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SOMMARIO. - Si studia il problema di esistenza di soluzioni omocline di
un sistema Hamiltoniano del secondo ordine asintoticamente periodico:

trovare ¢ € C2(R, RN) \ {0} tale che:
G=q—-V'(t,q), q(t)—=0 eq(t) >0 per t— +oo (HS)

dove st assume che l'origine é un massimo locale per il corrispondente
potenziale, uniformemente nel tempo, e che V' & asintotico pert — 400
a delle funzioni V{ periodiche e superquadratiche. Proviamo, via metodi
variazionali che se le varieta stabile e instabile assoctate all’origine di
uno det problemi all’infinito hanno intersezione numerabile allora 1l
problema (HS) ha infinite soluzioni omocline di tipo multibump.

SUMMARY. - We study the problem of existence of homoclinic solutions of
a second order asymptotically periodic Hamiltonian system: find q €

C*R,RN)\ {0} such that:
Gg=q—V'(t,q), q(t)—0 and ¢(t) =0 as t — Foo (HS)

where 1t 1s assumed that the origin is a local marimum for the corre-
sponding potential, uniformly in time, and that V' is asymptotic, as
t — +oo, to time periodic and superquadratic functions V. We prove
via vartational methods that if the stable and unstable manifolds as-
sociated to the origin of one of the systems at infinity have countable
intersection then the problem (HS) has infinitely many homoclinic so-
lutions of multibump type.
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1. Introduction

In recent years, starting with [10] and [14], variational methods have
been successfully applied to study the existence of homoclinic solu-
tions to Hamiltonian systems having a hyperbolic rest point.

In this paper we apply variational methods, inspired by those
developed in [30] (see also [12, 15, 29]), to study a class of asymp-
totically periodic Hamiltonian systems.

To present our results we start by describing them in a very
particular case which we think interesting in its own. We consider
the following Duffing-like equation:

i=q—a(t) (14 ccos(w(t)t)) ¢ (1.1)

where ¢ € R, a(t) and w(t) are smooth real functions. The dynamics
of the equation (1.1) is well known in the periodic case, i.e. when
a(t) = ag > 0 and w(t) = wo # 0, and can be exhaustively described
using a perturbative approach based on the Melnikov theory and on
the Smale-Birkhoff homoclinic theorem (see [16, 23, 34]).

The results contained in our work apply in the asymptotically
periodic case, when «(t) is bounded and a(t) — ay > 0, w(t) —
wy # 0 as t — 4oo. In particular we get existence of infinitely
many homoclinic orbits of (1.1), namely classical solutions to (1.1)
satisfying the further conditions

q(t) >0 and ¢(t) =0 as t— +oo. (1.2)

Indeed we prove the following result.

THEOREM 1.3. If a(t) and w(t) are real functions of class C' with
a(t) bounded, a(t) — ay > 0 and w(t) - wy # 0 as t — 400, then
there exists eg > 0 such that for any e € (0, ¢g) there is a homoclinic
orbit vy for the system at infinity:

G=q—ay(1+ ccos(wit)) ¢ (1.4)

for which the following holds: for any r > 0 there are M,p € N
such that for every sequence (p;);eNn C N satisfying p1 > p and
Pi+1 —p; 2 M (5 € N), and for every sequence 0 = (0;);eN €
{0, 1}N there is a solution v, to (1.1) such that

o (t) — v (t = piT3)| < v and |0, (t) — o504 (E — p;T4)| <7
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for any t € [3(pjet + )T (05 + pis)Te] and § € N, where
po=—o00 and Ty = fj—: In addition any v, also satisfies v, (t) — 0
and 0,(t) = 0 ast — —oo and it actually is a homoclinic orbit if
o; = 0 definitively.

REMARK 1.5. The solutions given by theorem 1.3 are known as
multibump solutions because they behave in this way: they remain
in a small neighbourhood of the origin for a suitable large time and
then leave it a finite or infinite number of times (according that
o; = 0 definitively or not) staying near translates of v;.

REMARK 1.6. In the case ¢ = 0 and a(t) smooth, bounded and
strictly monotone, the equation (1.1) does not have non zero homo-
clinic orbits. In fact if ¢(¢) satisfies (1.1) and (1.2) and H(q(?)) =
21a(®)]* = Lq(t)|* + a(t)]q(t)|* denotes the energy of ¢(t), then

dH (q(t)) oo lal?
0= dt = / t)—dt
/R dt R a(t) 4
and this implies ¢ = 0. We also see that for ¢ = 0 the stable and
unstable manifolds coincide and so their intersection is uncountable.
This is the reason for which the argument used to prove theorem 1.3
fails in this case.

The class of systems which we study in this paper is shaped on
(1.1). In fact we deal with second order Hamiltonian systems in R"

qg= _U/(t7 Q) (HS)

where U’(t,q) denotes the gradient with respect to ¢ of a smooth
potential U : R x RY — R having a strict local maximum at the
origin.

Precisely we assume:

(Ul) U € C'(R x RY,R) with U’(¢,-) locally Lipschitz continuous
uniformly with respect to t € R;

(U2) U(t,0) = 0 and U'(t,q) = L(t)g + o(|q|) as ¢ — 0 uniformly
with respect to ¢t € R where L(t) is a symmetric matrix such
that c;]g|? < q- L(t)q < calg|? for any (¢,¢) € R x RY with ¢;
and ¢y positive constants.
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The condition (U2) implies that in the phase space the origin is
a hyperbolic rest point for the system (HS). We look for homoclinic
orbits to (HS) as critical points of the Lagrangian functional

plu) = [ (3fal* = U () dt

defined on X = H'(R,R") and of class C', by (U1)-(U2).

This problem has been studied under further conditions when
the potential U is autonomous (see [3, 4, 10, 11, 19, 20, 27, 31, 33]),
periodic in time ([7, 8, 9, 12, 14, 15, 17, 26, 29, 30]), asymptotically
periodic ([1, 25]) and, very recently, almost periodic ([6, 28]).

Here, as pointed out with the model case, we consider asymptot-

ically periodic potentials. By this we mean that there is a function
U+ (t7 Q) = _% q- L+ (t) q+ ‘/-i- (t7 Q) SatiSfying (U1)7 (UQ) and

(U3) there is Ty > 0 such that Uy (t,q) = Us(t + T4, q) for any
(t,9) € R x RY;

(U4) (i) there is (t4+,q+) € R x RY such that Ui (t4,q4+) > 0;

il) there are two constants >2and ay < B+ _ 1 such that:
+ + 2
BiVi(t,q) = Vi(t,q) - q < ayq- Li(t)gforall (t,q) € R x RY;

(Us) U'(t,q) — Ui(t,q) — 0 as t — 400 uniformly on the compact
sets of RY.

As we have seen in remark 1.6, these assumptions are not suffi-
cient in order that (HS) admits homoclinic solutions. In that exam-
ple the potential U is time independent and hence the corresponding
functional

pe(w) = [ Il = Us(t,0))

and [|¢/, (u)|| are invariant under the action of the translations group
R. In particular, if u is a non zero critical point of ¢ (which always
exists, by [3, 11, 27], for instance) then also u(- —t) is a critical point
of ¢4 for any t € R. Therefore the set of critical points of ¢y is
uncountable.

To avoid this situation, we make an assumption on the cardinality
of the critical set of ¢ .
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As discussed in [12], the functional ¢, satisfies the geometrical
properties of the mountain pass lemma. If we denote with c4 the
mountain pass level of o and Ky ={u € X : u #0, ¢/ (u) =0},
we assume that

(*) there exists ¢} > cy such that the set K N{u € X : oy(u) <
¢} } is countable.

On one hand, as seen above, condition (%) excludes the class
of asymptotically autonomous systems, because of the translational
invariance under R of the functional ¢..

On the other hand, (%) holds when the system at infinity exhibits
countable intersection between the stable and unstable manifolds
relative to the origin.

In fact, as noticed in [30], where (%) was first introduced, the
hypothesis (k) is a weaker condition than the transversality one and
also includes the case of countable, tangential intersection.

The condition (*) is the key to find a local mountain pass critical
point for ¢4 and to develop a minimax argument as in [30] and [12].
The local character of such a procedure allows us to show existence
of critical points also for the functional ¢.

We can now state a first general result.

THEOREM 1.7. Assume that U and Uy satisfy (U1)-(U5) and (x)
holds. Then (HS) admits infinitely many homoclinic solutions.

Precisely there is vy € K4 with the following property: for any
r > 0 there are M, p € N such that for everyk € N and (p1,...,pr) €
Z" with py > p and pj41 —p; > M, for 5 =1,..., k=1, there exists
a homoclinic solution v of (HS) which verifies:

[o(t) = vx (= p T4} < v and  [6(t) — (6 = pyTy)] < r

for any t € [L(pjo1 + ;) Tas 3 (pj +pj41)T4] and j = 1,..., k, where
po = —00 and pyi = +oo.

We notice that this theorem can be seen as a version of the shad-
owing lemma (see [21]).

Fixing £ = 1, for any r > 0 the theorem assures the existence
of an integer p = p(r) € N and of a sequence v; of homoclinic
solutions of (HS) each of them belongs to a C'-neighborhood of
vy (- — (p+ j)T4) of radius r. In general, unlike the periodic case,
these solutions are geometrically distinct.
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For a general £ € N the theorem provides a homoclinic orbit of
(HS) having & bumps, whose positions are defined by the sequence
D1, ..., Pk. More precisely, for any j = 1,..., k there is an interval P;
centered on p; T} where the k-bump solution v of (HS) is not farther
from vy (- — p;7%4) than r. The value §; = p;41 — p; represents the
distance between the corresponding bumps. Fixed r, we can find a
solution of this kind for any choice of £ € N and of the sequence
P1, .., P provided that p, is sufficiently large, depending on r, and
that the distances §; are greater than a certain value M which also
depends only on r.

As noticed in [30], since the number M does not depend on k, one
could consider the C|_—closure of the set of the multibump homo-
clinic orbits, which contains solutions with possibly infinitely many
bumps. Thus, by Ascoli Arzela theorem, the previous result can be
generalized in the following way.

THEOREM 1.8. Under the same assumptions of theorem 1.7, it holds
that for any r > 0 there are M,p € N such that for every sequence
(Pj)jeN C N satisfying pr > p and pj1 —p; > M (j € N), and for
every sequence 0 = (0;);eN € {0, 1IN there is a solution v, to (HS)
such that

[0 (1) = ajos (t = Tl < v and i (1) = a6 (0 — pyT3)| < v

for any t € [M(pj1 + p) T4, bps + pj41)Ty] and j € N, where
po = —oo and vy € Ky is the same of theorem 1.7. In addition
any v, also satisfies v, (t) — 0 and 0,(t) = 0 as t — —oo and it is
actually a homoclinic orbit if o; = 0 definitively.

We see that theorem 1.3 easily follows from theorem 1.8 together
with the classical results on equation (1.4) which imply that the
intersection between the stable and unstable manifolds relative to 0
associated to system at infinity (1.4) is countable. This is true if
€ # 0 and small. In fact the Melnikov function of (1.4) (see [16, 23,
34]) is given by

M (s) = sin(wys) /R “t cos(wyt)|qo(t)|* dt = sin(wys) C(wy)

where ¢o(t) = (2/a+)%(cosh t)~! is a homoclinic orbit of the unper-
turbed system § = ¢ — ay¢® and C(wy) € (0,00) for any wy # 0.
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Since the zeros of sin(w, s) are simple, for the Melnikov theorem [23],
the stable and unstable manifolds of the perturbed system intersect
transversally and so countably. Thus (x) is verified.

The correspondence o — v, permits to define an approximate
Bernoulli shift for the system (HS) (see [30]). The presence of this
structure implies sensitive dependence on initial data.

We point out that in the previous theorems 1.7 and 1.8 no as-
sumption is made on the behaviour of U as t —+ —oc, but the regu-
larity and hyperbolicity hypotheses (U1) and (U2).

If the system (HS) is doubly asymptotic as ¢ — 400 to two,
possibly different, periodic systems

G=-UL(t,q) (HS)

then, by theorem 1.8, we have two different sets of multibump so-
lutions, that, at +oo are near to solutions of (HS)1. Here and in
the sequel, with (HS)_ we denote a system ruled by a potential
U_(t,q) = —5q- L-(t) g+ V_(t, ) satisfying (U1)-(U4).

In fact, we prove that there are also multibump solutions of (HS)
of mixed type, as said in the following theorem.

THEOREM 1.9. Assume that U, Uy and U_ satisfy (U1)-(U5) and
that (*) holds both for (HS)y and (HS)_. Then there are vy and
v_ homoclinic solutions respectively of (HS); and (HS)_ having the
following property: for any r > 0 there are M,p € N such that for
every sequence (p;)jez, C Z satisfying py > p, p_1 < —p, Pj41—P; >
M (j € Z) and for every sequence o = (0;) ez € {0, 1}YZ there is a
solution v, to (HS) such that

vo(t) — ojog(t —piTy)[ <1 and |0, (t) — 004 (t — piT3)| <r

for any t € [(pio1 + p)Ts, 30 + pis0)Ty], = 1,2, and
|vg(t) —ojo_(t —p;T_)| <r and |0,(t) —o;o_(t —p;T_)| <r
for any t € [5(pi—1 +p))T—, 5(p; + pix)T-), 5= —1,-2...
In addition, if o; = 0 for all j > jo (respectively j < jo) then
the solution v, also satisfies v,(t) — 0 and 0,(t) — 0 ast — o0
(respectively t — —o0).

Clearly, in the previous statement, when we say that U, U, and
U_ satisfy (U5) we mean that U'(t,q) — UL (t,q) — 0 as t — 400
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and U'(t,q) — UL(t,q) — 0 as t — —oo uniformly on the compact
sets of RY.

Coming back to the model equation (1.1) with a(t) bounded and
strictly increasing we see that while for ¢ = 0 the system has no
homoclinic solutions different from the trivial one ¢ = 0, there exists
€0 > 0 such that () is satisfied for |¢] < ¢, € # 0 and so, by
the theorem 1.7, the equation (1.1) has infinitely many homoclinic
orbits. Geometrically this means that while the stable and unstable
manifolds do not intersect when ¢ = 0 (apart from in the origin), if
€ # 0 then they intersect in an infinite set. This suggests that the
stable and unstable manifolds for (1.1) accumulate one on the other
for t = 4-o0.

NOTATION.

Through this paper we denote:

X = H'Y(R,RY).

(u,v)a = [4(#-0+u-L(t)v)dtfor u,v € X and A measurable subset
of R.

||| 4 = (u, U>i1/2 for u € X and A as before.
In particular ||u|| = ||u||g is a norm on X equivalent to the standard
one.

o(u) = [r(Gla> = U(t,u)) dt for u € X.

o <bl=(ueX o) <b){p>a)=fue X : o(w)>a),
{a <o <b}={p<b}n{p>a} wherea,bec R.

K={ue X\{0} : ¢'(u) =0}, K = Kn{p < b}, K(b) = Kn{p =
b

B.(S)={ue X :dist(u,S) <r} where S C X, S#0 and r > 0.
A (S) =Upes{u € X @ ri <||lu—wv|| < re} where 0 < rq < rg.
The same notation for ¢4, ¢o_, K+, K_, etc.

thu(t) = u(t —nTy), 77u(t) =u(t —nT_)forue X,t e R, n € Z.

n

2. A local compactness result

In this section we discuss some basic general facts which depend
only on the hyperbolicity assumption and therefore are true for both
the periodic and the asymptotically periodic problem. During this
section we will always assume (U1)-(U2), without any hypothesis on
the time dependence of the potential.
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First of all we note that thanks to (U2) we have

@(u) = Hull® + o(lul®) and @'(u) = (u, )+ ollul)) as u—0.
(2.1)
Secondly we give some properties of the Palais Smale sequences of
®. In general (U1)—(U2) are not sufficient to guarantee the bounded-
ness of these sequences. Anyhow we can state the following results,
concerning the bounded Palais Smale sequences.

LEMMA 2.2, If (u,) C X is a Palais Smale sequence at the level b
(namely ¢(u,) — b and ||¢'(u,)|| — 0) weakly convergent to some
u € X, then ¢'(u) = 0 and (u, — u) is a Palais Smale sequence at
the level b — ¢(u) weakly convergent to 0.

Proof. We write U(t,q) = —%q -L(t)g+ V(t,q) forany (t,q) €
R x R".
If u,, — u weakly in X and so strongly in L;> (R, RY), then, for any
w e C(R,RY) we have:

o' (w)w = (u, w) — fsuppwV’(t, u) - wdt
= lim(u,, w) — lim [ V'(t, u,) - wdt
)

suppw
= lim ¢’ (uy)w.

Therefore, since ¢'(u,) — 0, ¢'(u) = 0 follows.
To prove that ||¢'(u, — u)|| — 0, take any w € X. It holds that for
any T > 0:

| (1n — w)w — ' (un) w]
=|[r(V'(t,up —u) = V'(t,uy) + V'(t,u)) - w dt]
< ier V't upn — u) = VIt un) + V(L u)) - w dt
sVt wn = u) = VIt wn)| [w] dt + fys 7|V (¢, w)| [w] dt
1
< 0a(T) (Jiy<rlwl? dt)? + [y rCrlul [w] dt
1 1
+jys V' u)|? dt)? (f|t|>T|'w|2dt)2
where:

50(T) = (fyeg !V (1 1 — w) = V' () + V' (1, 0)|? dt) 2

Cr=sup{|V'(t,q) - V'(t,0)|/la—q| : t€R, |q],|ad <R, ¢#q}
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and R > 0 is such that |u,(t) — u(f)] < R and |u,(¢)| < R for any
t € R and n € N. We note that R < 400 because (u,) is bounded
in X and soin L (R, RY). Then, by (U1), Cr < oo too. Hence we
get:

" (= w)w — &' (un)w)
< 0u(T) (frlwl? )2 + Cr(fysluldt)? (fglwl>dt)? +
gz V!t )P dt)? (f o] di)
which implies:
16/ (t — ) — & ()|
< 6.(T) + Cr(fjysrlul®dt)

N|=

+ (iysrlV/(t, w2 dt)

for every T' > 0. Now, for any ¢ > 0 we can choose T' > 0 such that
1 1
Cr(Jiysrlul?dt) + (Jiysr V' (5, u) 2 di)? <e.

By the dominated convergence theorem, 4, (7)) — 0 as n — oo.
Therefore lim sup ||¢’(u, —u)|| < € and, for the arbitrariness of € > 0,
we get that lim ||¢(u, — u)|| = 0.
Finally we prove that if b = lim ¢(u,) then ¢(u, — u) — b — ¢(u).
Indeed, arguing as before, we have that:
ot — ) = ¢(un) + ¢ (u)]
< [ lul® = (tn, )
+ f|t|§T|V(tv Uy —u) — V(t,u,) + V(t,u)|dt
+ f|t|>T|V(t7 up, —u) = V(t,u,)| di + f|t|>T|V(ta u)| dt.

Taking R > 0 such that |u,(t) — u(t)] < Rforany t € Rand n € N
and setting
Cr=sup{|[V'(t,q)|/la] : t€ER, |g| <R, q#0}
from the mean value theorem we get that for any ¢ € R:
V(1 un(t) = u(t)) = V(& un ()] = V(1 un(t) = Ou(t)) - u(t)]
< Cplun(t) = Ou(t)] |u(?)]
< Chlun(®)] lu(t)| + Crlu(t)]?
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where 6 € [0, 1] and so

lp(un — u) = p(un) + ¢ (u)]
< lull® = (s )
+ JijerV (t un — u) = V(E up) + V(¢ u)| di
+ Cﬁ%ﬁt|>T|un| ul dt + Cﬁ%ﬁt|>T|u|2dt + f|t|>T|V(t7 u)| dt.

Taking now € > 0 we can find 7" > 0 independent from n € N such
that

Crljpsrlunl [ul di+ Chfysplul®di+ fls 7V (5 w)| dE < c.

Since [ [Vt un —u) = V(t,un) + V(t, u)| dt — 0 as n — 0o and
u, — u weakly, we infer that limsup |¢(u, — ) — ¢(u,) + ¢(u)]| < €
which implies that lim ¢(u, — u) = b — ¢(u).

As next step we study the Palais Smale sequences which converge
to 0 weakly in X.

LEMMA 2.3. If u, — 0 weakly in X and ¢'(u,) — 0 then u, — 0
strongly in H! _(R,RY) and the following alternative holds: either

loc

(i) u, — 0 strongly in X,

(ii) or 3 |t,,| — 0o s.t. infy|u,, (t,,)] > 0.

Proof. Let (u,) C X be a sequence such that u, — 0 weakly in
X and ¢'(u,) — 0. First we suppose that u, — 0 in L*(R,R").
By (U2) there is § > 0 such that |V'(¢,¢q) - q| < %cl|q|2 foranyt € R
and |¢| < 6. Then we can find 7 € N such that |u,(t)] < § for any
t € Rand n > n. Hence [[u,]|?* = ¢ (un)uy + g V't un) - updt <
I (o) )l + fip St 2t and thus funll? < C I ()| where
C' = 2 sup||uy||. Therefore ||u,|| — 0 and the case (i) holds.
Let us now suppose that u, 4 0 in L*(R,R"). Then there are
sequences (nx) C N and (¢,,) C R such that ny — oo, |t,,| = oo,
Up, — 0in L (R,RY) as k — oo and infy |uy,, (t,,)] > 0. So we
are in the case (7i) and we only have to prove that u, — 0 strongly
in H) (R,R"), that is |Juy,||jsj<7 — 0 for any T > 0. So, we fix a
piecewise linear cut—off function y : R — [0, 1] such that x(¢) =1
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for [t| < T and x(¢) = 0 for || > T + 1. We point out that the
mapping v — yu is a bounded linear operator on X and

||un|||2t|§T = <unv Xun) - fT§|t|ST+1[X (|un|2 + |un|2) + X Uy, - up] di
< @' () Xun + JRV (s un) - Xtun dt + COlfT§|t|§T+1%%|“n(t)|2dt|
< Chlle ()|l + f|t|5T+1VI(t7 up) - Xty dt + Co SUP|¢|<T+1 |un (8)].

This shows that [|u,||;j< — 0. &

Therefore if (u,) C X is a Palais Smale sequence which converges
weakly but not strongly to some u € X, then there exists a positive
number r such that for any 7' > 0 we have lim sup ||u,|| s> > r. As
we will see in the next lemma, this value r can be taken independent
from the sequence (u,). Indeed, from (2.1) we easily get that

Jp > 0 such that if limsup |lu,| < 2p, ¢'(un) — 0 then u, — 0.
(2.4)

Then we have this first local compactness property of the functional

®.

LEMMA 2.5. Let u, — u weakly in X and ¢'(u,) — 0. If there

exists T > 0 for which limsup ||u, |7 < p (where p is given by

(2.4)), then u, — u strongly in X .

Proof. Fix R > 0 such that [|ul|y>r < p. Putting M =
max{R, T}, by lemma 2.3, we have that [|u, — u||;;j<ps — 0. There-
fore [|un — ul|? = o(1) + [Jun — ullfyar < 0(1) + 9 + 2p [[unlljg>nr +
”“n”|2t|>Mv from which we get lim sup ||u, — u|| < 2p. Since ¢'(u, —
u) — 0 we derive from (2.4) that u,, — u strongly in X. &

From the previous lemma we deduce this second property.

LEmMA 2.6. If diam{u,} < p and ¢'(u,) — 0 then (u,) admits a
strongly convergent subsequence.

Proof. Let 6 = p—diam {u,} and T > 0 such that [[u |57 < 4.
Then [|un||g>7 < ||un — w1l + & < p. Since the sequence (uy,)
is bounded, there is a subsequence (u,,) which converges weakly to
some u € X. Hence, using lemma 2.5, u,, — u strongly in X. &
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3. The periodic case

Here we first state some properties satisfied by the functional ¢4, by
the periodicity and superquadraticity assumptions (U3) and (U4).
Then, using the hypothesis (x), we get further compactness prop-
erties which, together with lemma 2.6, give the existence of a local
mountain pass-type critical point of ¢, . All these results were given
in [12] to which we refer for the proofs.

First of all we note that the hypothesis (U4.ii) implies that

(3= 2 - ) uld — A @l llulls < er(w) Yue X (3)

where ||ull2 = [gr(l@|* + u - Ly (t)u)dt. Therefore, if a sequence
(un) C X is such that ¢/, (u,) — 0 and limsup ¢4 (u,) < +00, then
(un) is bounded in X and liminf ¢4 (u,) > 0.

So, as first result, we get that any Palais Smale sequence of ¢4
is a bounded sequence, at a non negative level.

Moreover, the hypothesis (U4) gives information about the be-
haviour of the potential at infinity with respect to ¢ along the direc-
tion of ¢4 in a neighborhood of . In fact, from (U4), one can infer
that

Vi(t,sqy) > 6% Ys>1,Vtety —ety+ (3.2)

where 6 = 2[Vy(t4,q4) — ﬁf:—i2q+ - Li(t+)q4] > 0 and € > 0 small
enough. Hence, choosing p € C*(R,R") with suppp = [t; —¢,t4 +
€], and setting ug(t) = p(t)g+ we have that ¢y (sug) — —oo as
5 — 00.

Together with (2.1), this says that the functional ¢4 verifies the

geometrical hypotheses of the mountain pass theorem.
Then, if we define

I={ye C([()?l]?)() : 7(0):07 99-1-(7(1)) <0}

and

cy = inf max ¢ s

+ ~eT sefo1] oy(v(s))
we infer that ¢4 > 0 and there is a sequence (u,) C X such that
o4 (uy) — cq and [|¢) (uy,)|| — 0. Using the periodicity hypoth-
esis (U3), this sequence (u,) can be chosen in such a way that
Suprer [1n(1)] = Supsgomy [un(B)] = 8 > 0. Then, by (3.1), (uy)
is bounded and so, up to a subsequence, converges weakly to some
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u € X which, by lemma 2.2, is a critical point of ¢;. Moreover u # 0
because sup,¢po, 1,7 [u(t)] > 6.

REMARK 3.3. We point out that the assumption (U4.ii) permits to
the potential U, to be negative on an unbounded region, as discussed
in [12]. In the autonomous case, instead of (U4.ii), one can put
milder conditions on the potential, to guarantee the existence of a
homoclinic orbit (see [11, 20]).

To investigate the Palais Smale sequences, we introduce two sets
of real numbers, already studied in [30]. Letting

Sts(p+) = { (un) C X : lim @y (u,) = 0, Timsup oy (un) < b}
we define
L ={l1cR: I(u,) € SE(p4) st @y(u,) =1}
the set of the asymptotic critical values lower than b and
Dﬁ_ ={reR :3(u), () € Shlpy) sit. |Jun — || — 1}

the set of the asymptotic distances between two Palais Smale se-
quences under b.

As proved in [12] (see Lemma 3.7), ®% and D are closed subsets
of R. Thus, we have:

(3.4) given b > 0, for any [ € (0,b) \ ®’ there exists § > 0 such
that [[ — 8,04 8] C (0,b)\ ® and there exists v > 0 such that
I ()] > v for any u € {1~ 6 < @y < [ +3},

(3.5) given b > 0, for any r € R+ \ DY, there exists d, > 0 such that
[r—3d,,r+3d,] C RT\ D% and there exists g, > 0 such that
[ (w)]| > - for any u € A,_z4, r4aa,(K3) N {4 < b}

Actually Di and (I)Ifl_ can be described using the set K of the critical
points of 4. In fact, by the translational invariance of the functional
@4, by concentration-compactness arguments [22], it is possible to
prove the following result, already presented in [14, 15].

LEMMA 3.5. Let (u,) C X be a Palais Smale sequence for ¢ at
the level b. Then there are vg € K4 U {0}, vy,...,vx € K4, a sub-
sequence of (uy), denoted again (u,), and corresponding sequences
(tL), ..., (tF) € Z such that, as n — oco:
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(|2, — (U0‘|‘T£U1+---‘|‘Tt—gvk)” —0
P+(vo) -+ py(vr) = b
Bl = +oo (G=1,....k)
Bt 5 400 (j=1,...,k—1).

As proved in [12] (see lemma 3.10) this implies that

(I)I-)i- = {Z?:IQD-}-(UJ) tkeN, vj € I(+} n [Ovb]
DYy ={(CF vy — 9 I)Y? : ke N, v;,0; € Ky U{0},
Zf:ﬁ%(vj) <b, Z?:N%(ﬁj) <b}.

Now it is clear how the hypothesis () enters in the argument. Indeed

if

(%) there exists ¢ > cy such that KiJr is countable
then both the sets D} = Djf and ¢} = <I>j_+ are countable too, and
since they are closed, it holds that:

[0,c}]\ @} is open and dense in [0, c}] (3.7)

there is a sequence (r,) C RT \ D} such that r, — 0. (3.8)

Therefore, by (3.5), near any level set {¢4 = [} at a critical value
[ € (0,c*) there is a sequence of slices {I} < ¢, < (2} with 12 — [}
smaller and smaller on which there are neither critical points or
Palais Smale sequences. Analogously, by (3.5), around any critical

point u € KiJr there is a sequence of annuli of radii smaller and
smaller (independently of u) on which, as above, there are neither
critical points or Palais Smale sequences. From this last fact and
from lemma 2.5 it is possible to show, as in [12], that the functional
¢+ admits a critical point of local mountain pass type, according to
the following definition.
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DEFINITION 3.9. Given a subset A of a Banach space X and two
points zg, 1 € A we say that z9 and z; are not connectible in A if
there is no path p € C([0, 1], X) joining zg and z, with rangep C A.

A critical point # € X for a functional f € C'(X,R) is called of
local mountain pass—type if there is a neighborhood Aj of Z such that
for any neighborhood A of Z contained in Ny the set {f < f(z)} NN
contains two points not connectible in Ny N {f < f(z)}.

We refer to section 4 of [12] for the proof of the following lemma.

LEMMA 3.10. If ¢4 verifies (%) then it admits a non zero critical
point of local mountain pass type. In particular there exist cy €
[eq,ch) and 71 € (0,%) such that for any sequence (r,) C Ry \ D}
with r, — 0 there is a sequence (v}) C Ki(cy), v — vy € Ky(cy)
having this property: for any n € N and for any h > 0 there is a
path v+ € C([0,1], X) satisfying:

() 7 (0), 7 (1) € OBy, (v2);
(ii) v} (0) and v;F (1) are not connectible in By, (v4) N {py < ¢4 };
(iii) rangey;r C By, (vh) N{p4 < cq +h};
(iv) rangerd N A, 1y . () C {ps < 4 — o
n=5%rn"n

(v) supp v,y (s) C [=HBn, Ry] for any s € [0, 1],

where R, > 0 is independent of s, h, = %drn,u,nn and d, and u,,
are defined by (3.5).

REMARK 3.11. In [1, 15, 25, 29] a stronger condition than (x) is
considered. Precisely it is assumed that there exists ¢} > ¢y such

that K_?/Z is finite. In this case the property (3.8) becomes
there exists € > 0 such that D} N (0,¢) = 0. (3.8)

This permits to get more information about the mountain pass struc-
ture described in lemma 3.10. Indeed, if (3.8)" holds, in the state-
ment of lemma 3.10 one can specify that ¢y = ¢y and vt = vy for
all n € N.
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4. Study of the Asymptotically Periodic System

In this section we tackle the problem of existence of homoclinic orbits
for the Hamiltonian system (HS) in the two following cases:

1. (HS) is asymptotic, as ¢ — 400 to a given periodic system (HS)
with no assumption on the behaviour of U for t = —oc;

2. (HS) is asymptotic as t — +o00 to two, possibly different, periodic
systems (HS)4.

As shown in [12], if the functionals ¢4 satisfy the condition (),
then each of them admits a class of homoclinic orbits obtained as
multibump solutions.

To describe this situation in a precise way, we introduce some
notation. For the sake of simplicity, for the moment, we consider
only the problem (HS);. Given M,k € N we set

P:-(M):{p:(pla7pk)ezk
Piv1—pi > MVj=1,... . k—1}
Pr(M) = | P (M).
keN

To any finite sequence p = (p1,...,pr) € PT(M) we associate a
partition of R into intervals { Py, ..., Py } where, forany j = 1,..., k:
Py =[50 +pi-1)Ts, 5(pi + pj+1) T4 ]

with pg = —o0 and pg4q = +o0.
Then, for r >0, p= (p1,...,px) € PY(M) and v € X, we set

Bf(vip)={ue X : H’IL—T;;’U”P]<T‘ Vi=1,...,k}.

The elements of B (v;p) are k—bump functions associated to v ac-
cording to the sequence p.
In [12] the following result is proved.

THEOREM 4.1. If Uy satisfies (U1)-(U4) and if (x) holds, then for
any r > 0 there exists M € N such that B (vy;p) N Ky # 0 for
every p € PY (M), where vy € Ky is given by Lemma 3.10.
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Clearly the same holds for the system (HS)_. In this case we
modify the notation in the following way. Given M,k € N we write

Pk_(M):{p:(p_k,...,p_l)EZk:
pi+1 —pj > MVj=—k, ..., =2}
P~ (M) = | J Py (M).
keN
and, for r >0, p=(p—k,...,p-1) € P7(M) and v € X, we set
B (vip)={uveX : lu—7m vl|lp<r Vj=—-k... -1}

where P; = [5(p; + pj—1)T, 5(p; + pjs1)T-].

Now we study the functional ¢ corresponding to the problem
(HS) assuming the periodically asymptotic behaviour of U only at
—+00.

First of all we point out that for (U5), the operator ¢'(u) is close
to ¢!, (u) for those elements u € X with support “at 400", as stated
in the next lemma.

LEMMA 4.2. For any ¢ > 0 and for any C' > 0 there exists T € R
such that

1€ (u) — @y (u)]| < e
for any w € X with ||u|| < C and suppu C [T, +00).
Proof. For any u,w € X and § > 0 it holds that:

[(¢'(u) = ) (w)) ]
= fr(u- (L) = Ly()w = (V'(t,u) = VL(E, u)) - w) di]
< JRILW) = Ly @)] [ul [w] dt + [i,5sl V't u) = VI u)| |w] dt
iy <ol V' G w) wl dE+ [,y <5VE(E w)] [w] di
< ¢; ?8uPyequppul L(1) — Ly ()] [Jul] [|w]]
F gyl V' (& w) = Vit ) [Pdt)? |||
oy sV & W) Pd) [0l + ([ <5l Vi (& w)[2dE) > [[w]).
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Then, taking v € X with ||u|| < C and fixing € > 0, by (U2) we can
find 6 > 0 such that |V'(¢,q)| < ;5lq| and [V (¢, q)| < 35]q| for any
t € R and |¢q| < 4. Therefore

N
N

Jugey <l V' (8, u)|?dt)
Moreover we have that:

gy s V(1 w) = V(2 w)|de)

< g sup |[V'(t,u) — Vit )| fglul®dt
tEsuppu

+ Jjugy<sl Vit ) 2dt)2 <

£
3"

2
<SS osup VI(tg) = Vi)
tesuppu, |q|<R

for a suitable R > 0. Finally, by (U2) and (U5) we can take 7 € R
so large that, if suppu C [T, 400), then

_1
e C sup [L(t) - Ly(t)|+

tEsuppu

+S( sup |V'(t,g) = Vit @)D < 5.
tesuppu, |q|[<R

Then [|¢'(u) — @4 (u)]| < e ¢

Now, since B (v4;p) N K4 # () for every p € PY (M), provided
that M € N is large, we expect that also B (v4;p)NK # () for those
sequences p € Pt (M) with p; so large that lemma 4.2 can be applied.
In other words, also the system (HS), as well as (HS)4, admits a
family of homoclinic orbits obtained as multibump solutions.

We define, for M, py € N

PY(M,po) ={pe P*(M) : pp >po+ M}
and analogously
P (M,po) ={pe PT(M) : p_1 < —po— M}.

We now state the result concerning the case of asymptotic periodicity
of (HS) only for ¢ — 400. We omit the proof which can be obtained
by simple modification of the proof of theorem 4.5 below.
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THEOREM 4.3. IfU and Uy satisfy (U1)-(U5) and if the condition
(*) holds for the functional ¢4, then for any r > 0 there are M, py €
N such that B,(v4;p) N K # 0 for every p € PT(M,po), where
vy € Ky is given by lemma 3.10.

REMARK 4.4. The multibump homoclinic solutions of (HS) found
with the previous theorem are near to T;J_ v4 on the interval P; in the

H'-norm and so in the sup norm. Since they verify (HS), we infer
that they are actually near to T;;’U_|_ on P in the C'-norm, too, as
stated in theorem 1.7.

When U is doubly asymptotic to Uy for ¢ — 400, we can find
critical points of ¢ among doubly multibump functions, according to
the following procedure.

Given M, py € N we put:

P(M,po) = (P~ (M, po) x PT(M,po)) U P~ (M,po) UPT(M,po)

For p = (p—hy---yp=1,P1,---,Pk) € P(M,pg) we define the family
{P_p,..., P} by setting

P; = [%(p] + pj-1)Ts, 2(]?] +pjp)Te]for —h <5<k, j#0,-1
P [ (p 1+ p- 2) —72(p l_pO)T]
Py=1[3(po1 — po)T-, 3(po+p1)T4]
where p__1 = —00, pg+1 = +o0o0, Ty =T_ for j < 0 and Ty = T4
for 7 > 0.

Finally, for v=, vt € X and r > 0 we set

B.(v™,vt;p) = B (v7;p7) N BY N BF (vh;pT)

where p~ = (p_p,...,p-1), pt = (p1,...,px) and B) ={u e X
ullp, <}
With this notation the theorem concerning the doubly asymp-

totic case can be stated in this form.

THEOREM 4.5. IfU, Ut and U_ verify (U1)-(U5) and if the condi-
tion (x) holds for the functionals ¢4 and @_, then for any r > 0
there are M,py € N such that B.(v—,v4;p) N K # @ for every
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p € P(M,po), where vy are critical points of ¢+ given by Lemma
3.10.

Proof. We start by giving an idea of the proof. Fix a sequence
(r,) C RT\ (D} U D*) such that r, — 0. Let v;,o_ € K_ and
v, v, € K4 be given by lemma 3.10. Arguing by contradiction,
suppose that the conclusion of the theorem is false. Then there
exists rg > 0 such that for any M, pg € N there is a finite sequence
p = (p-h,-- - P-1,P1,.--,pk) € P(M,po) for which B, (v_,v4;p) N
K = (. Fixing a suitable h > 0, lemma 3.10 assigns two sequences
of paths 4,7, 7F such that v, (0) and v, (1) belong to two different
components of Br_(v_)N{p_ < ¢_} and analogously for v, (0) and
v¥(1). To reach a contradiction, we will construct a path ¥ joining
3 (0) and 5 (1) (or %F(0) and y#(1)) inside B,_(5_) N {¢- < ¢}
(respectively, inside By, (v4) N {¢4 < ¢4}). This path ¥ is built
in the following way. We consider the surface G' : [0,1]"tF = X
defined by

GOpe o010 ) = S Toya 0+ 3 mhat(6)).
—-h<i<-1 1<5<k
(4.6)
For the properties of 4T listed in lemma 3.10, we have that

©;(G(0)) < éx +h forany j and for any 0 € [0, 1]"+F

where
pi(w) = [ (il = Uelt, ) at
PJ
with Uy = Uy if 7 > 0and Uy = U_ if 7 < 0. Since v, —
v_, vF — vy and r, — 0, we can choose n € N so large that
B, (v, ,vF;p)N K = 0. This allows us to construct a deformation 7
of X such that the surface o GG has the property that:
(4.7) for any 8 € [0, 1]"** there is an index j such that ¢;(n0G(8)) <
Ct.
Using (4.7), by a Miranda fixed point theorem ([24]), on the surface
noG we can select a path g joining two opposite faces noGG({8; = 0})
and noG({#; = 1}) such that range g C {¢; < ¢+ }. Finally, let ¥ be
the path obtained by multiplying ¢ by a suitable cut-off function yx
on P; and by translating by p;7%. It turns out that 7 is the required
path which gives the contradiction.
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The deformation 7 is obtained as a solution of a Cauchy problem

{ D= V)
ult

0,u) =u

ruled by a pseudogradient vector field V : X — X for ¢ which acts
in this way. First of all V is a bounded locally Lipschitz continuous
function on X which does not move the points of X outside the set
B = Brn_%dm (v, ,vF;p) and such that the functional ¢ decreases

along its flow lines. This holds asking that:

VD) GV > 0 Va e X, V@ <1 Yu € X, V() =
0 Vue X\ B.

To get the property (4.7), we want to use the following argu-
ment:

- we can choose by > ¢4 near as we want to ¢4 such that start-
ing from a point v € {¢; < by}, along the positive flow line
{n(s,u) : s > 0}, one always remains inside {¢; < by}.

- if u € N;{p; < b1} and the trajectory {n(s,u) : s > 0} crosses
an annular region of the type A; = {u € B : r, — %drn <
l|u — T;Ev;—LH <1y — 5de, } N;{g; < bs} then the functional
; decreases of a positive uniform amount A¢; independent of
the sequence (p_p,...,pk)-

- we can choose a4+ < ¢4 near as we want to ¢4 such that also the
sets {¢; < ay} are positively invariant with respect to the flow
7.
Thus, taking a4+ and by such that by —ay < Ag;, if the trajec-
tory {n(s,u) : s > 0} crosses some A; starting from {¢; < by}
then it reaches the sublevel {¢; < ay}.

These properties are obtained requiring that:

(V2) i)V (u) > v Yu € Aj
for some v > 0 independent of (p_p, ..., px) and:

(V3) ¢i(u)V(u) >0 Vue€ {ax < pj <ax+d}Uibs < ¢; <bp+d}
for some § > 0.
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Thanks to lemma 2.5 and to the contradiction assumption, for
which BN K = 0, it is possible to construct V in such a way:
(V5) ¢ (u)V(u) > v Yue B, _s, (v, vtip)

12

for some v/ > 0.

This implies that any flow line starting from a point u €
Brn_%dm (v, v p) crosses some A; for an index i depending
on u.

Finally we need a property of V which permits us to control
the error |¢;(g) — ¢;(xg)| produced by the cut—off procedure.
As we will see this can be realized if:

(V4) (u,V(u))g, >0 Vue X\Y.andVj=—h,... k

where we assume M > 2m? + 3m for some m € N,

Qj =[piTy + m(m+ )14, pja Ty —m(m+1)T] (1 <5< k),
Qi =i T-+m(m+1)T_,p;T_—m(m+1)T_] (=h<j<-1),
Qo =[p1T-+m(m+ 1)T_,p1T+ — m(m+ 1)74] and
Vo={ueX : [uly, <e Vj}

with ¢ > 0 small enough.

The vector field V as well as the positive constant h chosen at the
beginning is assigned by the following lemma, whose proof can be
found in [12, 25].

LEMMA 4.8. For any r, sufficiently small there is v = v(r,) > 0
such that for any a_,ay,b_,by € R and 6 > 0 with
O\N®* [bo —8,b_ + 28] C (c—,c*) \ P*

[a_ —6,a_ 4+ 28] C (0,¢
[ay = 6,04 +20] C (0,c4) \ @L  [by — 8,04 +20] C (c4,c}) \(q)i)
4.9
there exist po € N and ¢; > 0 for which the following holds:
for any € € (0,¢1) there is m € N such that for each p € P(2m? +
3m,po) there exists a locally Lipschitz continuous vector field V :
X — X satisfying (V1)-(V4).
Moreover, if BN K = () then there is v > 0 such that (V5) holds.

So, we follow this scheme: we first fix n € N such that [|[vE—vy| < £,
r, < min{%,ro} and Bgrn(vff) C Br,(v+). In particular we have
that B, (v, ,v};p) C B,(v—,vy;p) for all p € P(M,po) and for all

M, po € N. In correspondence of the value r,, > 0 above fixed, lemma
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4.8 gives a suitable positive constant v. Thanks to (3.7), we can
choose ay > ¢4 — min{h,, 5;vd,,} and by < min{ci,cx + 5vd,,}
and § > 0 satisfying (4.9). Then lemma 4.8 assigns two values
po € N and ¢; > 0. Now we take ¢ > 0 such that for any Borel
set A C R with |A| > 1 and for any v € X with [|u]|} < e it
holds that [, [Vi(t,u)|dt < ||ul|4. This is possible because Uy
satisfy (U2). Then we fix € € (0, min{e;, 3e3, 5(c4 — ay), 3(c —
a_),sr2, 1d? }). By lemma 4.8 there exists mg € N such that for
any p € P(2md + 3mo, po) there is a vector field V, : X — X sat-
isfying (V1)-(V5). Now we apply lemma 3.10 fixing h = min{b_ —
é_,by — ;) and finding two paths v with suppy¥(s) C [-R, R]
for any s € [0,1], where R > 0 depends only on n. Moreover
we can always assume that vaHftPR < €. Then we choose m >

max{mg, R, ="', T;l} and we use the contradiction assumption, for
which there is p = (p_p, ..., P_1,P1,- - -, pr) € P(2m? + 3m, po) such
that B, (vy,vF;p) N K = (. Consequently, there is a vector field
V, =V : X — X that satisfies (V1)-(V5).

Finally, for any s > 0 we consider the continuous function G, :
[0,1]"** — X given by

Gs(0) = (s, G(9)) (0 €[0,1]"*F)
where () is defined by (4.6) and 7 is the flow generated by —V.
LEMMA 4.10. (i) For anys > 0 G, = G on the boundary of [0, 1]"*.
(ii) For any s > 0 rangeG, C Y..

(iii) There exists 5 > 0 such that range G5 C U;{p; < ax}.

Before proving lemma 4.10 we continue the proof of the theorem
showing that:

(4.11) there is an index 5 € {—h,...,—1,1,...,k} and a path & €
C([0,1],[0, 1]**+*) such that £(0) € {8; = 0}, &(1) € {4, = 1}
and ¢;(G5(0)) < ax + ¢ for any 6 € rangeé.

Indeed, if (4.11) were false, for any i € {—h,...,—=1,1,...,k} the set
D; = {0 €[0,1]"** : ,(G5(8)) > ax + €} should separate the faces
{6; = 0} and {#; = 1}. Then, from a Miranda fixed point theorem
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([24]), it follows that (), D; # @, that is there exists € [0, 1]*+* such
that ¢;(G5(0)) > ax + ¢ for any ¢, in contrast with the point (iii) of
lemma 4.10.

From now on, let j be the index for which (4.11) holds. Let us
assume that j > 0. Clearly the same argument works if j < 0. Set
Q=U~_, Qi Let y : R — [0,1] be a piecewise linear, cut—off
function such that y(r) = 1if r € P;\ Q@ and x(r) =0if r € R\ P;.
Notice that, since m > 2, for any v € X

Ixullpng < 2llullbng and  [[(1=x) ullpng < 2llullbng (4-12)
and for any s € [0, 1]
supp 7 v, (s) C [p; — R, p; + R] C P\ Q. (4.13)
Then we define a path v : [0,1] = X by setting
v(s) =75, xG5(E(s)) (s €[0,1]).
By lemma 4.10, part (i), and from (4.13), we have that
7(0) =%(0) and (1) =7 (1). (4.14)
Now we will prove that
rangey C By, (v4). (4.15)
Indeed, if we set u = G5(£(s)) we have that

[v(s) = v |?
= Ixu— ol P+ ot Ry p, (4.16)
+lu— vl o + Ixu — vt |b g

By (4.12) and (4.13) it holds that HT+U+H2R\P Hv;f”ftpR < e
and analogously we also get ||(1 — )TEU;HP no < 2llvt H|t|>R 2e.
Consequently from (4.16) we infer that

[lv(s) = v 11" < Be+ 3w — ol (17, (4.17)

Since, by (V1), B is n-invariant and, from lemma 3.10, rangev, C
B, (v), we deduce that [lu — rfviF||p, < r,. Thus, from (4.17), we
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get that ||v(s) — v;f||* < 4r2, because e < 172 and, since By, (v;) C
Br, (v4), (4.15) follows.
Now, we show that for any s € [0, 1]

o1 ((5)) < e (1.18)
As before, we set u = G5(£(s)). It holds that ¢4 (y(s)) = ¢p4+(xu) =
i(xu) = @ (W) +3lIxullpng =3 llwll B ng e g Vi (b w) = Vi (t, xu)]
xdt. From lemma 4.10.iii, we know that ¢;(u) < a4. Using again
lemma 4.10.iii, and (4.11) we estimate 1[|x uH?DJOQ < HuH?DJOQ <e
and, for ¢ < Sea, fp g IVe(t,u)] dt < [l ng- Hence oy (1(s)) <
at + 4€ and (4.18) follows, because € < (¢4 — a4).

In conclusion, from (4.14), (4.15) and (4.18), v is a path joining
v (0) with 4;F(1) inside Br, (v4) N {e4+ < ¢4} and this gives the

contradiction and concludes the proof of the theorem. &
Proof of Lemma 4.10. (i) If 8 belongs to the boundary of [0, 1]+*
then §; = 0 or §; = 1 for some ¢ € {—h,...,—1,1,...,k}. Let

us suppose for instance that + > 0 and §; = 0. From (4.13) and
lemma 3.10 (i), we deduce that ||G(f) — T+’U+HP = |7 (0) —v|]? -

[|7t ;fHR\P > r2 — ¢ > 72 because ¢ < :rZ. Then G(§) € X \ Br
and consequently, by (V1), (s, G(6)) = G(0).

(ii) By (4.13), we have that [|G'(#)||g, = 0 for any j and so G(f) € Y.
But (V4) gives that Y, is positively n-invariant. Hence (s, G(f)) €
Y. for all 8 € [0,1]"+* and for all s > 0.

(iii) First of all, (V1) and (V3) imply that the sets {¢; < a4} and
{p; < by} are positively n—invariant sets.

Fix now 6 € [0, 1]"**. If G(8) ¢ Brn_%dm (v, vt p) then there is
an index i, for example positive, for which [|G(8) — r¥vt||p > r, —
Qd,nn But, using (4.13) and lemma 3.10 (7ii), we have also ||G/(6) —
oo P < 19 (83) = v || < rn. Therefore v (6:) € A, 1y . (v7)

and, by lemma 3.10 (iv) o4 (7,7 (6;)) < ¢4 — hy. Thus, since ag >
¢+ — h, we have that G() € {¢; < a4}, and, for the positive 7
invariance of {¢; < a4}, also G5(0) € {¢; < ay}.

Suppose now that G(6) € Brn—%drn' First, we notice that, from
(4.13), lemma 3.10 (7ii) and by the definition of ¢; and h, G(0) €
Ni{vi < byi}. Hence, on one hand, for the positive p—invariance of
each {y; < by}, all the positive trajectory s — G(f) remains in
Ni{®: < bs}. On the other hand, we claim that:
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(4.19) as s > 0 increases, the curve s — G4(#) must go out from
B, _s, in a finite time 5 > 0 independent of 6.
n 12 n

During this amount of time 5, G5(f) crosses the annular region
A;. In fact, there exists an index ¢, let us say positive, such that
G (0) = Tvrllp = rn = gdv,, [1G2(0) = TivF P = 7 — T30,
and r, — 3d,, < ||G5(0) — 7}vfl|lp, < 1o — $5dy, for s € (s§,57).
Then, by (V2), ¢}V > v along the curve described by G4(f) as s
goes from s} to s; and consequently, ¢;(G,(8)) decreases. Precisely
api(ng(ﬁ)) < cpi(Gsé(H)) — v (s} — s}). But, using (V1) it holds that
2

t3dr, < G2 (0) = G (O < [ 11V (n(s, G(9))l|pds < 57 — 5} and
SO goi(ng(H)) <bg— %drnu <ép— idrny < a4. Then the positive
n—invariance of {¢; < a4} implies that ¢;(G5(0)) < ay.

Now, it remains to prove the claim (4.19). Arguing by contradiction,
if (4.19) is false, then there are sequences (s,) C R4 and (6,) C
[0, 1]%*% such that s, — +o0, 6, — 8 and, for any n € N, G,(8,,) €
B, s, (v, vl;p) for s € [0,s,]. Then, from (V5) ¢(Gs, (8,)) <

gp(G(bi)) — s, and so ¢(Gs,, (0,)) — —oo. This is in contrast with
the fact that go(Bfi) is bounded. &
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