Single Non-Isolated Point Spaces

A. BELLA and V. I. MALYKHIN ()

SOMMARIO. - Si caratterizzano le proprietd di uno spazio con un solo
punto non isolato utilizzando il resto della compattificazione di Cech-
Stone dello spazio discreto corrispondente. Accanto a vari nuovt risul-
tati, vengono pure presentate nuove dimostraziont di alcuni fatti noti.

SUMMARY. - We give characterization properties of spaces with a single
non-isolated point in terms of Cech-Stone compactification’s remainders
of the corresponding discrete spaces. Together with various new results,
we also present new proofs of several known facts.

1. Introduction

The aim of this article is to characterize some properties of spaces
with a single non-isolated point in terms of Cech-Stone compactifi-
cation’s remainders of the corresponding discrete spaces.

All spaces are assumed to be infinite.

Let 3D be the Cech-Stone compactification of the discrete space
D. For A C D we will write A* = A\ D. So D* = 3D\ D is the
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Cech-Stone remainder of D. If 7 is a family of subsets of D then y*
will denote the family {A* : A € v}, conversely if v* is a family of
clopen subsets of D* then v will be any family obtained by selecting
for any B € v* some A C D such that A* = B.

As usual, points of 3D are to be considered as ultrafilters on D.
The whole space 8D may be splitted into disjoint “pieces”: D is the
subset of all fixed ultrafilters, D is the subset of all free ultrafilters
which have some countable subset and so on. For instance, if |D| =
Ry then 5D = DU D§ U Dy, .

Int(T) denotes the interior of 7.

We will write Dg for the space DU{F'}, where D is discrete and
F is the single non-isolated point. The trace on D of the filter of all
neighbourhoods of the point I’) i.e. the family {A\{F} =AND: A
is a neighbourhood of F'in Dg} will be denoted by F. On the other
hand, if we have a filter 7 on D then we may add one point I to
D and consider the space D = D U {F} in which F is the only
non-isolated point with neighbourhoods {AU{F}: A € F}.

For every filter 7 on D we may consider the subset ' = N{A :
A € F} C BD. These two objects F and F correspond each other
and we will not distinguish between them. It will be clear from the
context what concrete object we mean. As we will consider only free
filters, the set F will be always a subset of D*.

Fact 1.1. D* is a Tychonoff zerodimensional compact space in which
subsets of the form A* are clopen and provide a base for D*.

Fact 1.2. D* is a F- space. This means that two disjoint open F,-
sets have disjoint closures and hence are separated by two disjoint
clopen sets. Equivalently, if £* is a countable family of clopen subsets
of D* and UE* is contained in some closed Gs-set T C D* then
uE* C Int(T).

Fact 1.3. For a space Dg the following things are true:

a) If AC D then F € Aiff FNA* #0;

b) if A C D is a countable set, then A converges as a sequence to F
iff A* C F;

c) let Dpr be another space and consider the subspace AU{F, F')} =
{(z,z) :x € DYU{(F, F")} of the product Dr x Dgs. Such subspace
is a space with the single non-isolated point (F, F'). The trace of
the neighbourhoods filter of (F,F') on the set A is the family G =
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{Ax BNA:A€F,Be F'}. Byidentifying A with D, the family
G corresponds to the family {ANB: A€ F,B € F'}, which in turn
corresponds in D* to the set 'OV I'. Thus, The space AU{(F, F')}
is nothing else that Dpqpr.

In the sequel we will use these Facts without explicit reference.

2. Characterization properties of tightness type.

Let X be a topological space and z € X. Recall that

a) z is a point of countable tightness if whenever z € A there exists
a countable set B C A such that z € B;

In this section we are interested in various modifications of this
classical notion.

b) z is a point of countable fan-tightness (see [A3]) if for any count-
able family {A, : n € w} of subsets of X such that z € A, for every
n € w it is possible to select finite sets K,, C A, in such a way that
x € WK, :n€ew}

c) z is a tight point (see [BM]) if for every family & of subsets of X
that clusters at x there exists a countable family S C & that clusters

at z (& clusters at z if for every neighbourhood V of z there exists
some F € £ such that |ENV| > Ry).

ProprosITION 2.1. In the space D the point F is:

a) a point of countable tightness iff F' = I'N Dg,;

b) a point of countable fan-tightness iff for every closed Gs-set T C
D* TNF #0 implies Int(T) N F N DS #0;

b' ) a point of countable fan-tightness iff it has countable tightness and
for every closed Gs-set T C D* TN F # O implies Int(T)NF # 0;

c) a tight point iff for every family £ of clopen subsets of D* satis-
fying UE* N F # (0 there exists a countable family S* C £* for which
US*N F # 0.

Proof. a) the assertion “if F € A C Dp then there exists some
countable set B C A for which I € B” is equivalent in D* to “A* N
F # () implies B*NF # () for some countable set B C A”. The latter
is in turn equivalent to “A*N I # () implies A*NF N DS # 07, that
is just I'=FNDg .
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b) let F' be a point of countable fan-tightness in Dg and let T" be
a closed Gs-subset of D* such that TN F # (). We can assume
T =m{A} :n €w}and A} | C A forevery n € w. Then according
to the definition we can select finite sets K, C A, in such a way
that F € K, where K = U{K, : n € w}. So K is a countable set,
K* C T and consequently Int(T) N F N DY # 0. Conversely, let
{A, : n € w} be a family of subsets of D such that A,+; C A, for
each n € w and F € A, for each n and let "= N{A : n € w}. Then
since T'N I # (), we have Int(T) N F N Dy # 0 and so there exists
aset K = {z,:n € w} C D such that K* C T and K*NF # 0.
Letting K,, = ((An \ Apy1) N K)U{zr € A, : k < n}, we are done.
¢

Although it is very easy to find a space with countable tight-
ness which has not countable fan-tightness [AB], we present here one
more in the language of this paper. (It is the well known countable
sequential fan.)

ExaMmpPLE 2.2. A point of countable tightness which has not count-
able fan-tightness.

Construction. Let {A} :n € w} be a family of non-empty clopen
disjoint subsets in w* and let F' = U{A} :n € w}, then T = w*\
U{A :n € w} is a closed G -set for which TN F #  and Int(T)N
F=0.

¢

Fact 2.3. [AB] If F € w* then F has countable fan-tightness iff F
is a P-point in w*.

Proof. F is a P-point iff for any closed Gs-set T in w* we have
F ¢ T\ Int(T). Now apply condition b) (or b’) ) in Proposition 2.1.
¢

ProprosiTION 2.4. If I is an infinite separable subset of D* then F
has not countable fan-tightness.

Proof. Let F = {x, :n € w} Since F is infinite, we may find
clopen subsets A, n € w such that 2, € A and no finite subfamily
of {A% :n € w} covers F. Letting T'=n{D*\ A} : n € w}, we have
TNF#0, but Int(T)NF = 0.

¢
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Fact 2.5. [BM] If F is a tight point then it has countable fan-
tightness.

Proof. We show first that F has countable tightness. Let A C D
and F € A C Dp. The family & of all countable infinite subsets of A
clearly clusters at F’ and so there exists a countable subfamily S of £
which also clusters at F. Since US is countable and F € US, we see
that I’ has countable tightness. Now we can use b’) in Proposition
2.1. If F has not countable fan-tightness then there exists some
closed Gs-subset T such that TN F # ( but Int(T)N F = (. Let
E* be the family of all clopen sets lying in T. Clearly, we have
FNT=FNUE* # 0, but no countable family $* C £* can satisfy
FNUS* # (. Looking at 2.1 c), this means that F’ is not tight.

¢
Fact 2.6. [BM] If F' € w* then F is not a tight point.

Proof. By Fact 2.3 we need only to consider I’ a P-point. But it
is trivial to observe that no P-point can be tight.

%

EXAMPLE 2.7. A non tight point of countable fan-tightness.

Construction. Recall that a Hausdorff-Luzin gap in w* (see, for

example [HB, p. 125]) is a pair of transfinite increasing sequences
A* = {A% 1 a € w1}, B* = {B% : @ € wy} of clopen subsets such
that every A7 does not intersect every Bj, but the whole sequences
A* and B* are not separated, i.e. there is no clopen subset E* such
that UA* C E* and (UB*) N E* = 0.
If F = UA* then this subset is the desired one. Indeed, let T =
N{C} :n € w} be a closed Gs-subset of w* and assume C,; C C.
If TNF # 0 then Ck N F # ( for every n € w. Now, for every
n € w there exists some a,, € w; such that C: N A% # 0. Letting
€ = Sup{a, : n € w}+ 1, we have C} N AF # 0 for every n € w
and so TN A # (. This implies Int(T) N A¥ # § and a fortiori
Int(T)N F # (. Thus F has countable fan-tightness. The fact that
F is not a tight point is evident.

&

Fact 2.8. [BM] The product wp x S¢ has countable tightness iff F
is a tight point (S¢ is the sequential fan of size ¢).
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Since the product of a sequential space and a countably com-
pact regular space with countable tightness has as well countable
tightness, we have the following:

COROLLARY 2.9. If the space wr can be embedded into a countably
compact regular space with countable tightness then I is a tight point.

3. Characterization properties of Fréchet-Urysohn ty-
pe.

Let X be a topological space and z € X. Recall that

a) z is a Fréchet-Urysohn (FU) point provided that if 2 € A then
there exists a sequence lying in A and converging to z;

b) 2 is a strongly Fréchet-Urysohn (SFU) point if for every decreasing
family {A, : n € w} of subsets of X such that z € A, for every
n € w then there exist z,, € A, such that the sequence {z, : n € w}
converges to z;

c) z is a bisequential point provided that if 2 belongs to the adherence
of some filter £ then there exists a filter v with a countable base which
converges to z and is synchronous with £ (synchronous means that
for each A € £ and each B € v the intersection AN B is not empty).

ProrosiTION 3.1. In a space D the point F is:

a) a FU point iff ' = Int(F), i.e. F is a regular closed subset in
D*;

b) a SFU point iff, for every closed Gs-set T C D*, TNF # () implies
TNInt(F)#0 ( or equivalently Int(T) N Int(F) # 0;

c) a bisequential point provided that I is a union of closed G5 -subsets

of D*.

Proof. The simple proofs can be obtained as in Proposition 2.1.
Observe that trivially 3.1a implies 2.1a, because Dy is dense in D*.

%

The second named author [M2] has already given analogous char-
acterizations for the countable case.

We continue by presenting other results on FU-points. Some of
these have been previously considered by other topologists, but some
other are new.
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ExaMpPLE 3.2. [M3] There are two countable SF'U spaces Dp, and
D, whose product is not a I'U space. Moreover, both points F'y and

Fg are not tight points and hence not bisequential.

Construction. We consider a Hausdorff-Luzin gap as in Example
2.7. Let us define Fy = UA* and F = UB*. These two subsets of
w* have the required properties. Let us check only that the product
wr, X wr, is not a FU space. Take the subspace Y = {(n,n) :
n € whU{(F4,Fg)}. Asin 1.3 c¢), we see that the space YV is
homeomorphic to wg, where F' corresponds in the space w™ to the
set F)y N Fp which satisfies Int(F) =0 .

%

ExampLE 3.3. (CH) [M2]. There are two countable SF'U spaces D,
and Dr, whose product contains a single ultrafilter P-point subspace.

Construction. It is know that under CH the subspace w* \ {p},
where p is a P-point, is homeomorphic to the space Df - the sub-
space of all free "countable” ultrafilters on a discrete space D of
cardinality W;. Let us divide D in two disjoint uncountable mu-
tually complemented parts A and B, then let Af and B be the
corresponding subspaces of Df = consisting of all free ”countable”
ultrafilters on the sets A and B. These two subspaces are home-
omorphic to two disjoint mutually complemented subspaces of the
space w* \ {p}. Next, adding to these sets the P-point p, we get the
closed sets I and F, we are looking for. It is important to observe
that F1 N F2 = {p}

¢

In [M2] it is shown that there is a bisequential non first countable
point.

For a stronger example see 3.8 below.

Now we consider another classification of Fréchet-Urysohn prop-
erties.

In some sense, before we were looking at a filter I/ “from outside”
and now we are going to look at F' “from inside”.

We need to remind the properties (ol — a4), introduced by
Arhangel’skii[A2].

According with the current usage, the properties that we describe
below differ slightly from those of Arhangel’skii.
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For a point z let us fix a countable family of non trivial sequences
{l, : n € w} converging to z. Such a family is called a fan at the
point z.

The point z € X has property (ai),i € {1,2,3,4}if, for every fan
of sequences {/,, : n € w} converging to z, there exists a nontrivial
converging sequence [, such that:

(al) = |, \ ] < Rg for every n € w;

(a2) : 1, N1l # ( for every n € w (ab by Arhangel’skii), this is
equivalent to |/, NI| = Rg for every n € w;

(a3) = |l, NI =Ry for infinitely many n € w;

(ad) : 1, N1 # 0 for infinitely many n € w.

Now a point (and also a space) is called iF'U if it is F'U and has
(in each of its points) the property wi.

ProprosITION 3.4. In a space Dg the FU point F is a iF'U point iff
for every countable family £* of clopen subsets lying in F

1) UE* C Int(F);

2) there exists a clopen set V* C F such that VN E* £ () for every
E* e &

3) there exists a clopen set V* C F such that V* N E* # ( for
infinitely many F* € £*;

4) ((WE))\U(E™)) N Int(F) # 0.

ProPosITION 3.5. [A2] Fvery bisequential point is 3FU.

Proof. Let us check that for a bisequential point F’ the condition
3 of Proposition 3.4 is fulfilled. Let £* be a countable infinite family
of non empty clopen subsets lying in F'. Let x be any limit point for
this family, i.e. every neighbourhood of z € F intersects infinitely
many members of £*. As F’ is a bisequential point, there is a closed
G5 subset T such that z € T C F. Let T = N{A} : n € w} and
Ax. ., C Ay. Choose an infinite family {£) : n € w} C &£ such
that AX N EX # 0 and let K = U{A, N E, : n € w}. Obviously,
K intersects infinitely many members of £. It remains to verify
that K* C F. For every n € w we have K* C (F U A}), hence
K* C (FU(N{A} : n € w}). Since the last intersection lies in F’, all
is done.

&

Fact 3.6. [A2] SFU points coincide with 4FU points.
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Proof. Let us check that for a 4FU point F condition b) of
Proposition 3.1 is fulfilled. Let T be a closed Gs-subset and TNF #
0. Let T = n{A} : n € w}. We may assume that A% , C A%. For
any n select a non empty clopen set )} C AX N F and observe that
for any n we have (UW{F, : n € w})* = EfU---UEXU (W{E; >
n})* C EfU---UFE;U Ay . Therefore, we have (U{E, : n €
wH*\W{FE} :n € w} C T and, using the fact that I’ is 4F'U, we
get T'N Int(F) # 0. For the converse, let F' be a SFU point. Let
{F} :n € w} be a countable family of clopen subsets lying in F' and
let K, = U{F; :i € w\ n}. It is evident that T = N{K} : n € w}
is a closed (s-subset which intersects F". Since T'N Int(F) # (, the
requirement for I to be 4FU is satisfied.

%

ExamprLE 3.7. There is a bisequential non 2FU compact space.

Construction. Let T be the well known “two arrows” space. T
is a separable first countable non metrizable compact space. So its
diagonal A C T? is a separable non G5 -subset of T2. By identifying
A to a single point, we get a bisequential non 2FU compact space.
Only that A is not a 2FFU point needs to be verified.

To this end, recall that the space "two arrows” 7' is the union (but
not the topological sum!) of two spaces ”one arrow” (or Sorgenfrey’s
line). One of these Sorgenfrey’s lines is a "right arrow” R = [0, 1),
basic open sets in which are semiintervals [a,b). The other one is
the symmetric ”left arrow”, L = (0, 1]. Let us fix a countable dense
subset S = {(sn,5,) : m € w} C A C T? lying on the "right arrow”
R C A. For any n choose a sequence L, C T?\ A converging to
(Sn, Sn) and lying on some ”horizontal” line, i.e. L,, = {(z?,s,) : n €
w}. Furthermore, all these sequences will go ”from right to left”, i.e.
zly <z, all 27 belong to "horizontal” rightarrows. If we suppose
that A is a 2FU point then we must have some sequence L which
converges to A and intersects every sequence L, in infinitely many
elements. By replacing L, with L, N L, this is equivalent to the
condition that U{L,, : n € w}\V is finite for every neighbourhood V
of A'in T?. We will show that it is impossible to find some sequences
like L,, such that the last condition is fulfilled.

Now let us note that a base of neighbourhoods of A in T? is formed
by neighbourhoods of the type V = VZU---UV,2, where {V1,...,V,}
is some finite disjoint cover of T'. So, (z,y) € V holds iff both points
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z,y belong to some V;. By ”projecting” to the ”horizontal” factor
we can reduce our consideration as follows.

We have a "right arrow” space R, its dense subset {s, : n € w} and
for any n € w there is a sequence L, lying on the right of s, and
converging to it and let points of this sequence go ”from right to
left”. Our goal will be achieved by finding a binary disjoint cover
~ of R in such a way that infinitely many sequences L,, have points
lying ”outside” of v in the sense that these points belong to different
members of . Consequently, the corresponding ”hung up” set of all
these points will be outside the neighbourhood V = U{V?:V € ~}
of A.

Let d be an usual distance on R (understood as a set of reals).

Let r, = diam(L,) = sup{d(a,b) : a,b € L,}. If the sequence
{rn :m € w} does not converge to 0 then, in order to find the binary
cover, select an infinite set K C w, a real number r > 0 and points
xﬁlz € L; for every 7 € K such that d(s;, mﬁh) > r. Fix an infinite set
K' C K and a real number 2’ in such a way that {r%] :jEK'}isa
sequence converging to z’ with respect to the usual topology of the
real line. Next, fix another infinite set K’ C K’ and a real number
z" in such a way that {s; : j € K"} is a sequence converging to
Z" again with respect to the real line. Certainly is z” < 2’ and we
see that, for any ¢ € (2”,2'), the sequences L;,j € K" have points
in both [0,¢) and [e,1). So the cover {[0,¢),[c,1)} has the required
property. Assume now that {r, : n € w} converges to 0. Let us
consider the sequence Lo = {29 : i € w}. We can find some sequence
L;, such that 29 < inf(L;,) < max(L;) < z). Next, we can find
some sequence L;, such that z] < inf(L;,) < max(L;,) < z{ and so
on. If ¢ is any limit point (in the sense of real line) for the sequence
{zf : k € w} then infinitely many points of the sequences L;, are
"outside” of the cover {[0,¢),[c,1)}. So all is done.

&

ExampLE 3.8. There is a bisequential non 2F U point on a countable
space.

Construction. The space T? in 3.7 has a countable dense set D C
T%\ A. By declaring all points of D to be isolated, the construction
in 3.7 shows that the space Da is the required one.

&
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Observe that, in the last two examples, both spaces are 3FU
according to Proposition 3.5.

ExamprLE 3.9. The two SFU spaces of Proposition 3.3 are 2FU.

Proof. The proof is similar to that of Example 2.7.
¢

There are not too many results in ZFC concerning w* and its
subspaces. The elegant result of P. Simon [S] about two compact
FU spaces whose product is not FU is one of them. Later we will
extract something from the Simon’s construction.

ProrosiTiON 3.10. If¥* is a disjoint family of clopen subsets of w*
such that F' = w* \ UX* is regular closed then F is a JFU (=SFU)
point.

Proof. We could refer to Arhangel’skiiresult from [A2]: Each
subspace of a countably compact FU space is 4F'U. However, our
direct proof is not too heavy. Let us assume that X* is infinite,
the other case being trivial. Use condition b) of Proposition 3.1
for SEFU(=4FU). Let T be a closed Gs-subset and TN F # (. We
have to prove that Int(T)NF # (. Let us assume the contrary then
Int(T) C UX*. Since Int(T) is a open non clopen subset, we can fix a
countable infinite family " C ¥* whose members intersect Int(T).
Let 0* be the family obtained by choosing a clopen set in E*NInt(T)
for any F* € ¥'*. We have Uo* C Int(T) and 0 # Us* \ Us* C F -
a contradiction.

&

Let us remind Simon’s construction. He takes an arbitrary maxi-
mal disjoint family ¥* of cardinality 2% of non empty clopen subsets
of w* and splits it into two parts X7, X% having the following special
property:
if A* is a clopen subset of w* then A* intersects infinitely many
members of X7 iff A* intersects infinitely many members of 3.

It is clear that I’ = w*\UX] is regular closed and we immediately
get that F is a 4FU point by Proposition 3.10. But F is not a
3FU point, because if 6* is any infinite subfamily of X7 then every
A* which intersects infinitely many members of ¢* must intersects
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infinitely many members of 33 as well and therefore this A* can not
lie in F.
This proves the following:

ProrosiTIiON 3.11. There are 4FU, not 3FU points.

ProrosiTION 3.12. There is an uncountable 1FU space D which
is not first countable.

Construction. Probably Arhangel’skii [A2] was the first to point
out that every point of a ¥-product of an uncountable family of first
countable non single point spaces is 1FU, but non first countable.
Let Dg be such a -product, where all points, except one called F,
are declared isolated. This space D is the desired one.

&

A. Dow and J. Steprans [DS] constructed a model of ZFC in
which every countable 1FU space is first countable.

So, we can not give in ZFC an example of countable 1FU space
Dp which is not first countable. However, there are models where
such examples can be constructed.

ExampLE 3.13. The two 2FU spaces of Proposition 3.2 are not
1FU in Dow-Steprans’ model (they are countable not first countable
spaces).

ExampPLE 3.14. The two 2FU spaces of Proposition 3.2 are 1FU
under (MA+- CH).

Proof. 1t is enough to prove that Int(f4) = UA* -see Example
3.2. Assume the contrary and let V* be some clopen subset such
that V* C Fus, but V* ¢ UA*. In this case V*\ UA* should have
empty interior and this is impossible under (MA+—- CH).

¢

Therefore, we may formulate the following

ProrosiTiON 3.15. The property to be 1FU is undetermined for the
2FU spaces of Example 3.2.

ProprosITION 3.16. The two 2FU spaces constructed under CH in
FEzxample 3.3 are 1FU.
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ProrosiTIiON 3.17. The two 2FU spaces of Example 3.2 assuming
(MA+— CH) are examples of 1F'U non bisequential spaces, as well
as the two 2FU spaces constructed under CH in Frample 3.3.

The second named author proved in [M3] that, in any model, ob-
tained by adding more than Ny new Cohen reals to a model in which
CH is true, every countable 2FU space has character not greater
than Wy. From this result we extract the following

ProrosiTIiON 3.18. The character of the 2FU spaces in Frample
3.2 is equal to ¢ assuming MA and to Ny < ¢ in the Cohen’s model.
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