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SOMMARIO. - In questo lavoro si considera il problema di ricostruire in
[0, 1] una densita di probabilita u incognita di cui sono noti un numero
finito di momenti e qualche informazione a prior: di carattere locale
(posizione e tipo di singolarita di u o Z—z)‘ Se linformazione locale
puo essere riassunta a sua volta in una densita w, un modo naturale
per stimare u consiste nel minimizzare una opportuna misura della dis-
crepanza tra u e w. Abbiamo considerato a tale scopo ’entropia relativa
e la distanza euclidea confrontando le corrispondenti soluzioni in una
serie di esempi numerici.

SUMMARY. - The present paper deals with the reconstruction of an un-
known probability density u in [0,1] from a finite number of moments
and some additional local a priori information (location and type of sin-
gularities of u or Z—g)‘ If the additional information may be represented
by means of a density w, it is natural to select our estimator of u by
mimimizing some kind of discrepancy between u and w like euclidean
distance or relative entropy. We compare the corresponding solutions
mn several numerical experiments.
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1. Introduction

The finite Hausdorff moment problem (FHMP) consists in recovering
an unknown probability density « in [0, 1] whose first m moments
fol z*u(z)dz, k = 1,...,m, are known to match (or to be ‘near’ in
some sense to) a vector of given real numbers p = (p1, ..., fm)-

Let D™ C IR} be the convex hull of the curve M = {(¢,...,t");
t € [0,1]} (i.e. the intersection of all the convex sets including M).
D™ is called in literature m-moment space and is known to be a
convex body i.e. its interior (intD™) includes a ball of dimension m
[1, thm. 7.3].

It is known (see [1]) that if p is outside D™, the corresponding
FHMP does not admit any solution, while if u € dD™ (90D™ is the
boundary of D™ and clearly has m-dimensional Lebesgue measure
equal to zero) the only object having pq, ..., tt,, as first moments is
a (uniquely determined) convex combination of Dirac’s 6.

The most interesting case is when g € intD™. In this case, the
FHMP is a typical underdetermined inverse problem. Furthermore,
as a consequence of the ill-posedness of the (infinite dimensional)
Hausdorff moment problem (see [2]), any accurate computational
approach to FHMP is severely ill-conditioned. Although we experi-
enced that, whatever method we use, the error affecting the data is
magnified approximatively by a factor e'-7%"  research about finite
moment problem is not discouraged thanks to the following reasons:

1. smooth densities of physical interest have been observed ‘store
the information’ mainly in their first moments [3];

2. the number of moments which allow to detect the shape of
an unknown density can be reduced if other kind of information is
available in addition.

Indeed, additional information (possibly taking the form of a
prior density w) is necessary when u is known to have singularities.
Methods based on the minimization of some kind of generalized dis-
tance from w (see for example [4, 5]) seem to be quite natural and
efficient in order to use both global (moments) and local (location
and type of singularities of u and its derivatives) data. Here we con-
centrate our attention on the minimum euclidean distance (MED)
and minimum relative entropy (MRE) methods, to be described in
section 2. In section 3 we apply these methods to a moment prob-
lem arising in solid state physics. Section 4 deals with the error
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propagation in MRE method.

2. MED and MRE solutions for moment problems

The minimum euclidean distance (MED) method for solving a FHMP
with data g when a rough approximation (prior density) w > 0 of
the unknown is given, consists in minimizing the L?-norm functional

1
Ny(u) = / (u — w)* dz (2.1.a)
0
under the constraints
1
/ cPu(z)de =pp k=1,...,m. (2.1.b)
0

It is easy to check that the minimizer (called MED solution of the
FHMP or estimator of the unknown density) is unique and takes the
form ug;)d = w(z) + 7 garz®. To the best of our knowledge this
method has been used for the first time around forty years ago in
the study of the thermodynamics of crystals [6].

The mazimum entropy (ME) principle, introduced by Jaynes in
1957 [7], suggests a way to select one solution of an underdetermined
inverse problem without improperly adding information. The prin-
ciple of minimum relative entropy (MRE) (see [8]) is a generalization
of the Jaynes principle and applies in cases when, in addition to the
data, a prior density w > 0 is given. In applying MRE to the FHMP
we have to minimize the relative entropy functional (in literature also
I-divergence, cross-entropy, directed divergence and so on)

w

Ey(u) = /01 uln Ed;zc (2.1.¢)

subject to the constraints (2.1.b).

The existence of a unique, non-negative minimizer (MRE solution
or estimator) 4™ when w is not too bad and [ € intD™ | is proved
in [9]. If w(z) =1 the minimizer is known as the maximum entropy
solution of the corresponding FHMP (or ME estimator).

A formal usage of Lagrange multipliers rule furnishes the expres-
sion

ul™ (2) = w(zx) exp(i apz®).
k=0
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The relation between the coefficients (aqg, ..., a,) and the moments
(tto, i) is known to be a diffeomorphism @ : R™™! — {(¢,tv);v €
D™t > 0} whose jacobian matrix is the Hankel matrix determined
by the first 2m moments of the MES (see [10]).

REMARK 2.1. MED is a linear method and so it is much simpler
than MRE from a computational point of view. On the other hand,
MED has some foreseeable drawback: the solution may assume neg-
ative values and the oscillations due to the Gibbs effect are more
emphasized than in MRE. Clearly, MRE (MED) method is recom-
mended if u is known to be the product (sum) of a singular part
times (plus) a smooth one.

If the whole sequence of the moments of u is known and suitable
further assumptions about u and w are given, the sequence ul™) of
MRE estimators converges to u for m — oo. To show this, we first
observe that (2.1.c,b) can be rewritten as the problem of minimizing

1
/ p InpdW (2.2.a)
0

subject to the constraints

1
/ e p(z)dW =pp k=1,...,m (2.2.b)
0

where p = u/w and dW = wdz is the probability measure induced by
the density w. If the function u has singularities but u/w is smooth
enough, the procedure of estimating u by means of MRE solutions is
supported by the following convergence result which is an immediate
extension of the main theorem in [11]:

PRroOPOSITION 2.1. Let w be a given positive density. If u is such
that p = u/w > 0 is twice continuosly differentiable in [0, 1], then
the sequence p(™) of the minimizers of the problem (2.2) converges
to p uniformly in [0, 1].

ExaMPLE 2.1. Consider the density u(z) = —cln |z — 1| exp(—20(z
— 1)? + 5sinz) where ¢ = .124657 ... Since the smooth part is very
close to the exponential of a polynomial of degree 2 we are able to
recover u very well from pyq, p9 if we know that there is a logarithmic
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singularity in % (see figure 1.a). It is not suprising that the maximum
entropy method (or any other which does not take account of addi-
tional information) is unable to detect the singularity and produces
poor approximations. In figure 1.b we show the maximum entropy
estimator of u computed by using 8 exact moments. In figures 1.c
and 1.d we show MED reconstructions obtained by using 2 and 6
moments respectively: the quality is much lower than using MRE
because of the multiplicative structure of . In this context we say
that our data are ‘exact’ when improvements in their accuracy leave
the quality of the reconstruction unchanged.

REMARK 2.2. A convergence result, analogous to the one in proposi-
tion 2.1, is also true for MED estimators if u —w is bounded from be-
low and suitably smooth. Nevertheless, it requires more information
than in MRE case. In fact, if © = %gmooth + Using We have that v —w
is smooth when w = w4,,,. On the other hand, if © = Ugmooth /Using
we get a smooth u/w from any w o< gp,.

REMARK 2.3. Neither the relative entropy F,,(u) (which is always
non-negative and vanishes only for v = w) nor its symmetrized form

S(w,u) = Ey(u) + Fy(w)

is a metric [9]. Nevertheless such a quantity is often regarded (see for
example [12, 13]) as a significant measure of the discrepancy between
the densities w and u. Geometrical properties of the relative entropy
in analogy with metrics are studied in [9, 4, 5]. A rigorous analysis
of the numerical treatment of the optimization problem (2.1) is in
[10] while preconditioning tecniques to compute the MRE solution
of a FHMP are introduced in [14].

REMARK 2.4. The relative entropy E,,(u) can be also used as a sta-
bilizing functional. It means that the minimum of

Ey(u) + A |k — pxl* = €%)
k=1

is a regularized solution in the sense of Tikhonov. Such a point of
view is deeply analyzed in [15].
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3. A finite moment problem arising in solid state phy-
sics. Construction of a prior probability

The standard model of a (monoatomic) crystal consists in a three
dimensional lattice where the equilibrium positions of the N atoms
constituting the crystal are the lattice points. Physicists are inter-
ested in the determination of the partition function () of the system
because from the knowledge of In() it is immediate to derive its
thermodynamical functions (Helmoltz free energy, internal energy,
heat capacity at constant volume, ...). We are about to see how
the derivation of In ) reduces itself to the solution of a Hausdorff
moment problem.

The potential energy is assumed (as in the Born-Von Karman
model [16, ch. 5]) to have the form

1 3N
V(0)+ 5 Y Vikkie

5k=1

where &; are generalized coordinates. Observe that it is the Taylor
expansion of a generic V(§) near an equilibrium position, truncated
at the first non-trivial term. It can be succesfully used to investigate
small vibrations of the crystal (low temperature case). The (hessian)
matrix V' depends on the physical properties of the crystal (distance
between atoms, masses,...) but in any case it is assumed to be sym-
metric and positive definite. Hence small vibrations in the crystal
can be exactly decomposed into 3N independent normal modes of vi-
bration with frequency w, (o =1,...,3N). So the system has been
reduced to 3N independent (quantal) one-dimensional harmonic os-
cillators whose energy levels are known to be E, , = (n+3)hw, (his
the Plank constant) with @ = 1,...,3N and n non-negative integer.
We can write down the partition function Q (N, T) of the system (see
[16, (3.5)]) and get

3N o 3N 1

— _hwaB
QT =2 D e =) T

a=1n=0 a=

where 8 = 1/(kT), k is the Boltzmann constant and 7" is the abso-
lute temperature. It is known that the frequencies lie in an interval
(0, wWmaz) independent of N. Then we can take the thermodynamic
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limit N — oo obtaining (the complete derivation of this formula can
be found in [16, sect. 5.2]):

hﬁwmazt

el o 1)

(3.1)
where p is the limit frequency distribution whose domain has been
normalized to (0,1). The (probability) density p would completely
determine the thermodynamics of the crystal but it is generally un-
known and only the first few even moments can be obtained by
algebrical operations on the dynamical matrix V' in non-trivial cases.
As a consequence, the theory that we have just sketched was con-
sidered quite formal and limited in its applications, until a practical
procedure for computing a larger number of the even order moments
of p was proposed [17] in the sixties. Such a procedure uses mainly
the fact that under the condition n < N/T the spectral moments

1
o ln Q(T) = COO/6 + wmaz/ (ln(l — e_hﬁwmazt) _I_
0

1 3N
_ 2n
antN) = SR, 2k

on a lattice made up of N X N X N cells are equal to those of p (i.e.
after the themodynamical limit has been performed). The numbers

w} are simply the eigenvalues of the given matrix V1 whose elements

are VZ; = U/\/Wm] where the positive number m; indicates the
mass of the kth oscillator. Hence, the computation of pg,(N) con-
sists in evaluating the trace of the matrix V. The only bound on
the reachable precision is given by the computer arithmetics.

In [18] the data obtained in [17] (with more than 20 reasonably
exact digits), for a face centered cubic (fcc) crystal with nearest-
neighbor interaction, are used to evaluate the integral in (3.1) by
means of gaussian quadrature rules. Since only the even moments of
p are available, the change of variable z = #? is required, so that the

unknown function is actually u(z) = p(y/z)/(2/z). The Christof-

fel numbers (abscissas .rgn) and weight pgn) of the quadrature rule)
of order n = 15 are computed using 30 moments. Although the
authors are not interested in infering the shape of p, this is feasi-
ble by using their own data, thanks to the asymptotic properties
of the Christoffel functions (see [19]) for the weight u. The dot-

ted line in figure 2.a is made up by the points (:E(-IS) (15)

5y ) where
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y](-IS) = 15p§-15)/(0157r\/$§-15)(1 - m§15))), j=1,...,15 where ¢35 is a
normalization constant. It shows a good agreement with the ME esti-
mator (solid line) obtained by using only 9 moments. It is remarkable
that both agree with the qualitative behavior of u as derived in [20]
by means of a different technique which does not involve moments.

We deal with an inverse problem whose largely incomplete data
are partially completed by the a priori knowledge of the location of
a number of singularities of the first derivative of the unknown func-
tion. In what follows we propose a way for using the information
about the singularities in order to construct a prior probability and
produce MRE and MED estimators by using the least possible num-
ber of moments. We stress the fact that using few moments turns out
to be a good general strategy because of the just remarked numeri-
cal instability of the moment problems. The results of the numerical
examples reported in this section are anyhow unaffected by noise.
This is due to the fact that a low number of sharp data are handled
with double precision arithmetics (on a DECstation 5000/33).

We have constructed a prior density w (plotted in figure 2.b) by

using the additional information about the singularities of u’ in the
Van Hove critical points z; = %, xg = % and z3 = %—}— 5@, see
[21, 22, 23], and in the extremes of [0, 1] (u(0) = u(1) = 0; see [16,

ch. 5]):

arcsin(8z — 1)

1 .

3 + = , if z€0,z]

1—}-\/($—$1)($2—$), if 2 € [xy,2]
w(z) =

1—\/(£C—$2)($3—$), if z € [xg, 23]

1 1 . (22 —1—1z3 )

5 + ; arcsin (ﬁ) s lf T € [1’37 1]

In figures 3.a, 3.b and 3.c we compare wp® wp® and wp® (dot-
ted lines) with the same order ME estimators whose stabilization is
observed starting from m = 5. Using MRE or MED method, sta-
bilization begins for m = 3. In figure 3.d we show MRE (dotted)
and MED (solid) solutions obtained for m = 5: they behave in a
similar way so that in the present example MED is clearly a more
convenient method.
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Estimates of u based on Pollaczek polynomials and Christoffel
functions are shown in [24] and [25] respectively.

In the pre-computer era Lax and Lebowitz [6] used MED method
in the case of a two dimensional fcc crystal whose spectral density
had been theoretically derived by Montroll (see [16]). They used
m = 5 moments and the prior knowledge about u consisted of the
singularities in the Van Hove points and of the values «(0) and u(1).
From the same data, MRE estimators can be obtained which show
a comparable quality.

REMARK 3.1. Suppose that the prior probability w is a convex com-
bination of ¢ distributions concentrating the massin n < %—1—1 points
n [0, 1]. In this case we can introduce a sequence of densities of the
form ePm(@) weakly convergent to w for j — co, where P/ (z) are
polynomials of degree m. For each j > 0 the MRE solution with
prior probability ePn(@) takes the form ePn(®)e@m (@) = ¢fm(®) where
@’ (x) and RJ, (z) are polynomials of degree m too. Since for any j

we have

1
/ mkeRiﬂ(z)dm:,uk k=1,...,m
0

it is easy to observe that R}, (z) = R,,(z) is independent of j and
efim(#) is simply the ME solution of the FHMP with data p. Hence,
the additional information included in this kind of w cannot be used
by applying the MRE principle.

4. MRE solution from noisy data

Let t = (fi1, ..., fim) be our data vector and p = (u1,..., i) the
(not available!) vector of the exact moments of the unknown function
u. We suppose that ||fi—p||- < € and introduce the following convex,
closed, non-empty set of probability densities

1
Acp={u st. / cPu(z)dz € [i—e,i+¢ k=1,...,m}.
0

The relative entropy functional £, (u) = fol ulog ;-dz is strictly con-
vex (see for example [11, sect. 2]) and attains its unique minimum
for u(z) = w(z)/e.

Hence, there is a unique minimizer 4(z) = w(z) exp(3X 1y arz*)
of the relatlve entropy functional in the set A, ;. In the sequel, u
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will be called MRE solution of the FHMP with noisy data i (or noisy
MRE solution).

REMARK 4.1. Observe that the relative entropy assumes a very use-
ful form in correspondence to the MRE solution v of a FHMP with
data v:

fv) = Euv) =ao(v) + zm: ai(v)vg.
k=1

REMARK 4.2. The set D™ C IR™ is known to get thinner and thin-
ner for increasing m. More precisely, the width in the direction of the
m-th axis is estimated by 272m=2 [1, thm. 25.5]. Hence, we observe
that:

1. the function f varies very fast in any direction;

2. the noisy data are probably out of D™,

Now, suppose that the a priori bound F,,(u) < C is given. The
convex set {u: F,(u) < C}is known to be weakly compact in L!
(see [11, sect. 2]). Hence, the set Bo = {u(u) : E,(u) < C}is a
convex compact subset of the moment space D™.

Let ») and u(?) be the MRE solutions corresponding to the
moment vectors p(") and u(?) both in B, ; = BoN{||u(u) —fil|ee < €}
In order to discuss the stability of noisy MRE solutions, we evaluate
the L! size of the set B.; by using the symmetrized cross-entropy.
In fact, it is not difficult to check [26] that |ju — w||? < 25(w,u) as a

consequence of the Jensen inequality. Moreover,
S, u®) = 3@ —al) (! — i) < @ — o)l

So we have

1@® —at )l < [l79(1, )7 l2¢
for a suitable ji belonging to the segment joining ) and (). The
term [|J®(1, i)~z takes the form (see [14]) constant-e3-25™ (such
a constant depends on and is divergent with C'). Hence we have the
usual bound (compare [27, sect. 4])

[u® = a1 < min{2, a(C)e! 7). (4.1

The estimate above is marked by an unavoidable exponential term
regardless of the explicit form of a(C'). Hence, we do not try to get
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it. The stability estimate (4.1) and the last remark about the width
of D™ suggest that the noisy solution of a FHMP essentially matches
the prior probability w. This is confirmed by numerical experiments.

We have performed many numerical tests in which the coefficients
a are computed by solving the nonlinear programming problem

min Z appiy
k=0
subject to the constraints :
/ w(z)eti=0 " dx =1
0
pr € [y — €, ip +¢] for k=1,....m

1 m
/wkw(av)eZFOaﬁ]da;:,uk for k=1,...,m.
0

Indeed, as a rule, numerical methods for solving non-linear opti-
mization problems perform better when nonlinearities are in the
constraints and the objective function is as much linear as possi-
ble. So in our tests, we made use of the observation in Remark 4.1.
In computations, IMSL routine DNCONF [28] with starting point
ag=1In1, po=1, ap =0 and py = pr(w) for k =1,...,m is used.

We report here the results obtained with two different sets of
data.

TEST 1. We try to recover the smooth test function u(z) = ¢(2e~" +
sin(3.57z) + 1) (where ¢ = .631076...) from the knowledge of its
first m = 8 moments. The prior probability is chosen as w(z) = 1.
Figures 4a, 4b and 4c show the reconstructions with e = 107°,1074, 1
respectively. Observe that 8 moments affected by error with ¢ = 1075
give more or less the same maximum entropy estimator as 6 exact
moments (see figure 4.d).

TEST 2. Let the test function be u(z) = .754154 .. w(:v)%

where w(z) = —In|z — 1|. In figure 5a and 5b we show the MRE
solution obtained from exact moments and error size € = .3125 1073
respectively (with m = 6). When the error size is greater than ¢,
our routine fails in getting the MRE solution: it means that the
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data vector is out of D™ or too close to its boundary. If ¢ > €
we can compute anyway the noisy MRE solution. Figures 5¢ (6
moments) and 5d (2 moments) seems to confirm that in this case
the reconstruction is essentially w.

Figure 1: Reconstruction of u(z) = .124657 .. .11)(36)(2_20(95_%)2+5 sine
(with w(z) = —In|z — %) from exact data: (a) MRE, m = 2; (b)
ME, m = 8; (¢) MED, m = 2; (d) MED, m = 6. The solid plot is
the graph of u.
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0.2 0.4 0.6 0.8
x

Figure 2: Reconstruction of the spectral density of a 3d fcc crystal
from exact data: (a) ME estimator corresponding to m = 9 (solid
line) and Christoffel numbers approximation for m = 30 (dots); (b)
the proposed prior probability w.
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0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
X x x

%oz 04 06 o8 1
%

Figure 3: Reconstruction of the spectral density of a 3d fcc crystal
from exact data: (a), (b) and (¢) MRE (dotted) vs ME (solid) for
m = 3,4, brespectively; (d) MRE (dotted) vs MED (solid) for m = 5.
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0 0.2 0.4 0:6 0.‘8 0 0.2 0.4 0.6 0.8
X X

0 0.2 0.4 0:6 0.8 0.2 0.4 0.6 0.8
X X

Figure 4: Reconstruction of u(z) = .631076...(2e~% +sin(3.57z) +
1) from noisy data and prior probability w(z) = 1: (a) ME, m = 6,
exact data; (b) noisy ME, m = 8, ¢ = 107%; (c) noisy ME, m = 8,
€ = 107% (d) noisy ME, m = 8, ¢ = 1.. The solid plot is the graph
of u.
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Figure 5: Reconstruction of u(z) = .754154...11)(:10)%%

(with w(z) = —In |z — §|) from noisy data: (a) MRE, m = 6, exact
data; (b) MRE, m = 6, ¢ = .3125 1073; (c) MRE, m = 6, ¢ > ¢; (d)
MRE, m = 2, same ¢ as in (c).
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