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SOMMARIO. - In questo articolo viene discussa una tecnica di discretiz-
zazione per problemi agli autovalori che nascono nella vibrazione di
travi ed aste elastiche. Formalmente, la discretizzazione corrisponde
alla classica condensazione di deformaziont e masse ai nodi di un reti-
colo, ma piuttosto st pone lattenzione sull’uso di tecniche di G-conver-
genza per generare problemi approssimanti in spazi di funzioni meno
regolar: di quanto venga richiesto nella classica teoria variazionale.

SUMMARY. - The paper discusses a discretization technique for the eigen-
value problems that arise in the vibration of elastic beams and rods. For-
mally, the discretization corresponds to the classical lumping of strain
and masses at the nodes of a mesh, but the stress is rather put on the use
of ideas from G-convergence for generating approrimating problems set
up in spaces of functions less regular than it is required in the ordinary
variational framework.

1. Introduction

In estimating the solution of differential problems by variational tech-
niques, one often resorts to approximations that belong to the same
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function space of the solution by choosing spline functions that avoid
certain discontinuities at the boundary of the elements. As a matter
of fact discontinuities can be allowed, as is done in the hybrid meth-
ods [1], provided that they are penalized through the introduction
in the objective functional of Lagrange multipliers to be determined
in the approximation procedure. In this case the technique pro-
vides an approximation from the outside of the appropriate function
space. One might adopt a different view and allow for singularities
by relaxing the functional in a suitable manner, so as to obtain ap-
proximating problems whose solutions converge to the solution of
the original problem in some weaker sense.

To do so I exploit an idea sketched by Kohn and Vogelius [2]
in dealing with the minimization of the Dirichlet integral in a 2-
dimensional conduction problem. Kohn and Vogelius propose to
split the minimization in two steps: first, chosen a triangular mesh,
to minimize the functional in the class of functions satisfying piece-
wise linear conditions at the boundary of each triangle, and then
to minimize the outcome with respect to all possible choices of the
boundary data. The pattern of the data along the sides of the mesh
forms a kind of skeleton the approximating functions have to adhere
to and the second step consists in a minimization of the functional
in the class of the skeletons. The procedure is said to be particularly
effective.

Kohn and Vogelius do not seem to have developed their idea in
detail, nor it seems to contain any novelty when confined to the sec-
ond order operators as they do. Yet, their idea can be combined with
a relaxation of the objective functional to functions less regular than
required by the original problem, obtaining advantages that are not
only computational. For multidimensional problems, for instance,
this relaxation avoids the need to guarantee the proper matching of
the approximating functions across the elements to the mesh.

Here the previous idea is presented in the simpler context of the
one-dimensional problems. For the sake of illustration I consider
the eigenvalue problem relative to the axial vibration of an elas-
tic rod and study piecewise constant approximations to the mode
shapes. The method comes up with a sequence of lumped param-
eter systems that provide converging estimates of the modes and
eigenfrequencies of the rod. While these systems are the usual fi-
nite difference models, the general setting is different because, with
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the language of [3] [4], we are constructing a sequence of discrete
problems that G-converge to that of the continuous beam. To be
more precise it should be said “I'-converge”, since we are dealing
with functionals, but being too specific about this point is not im-
portant, here, because we won’t make use of the technical apparatus
of I'-convergence. In any case, the basic ingredients are the same
and the technique is a straightforward application of ideas from G-
convergence, with the distinguishing feature that the stress is on the
construction of numerical approximations rather than on the char-
acterization of the limit problem. Apparently, the researches in that
area have privileged the latter aspect, so the application considered
here offers a different perspective.

The method is not confined to the second order problems or to
the eigenvalue problems. It is indeed for fourth order operators and
in particular for the equilibrium problems of the plate theory that
its advantages may become important. For the sake of illustration
in Section 4, I consider the bending vibrations of a simply supported
beam. The rate of convergence of the method is also briefly discussed
at the end of the paper, so to allow us make a first comparison with
the conform methods of the finite element theory. While the rate of
convergence for the rod problem is lower than that obtained under
standard conditions by using the simplest conform finite elements,
it becomes the same for the bending problem subject to appropriate
regularity properties of the modes. This is analyzed in more detail
in another paper.

The present paper is a revised version of an unpublished note
with the same title [5]. The discretization method has been applied
by Davini et al. [6] [7] in the study of the eigenfrequencies of beams
in some identification problems. The case of the bending vibrations
under general boundary conditions is treated in [8]; the extension to
the equilibrium of elastic plates has been considered by Pitacco [9]
and Davini and Pitacco [10].

2. Axial vibrations of rods: approximation ofthe eigen-
frequencies

Let us consider first the axial vibrations of a rod of unit length and
given homogeneous boundary conditions, and let the mass density
p(-) and the axial stiffness a(-) be bounded and strictly positive.
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Modes and natural frequencies are then the eigenpairs {p;, u;} of
the differential problem in the weak form:

we HNO 1), - [a@)') = pPp@)u,  (21)

with H{ the space of functions satisfying the geometric boundary
conditions, and they can be determined by studying the minima of
the Rayleigh quotient

/01 a(z) (u)? do
/01 p(x) u*dz

Flu] = (2.2)

in suitable subspaces of HL.

Let {Px} be a sequence of partitions of (0, 1) into sub-intervals
AN = (2N,,2N), 2l =0, 2§ = 1, with lengths |AN| uniformly
converging to zero with N. In view of the minimizing of F, we
proceed to the minimization of the strain energy in each sub-interval
for given values of the displacement at the extremes. Thus, for every

u € H}, we have
/01 a(z) () dz > Z min /AN a(z) (w')? dz, (2.3)

where the minima are calculated over the functions w in H'(AN)
that take on the values of u at the ends of the sub-interval:

min /AN(Z(;r) (w’)2 dzx

t: {¢ LI /A?] a(z) ()2 dw} suN (i)?, (2.4)

[v]=1

with §uV (i) = u(x]N) — u(=],).

From the minimization within the bracesin (2.4) it turns out that
the optimal 9 in each AN corresponds to constant moment a(z) ¢’
(normal strength) and that the minimum is given by the harmonic

mean of the stiffness

min

N2 4. _ 1 z -
p e H'(A]) ) 00 = (/AN a<w>d> -2
[Wl=1
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Called kN (7) the harmonic mean of a(z), it follows from (2.3) that

/Ola(:n) ()? de > Y EN@)SuN (1) VYue HE.  (2.6)
Hence, from (2.3),
ST EN () su (4)?
/0 ()l da

With the words of Kohn and Vogelius, each u fixes a skeleton of
values at the nodes of Py. In the following an upper twiddle will
indicate the function @ which fits with the skeleton of a given « in
H} and is optimal in each AN in the sense of (2.4), and OF c H}
will be the finite dimension subspace of such functions for all possible
assignments of the skeleton. Note that for these functions (and only
for them) the equality holds in (2.6).

The expression on the right hand side is in fact well defined in
a space larger than H{. Let S{y be the space of functions constant
in the sub-intervals of Px and satisfying the geometrical boundary
conditions, and let & = sy (u), with u € H{, denote the function in
S such that a(z) = u(z)) for 2 € AN. In SY the functional on
the right hand side of (2.7) becomes

Flu] > Yue Hp. (2.7)

FN[a] = Sk (2.8)

with

and we have that
> mN (i) (i)

Flu) > 7N 2] =5
/0 p(z) u?dz

Vu€ Hp. (2.10)

The functional FV is the Rayleigh quotient of a chain of masses
and springs lumped at the nodes of the mesh and satisfying the
geometrical boundary conditions. Hereafter it is shown that the
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eigenpairs of this system approximate arbitrarily well those of the
continuous rod.

Let us consider the eigenpair {py, u1 }, with uy the first normalized
mode of the rod. From (2.10) it follows that

pt > FNag] Y- mN (i) 4 (7)*. (2.11)

Therefore, since the square of the first eigenfrequency pl¥ of the
discrete system minimizes FV in SIN, it follows that

2 . ~ .
pi> (V) o )i (i) (2.12)
On the other hand, we also have
! 2
/ a(z) (v')° dz
2 0

pp < Yue Hp. (2.13)
/ p(x) u? dz
0

In particular,

m™ (3) @ (1)*

2 < ]_-N[,&] Z

P2 Vue OF, (2.14)
/ p(z) u? dz
0

with @& = sy(u), since the equality holds in (2.6). Therefore, if @Y
is the first normalized mode of the discrete system and @] is the
corresponding function in (’)]FV , it follows that

pt< (oY) .

1 2 )
~N
z) (U dx
/0 p( )( 1)
By collecting (2.12) and (2.15) we get
2 .
(pY) Yo mN () in(i)? < p}
2 1
< () . (2.16)

(2.15)
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So, by comparison,

lim (pjlv)2 =p} (2.17)

N—oo

if we prove that

lim Z mN (@) 4(1) = 1= lim p(x) (&]1\[)2 de.  (2.18)

N—=oo N—=oo Jo

The former of (2.18) follows from the equality
> mM (@) = [ pla)ii da, (2.19)

by taking into account that the integral is L? continuous in @; and
that ; — uq in L2. The latter requires a stronger property stated
in the following lemma.

LEMMA Let {v;} be a bounded sequence in H' and {sn(v;)} ,N =
1,2,... be the sequences of the corresponding simple functions defined
above for the partitions Pn. Then for any subsequence {v;, }

N
lsn i) = vy, 5 0. (2.20)

In fact, as sy(v;, ) is piecewise constant, Poincare’ inequality reads

2 2
/AN {SN(UJN) _UJN} < |A£V|/AN (UJN/) dz .

Then, by summing up over the AN we get

1 2
/ {SN(UJ'N)_UJ'N} dx
0
1
<IAN] [ o) de with |AY] = sup|AY],
0 i
which gives (2.20) since the sequence {v;} is bounded in H'. Note

that sy(v) — v in L? for every v € H', a property that has been
already used above.
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Equalities (2.18); and (2.12) imply that the energy integrals

/01 a(z) (”]1V/) dz

which equal (p; ) because the equality holds in (2.6), are equi-

bounded. The1ef01e |ay — ||L2 — 0 by the lemma, observed

that @Y = sy (@Y). This implies

lim 1 p(z) (ﬂ]lV)Q dz = lim 1,0(36) (ﬂ]lV)Q dz . (2.21)

N—=oo Jo N—=oo Jo

On the other hand,

/01 p(z) (u]lv) dz = Z m™ =1 (2.22)

since the discrete modes @} are normalized, and this concludes the

proof of (2.18),.

To see that limy_sq (péy)2 =p;*; j = 2,3,... requires a slight
modification of the above argument.
Let us define the subspaces:

1
AjI{UGH%:/p(w)uukd;rzo; k:1,2,...,j—1},
0
={aes) Y mNa()al()=0; k=1,2..5-1},
A;V:{ueHll:ﬂng(u)epjy}7

where uj; and ﬁiv are the normalized modes of the beam and the
discrete system, respectively.
From the min-max principle we have

p = irenjl Flu] > ulélitrjfl\f Flu]. (2.23)

Let a be the normalized minimizer of the Rayleigh quotient F in
Aﬁv and recall from (2.10) that

FlaX] > FN[(a)]> - mN (i (2.24)
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2
with &év = SN((L;V). Then, since &;-V belongs to D;V and (pﬁv) is the
minimum of FV in D;-V, (2.23) and (2.24) yield

2 N AN
P> ) S0 m¥ (i) a ()2, (2.25)
Furthermore, by operating as in (2.14) and (2.15) it follows that
Ny, N\ 2
m™ (1) sy (u)(i
p? < Flu]l = ]-'N[SN(U)] Z (8) s (w) (9 Yu € Ajﬂ(’)fy (2.26)

/01 p(z) u? dx

for p? is the minimum of F in A;. Note that A: N O contains
p] J J T

elements different from the null one, as (’)]FV has dimension N and A;
has deficiency < N — 1. In particular,

1
/01 p(z) (&;V)Q dz

if CNL;V is the normalized minimizer of FN [sy(u)] in A; N OF. By
recalling that

p; < FN sy (a@))] , (2.27)

2
in  FN[sn(u)] < min FN[a] = (pV 2.28
celmin FNlew(] < min NG = () @29

from the min-max principle, we finally obtain

2 1
1 2 )
_N

z) (a; ) dz
/0 p(z) ( j )
Inequalities (2.25) and (2.29), together, read

2 . ~ .
() S mV () () < v}

< () ! . (2.30)

/01 p(z) <C~l§\7)2 dz

Hence, the repetition of the argument (2.18)-(2.22) yields that

i< (v}) (2.29)

lim (pé-v)2 =p:. (2.31)

N—=oo
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3. Approximation of the axial modes

The modes of the lumped parameter systems also provide an ap-
proximation to the modes of the rod. To see this let us proceed by
induction.

Assume that the normalized discrete modes ,%\7 i k=1,2,...,5—
1 converge in L? to the first § — 1 modes of the rod

ay Ny, in L2 fork=1,2,...5—1. (3.1)
For each N, the j-th discrete mode satisfies the conditions

S omN (@) al (i) =1, (3.2)

SomN@aN@)yay (i) =0, k=1,2,...5—-1. (3.3)

In addition, if ﬂév is the corresponding function in OILV7 we have that

/01 a(z) (?1?”)2 dz = (pév)Q . (3.4)

Thus, from (2.31), {ﬂﬁv} is bounded in H'. Hence, by possibly
passing to a subsequence, there is some v such that

ﬂ;v — v weakly in H'. (3.5)

It follows from the lemma that ﬂﬁv — v in L? and this implies that

1
/ p(z)vide =1
0
1
and/p(m)vukdmzo, k=1,2,...5—1 (3.6)
0
by continuity. Moreover, by semicontinuity,

/01 a(z) (v')’ dz < lim inf 1 a(z) ('&N')Z dz = p?, (3.7)

N—=oo Jo 7

where (3.4) and (2.31) have been taken into account. Then, as (3.6),
states that v € A; and pf is the minimum of the energy under the
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constraint (3.6);, the equality must hold in (3.7). It follows that v
coincides with the normalized mode u; of the rod. So, we conclude
from (3.5) and the lemma that

aY — u; in L2, (3.8)

As the above argument straightforward applies to the case 7 = 1, this
ends the proof. It is only worth noticing that a standard argument
states that any subsequence of {ﬂé\f} and then of {&é\f} is convergent
to the same limit, because the minimizer in A; is unique.

4. Bending vibrations of beams: approximation of the
eigenpairs

For the approximation of the bending eigenpairs we can proceed
similarly. There only are a difference in the notion of skeleton (which
involves the derivatives) and minor changes in the argument when
one wants to account for general boundary conditions. For the sake
of illustration let us consider the case of a beam of unit length simply
supported at the ends.

In the framework of Euler Bernoulli theory the eigenvalue prob-
lem for the transverse vibrations in the weak form reads

uwe HynH? : (a(z)u")" = p? p(z) u (4.1)

and the associated Rayleigh quotient is

Flul = /0 iz(:z:)(u")2 dx |
/0 p(z) u?dzx

(4.2)

We assume that stiffness a(z) and mass density p(z) are positive and
bounded away from 0.

Let Py be defined as in Section 2 and indicate by Py the parti-
tion of (0, 1) into sub-intervals va = (yV, yﬁ_l) obtained by taking,
say, the middle points yV of each AN

N, with y)’ =0 and y%_H = 1.
As in the previous sections, for every u € HY N H? we minimize the
strain energy in each sub-interval of Py under the condition that the

variation of the derivative in the intermediate sub-intervals matches
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with that of u. We leave on the contrary unrestrained the minimum
problem in Kév and Z%. Accordingly, we write

/0 o) (0 da > >~ min /K . a(z)(w")’ dz, (4.3)

where the minima in each va are relative to the boundary conditions
specified above.

As the optimal w are linear in Kév and K%, it turns out that
(4.3) takes the form

/Ola(:c

where §u/(i) = /(yY.,) — u'(y) and the £V (i) are given by

1 -
:(Afdﬂd% i=1,...,N—1. (4.5)

The term on the right hand side of (4.4) represents the energy of a
system of rigid bars connected to one another by elastic hinges of
stiffness kN(z) simply supported at the ends and presenting rotation
jumps (generalized curvature) du’(7) at the intermediate nodes z;.
Let S C H} be the space of the piecewise linear functions in the
sub-intervals of Py and let

EkN s (i
Em (

be the Rayleigh quotient of the discrete system, with

~—

N-1
(")’ dz > 3" KN(G)su'(i)? Yue€ HiNH?, (4.4)
1

EN (i

~—

fN[A —

weSy, (4.6)

S mN (i, §) @ (i) i (j) = /01,0(:6) Wdz. (4.7)

For each configuration u of the beam we can associate the configu-
ration @& = sy(u) of the discrete system that shows the skeleton of
variations du'(7) at the intermediate nodes z;. To do so, it is enough
to add a suitable linear correction (rigid rotation) to the piecewise
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function that vanishes at z = 0 and whose derivatives coincide with
those of w at y¥ ;i =1,2,..., N — 1. It follows then from (4.4) that

mN (i, 7) (i) (5)

Flul > #V(i] & T
p(x) u* dz

Vue HynH?, (4.8)

with @ = sy (u).

The equality in (4.4), and hence in (4.8), holds if and only if
u is optimal in all the Z]lv (in particular, linear in Zév and Z%)
This allows us to write the two side bounds (2.16) (2.30). Moreover,
the previous lemma applied to the derivative of the functions and
Poincare’ inequality imply that

N
s (vy) = i [y 25 0 (1.9)

for every subsequences of any family of functions {v;} bounded in
H?. All this suffices to prove that

2
Jim (p)" =3 (4.10)
and
@Y — u; in H', (4.11)

for j = 1,2,..., by repeating step by step the proof given in Sections
3 and 4.

5. Error estimate for the eigenfrequencies

The two side bounds (2.16) (2.30), or the equivalent ones for the
beam in bending, provide a direct evaluation of the approximation
error. Again, the treatment of the axial and bending vibration is
similar. So, let us consider the former and in particular the approx-
imation of the first eigenfrequency.

Put e = {p% — (pjl\[)2 } From (2.16) it follows that

(M) [ mV (i) - 1]
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Then, if we put

o= (X mN@u@)?-1), b= - —1| .2

and
¢ = max{lal, |ol} . (5.3)
the absolute value of the error is bounded above by
2
el < (»)" ¢ (5.4)

If we take into account that 4} is constant in each interval of Py
and that @) coincides with @} at one end of it, Poincare’ inequality
implies

N (AN _ aNYE o PM N2 (AN 2
/Ain(.r)(ul _U1) dx < - |A;] ./AN a(z) (U1 ) dz (5.5)

2z

with par = supp(z), @, = infa(z). So, summing up over the AN,
from (3.4) we obtain

1 2 2
N AN PM | \N2 (. N
x Uy — de < —/—|A .
/0 pT (U1 i ) z < o AT <p1 ) (5.6)
which implies

([ o) @) as)" > 1= (20 1% o

m

for 4} is normalized. The term on the right hand side is positive for

|AN| small enough. Hence,

L
plz) (g z

and |b| is bounded above by

|b] < (1— (Z—M)%IANW)_ - 1. (5.9)

m
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Analogously, it can be proved that

1
M 2
1= (20)7 1Yy

N

. < (X mV () in(1)?)
<1+ <Z—M)%|AN|P1- (5.10)

Thus,

1 2
<a< (1 + <p—M) 2 |AN|P1) -1, (5.11)
a

which gives

1 2
< (14 (20)"1a%m) -1 (.12

(27%)

where p; can be replaced by the upper bound

1 -1
3
pr<py (1 - (Z—M) IANlpl) (5.13)
deduced from (2.16); and (5.8).

The inequalities (5.4) (5.9) (5.12) (5.13) provide an estimate for
the approximation of the technique. To within a term O(JAN|?), the
error is bounded above by

1
o <2607 (22)" 1Y), (5.14)
am

It is known that the rate of convergence for the eigenfrequencies in
the finite element approximation is the same as that of the energies
for the eigenfunctions. Then, (5.14) can be compared with the basic
error estimate in the theory of the conform finite elements of polyno-
mial type, see e.g. Strang and Fix [11], Theorems 3.7 and 6.1. With
obvious adjustments of notation that estimate reads

lel < CJANPET™ uy [} (5.15)



98 C. DAVINI

where 2m is the order of the differential problem, £ — 1 the degree of
the finite element space and |uy|; in L? norm of the k-th derivative
of uy. The simplest choice for (5.15) to make sense is £k = m + 1,
which gives

le] <C |AN|2 |U1|3n+1 (5.16)

In our case, m = 1 for the axial vibrations and m = 2 for the beam
in bending, which correspond to linear and quadratic splines, re-
spectively. In both cases the rate of the convergence of the present
technique is lower than that of the ordinary conform finite element
methods, provided that the mode is smooth enough. Note how-
ever that (5.14) prescinds from the results of the regularity theory,
whereas (5.16) requires that u; € H™*1. A property that does not
hold if we only assume that a(-) and p(-) are bounded.

Formula (5.1) relates the rate of the convergence to the eigen-
frequency p; to that of the approximation to the mode u; in L? by
means of functions in the finite element spaces OF and S¥. There is
then an important difference between rods and beams for the rate of
convergence increases with the order of the problem due to the use
of more regular functions in S{ (piecewise constant and piecewise
linear, respectively). For the beam problem it is proved in [8] that:

e = O (w(AN) [AN] AN ) (5.17)
with
w(IaN) = sup Juf(z) — (y)],
l[z—yl<AN

if u’ € C°[0,1]; and that:
le] = O (|aN]+=) (5.18)

if uff € C%2[0,1] with 0 < a < 1.

When u}’ is a Lipschitz function, in particular, the rate of conver-
gence coincides with that of the conform methods, but under slightly
different regularity requirements.
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