Calculus

No survey on microlocal analysis of hypercomplex functions would
be complete without a discussion of the related (but not overlapping)
work of Sommen.

Sommen’s work in this area dates back to the late seventies early
eighties when, in [S1] and in [S2], he developed a theory of hyper-
functions and microfunctions with values in a Clifford Algebra.

In his theory, Clifford hyperfunctions on © C R"*! are defined as
elements of M (R"+1\Q)/M (R"+1\ 9Q) for M the space of monogenic
functions, but unlike what we described in [S2] approach, Sommen
concentrated his analysis [S2] on the study of singularities of such
objects. This allows the author to construct a natural theory of
microfunctions in [S3]. We could say that the mathematical object
in both Sommen’s and our work is the same, but quite different is
the spirit which guides the analysis. In particular, as shown in Sec-
tion 5, our approach naturally leads to the study of several Clifford
variables, unlike what happens in Sommen’case. On the other hand,
Sommen’s approach demonstrates its great relevance as it essentially
leads to a theory of monogenic differential analysis.

While we refer the reader to [S3], [S4], and the literature there in
for more details, we would like to give some general ideas on Som-
men’s calculus as he developed it, since we believe that it could be
a source of great interest especially as it way lead to a new theory
of quaternionic Clifford residues. As we have shown in our previous
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sections, one of the main obstacles to the development of an alge-
braic theory of the solutions to the Cauchy-Fueter system (and, more
generally, to the Dirac equation) lies in the back of a Dolbeault-like
resolution for the sheaf of monogenic functions. Our approach to
this general problem is given in Section 5 and 6 of this survey.
Sommen, on the other hand, develops a monogenic cohomology
theory. Let F': R™+! — 4 be a A-values differential k-form for A
a Clifford algebra; if 9, = 377", €;0,, is the Dirac operator, we say
that F is (left) monogenic if d,F" = 0. Sommen uses for example
these differential forms to establish a Cauchy-Pompein type formula
for differential forms which generalizes the usual Cauchy formula for
monogenic functions. But most interesting is the De Rham complex
which resolves the space M; of a monogenic O-forms as follows

0= M B M ... Mr0,
where MZJ is the space of monogenic /-forms and d; = d/Ml] If one
now defines, [S1], the monogenic cohomology

Ker d;

Jo_
H - Imd; "’

it is possible to show that the spaces so obtained are not isomorphic
to the De Rham cohomology spaces.

This understanding of this isomorphism leads Sommen to the
construction of three types of left monogenic k-forms:

Mcf (closed forms)

Mef (exact forms)

and
ME}F ={o e Mf : 0 =d, AG, forG monogenic },

where this last space is what Sommen calls the space of strongly exact
forms, Sommen’s main result establishes the following isomorphisms:

H* =~ MCF/MeF

k ~ k k—1
Hl - HDeRham ©® 7-lDeRham

It should be noted how Sommen successfully used these results to
further develop a duality theory for the space (M;"_k), i.e. the space
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of left k-currents. One should note here that the case of £ = m
corresponds to monogenic functionals, which, as special cases, give
compactly supported hyperfunctions. The reader should compare
this with our version of Kéethe’s duality Theorem 3.4.

In particular, Sommen also shows how the space of these func-
tionals is isomorphic to a space of monogenic differential forms which
vanish at infinity (in perfect analogy with the well known Mar-
tineau’s lectures in Lisbon, 1963). Let us conclude by pointing out
that Sommen has further pushed his approach towards a theory of
Clifford-Radon transform, but a discussion of this aspect would lead
us two or for. We just refer the readers to [S5], [S4] and the literature
there in.
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