Starshapedness of Level Sets
for Solutions of Nonlinear
Parabolic Equations

EL1SA FRANCINT (%)

SOMMARIO. - Data una soluzione u di un’equazione parabolica non lineare,
st studia la proprieta degli insiemi di livello di u(-,t) di essere stellati
rispetto ad un punto preso come origine. Si misura la suddetta pro-
prieta considerando ’angolo w tra la direzione normale alla superficie
di livello e la direzione radiale. St mostra che per w vale un principio
di massimo, percio la stellarita degli insiemi di livello der dati iniziali
st conserva per tuttt 1 tempt positivi.

SUMMARY. - Given a solution u of a nonlinear parabolic equation, we
study the starshapedness of level sets of u(-,t) with respect to a point
which we take as the origin. We measure the starshapedness of level
sets considering the angle w between the normal direction to the level
surface and the radial direction. We show that a mazrimum principle
for w holds, hence the starshapedness of level sets of the initial data 1s
preserved for all positive times.

1. Introduction

Let € and €2y be two bounded, simply connected open sets in R"
with C! boundaries and Qg D Q. We say that Q@ = Qg \ @ is
a starshaped ring with respect to xo € IR™ if both Q¢ and €y are
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starshaped with respect to zg. In the following we will simply call
starshaped sets and rings which are starshaped with respect to the
origin. If T"is a positive constant, set I' = Q x (0,7] and dpl' =
{09 x (0,T)}U{Q x {0}}. We denote with = (z1,...,2,) the
space variable in © and with ¢ the time variable in (0,77].

Consider an initial-boundary value problem of parabolic type

—u; + F (D*u) + f(ryu,|Dul®) = 0 in T,
u=0 on 08X (0,717, (1)
u=1 1in € x (0,7],
uw=1uy in Qo x {0},

where Du = (u1,...,u,) and D*u = (u;j); j=1,.. are the gradient
and the Hessian matrix of a function u» with respect to the space

variable z, u; = Z_?Z’ r=|z|, up € C() and ug = 1in 4, f €
CYIRT xR xRT) and F is an elliptic rotationally invariant operator
defined on the space of symmetric n X n matrices. From now on we
will denote s = |Du|%.

Let S be a simply connected open set in R™, with C'' bound-
ary, and consider for each point z € dS the angle w(z) between the
outer normal to 05 at x and the radial direction z. S is starshaped
if w(z) < w/2 for every z € 05 and we will say that S is properly
starshaped if w(z) < w/2 for every z € 05. At a maximum point
of w the normal direction is as far as possible from the radial direc-
tion. We will say that at such a point we have a minimum for the
starshapedness.

If S is a level set of a function, the normal direction to 05 at
z coincides with the direction of the gradient at z. Given a func-
tion u(z,t) defined in I', we denote with w(z,t) the angle between
—Du(z,t) and the radial direction z; w is well defined if Du(z,t) # 0.

The main goal of this article is to show that, under suitable
hypotheses, if ug has starshaped level sets {z € Qo : ug(z) > ¢},
then, for every positive ¢, the level sets {z € Qo : u(z,t) > ¢}
are starshaped. We also prove that the starshapedness attains its
minimum on dpl.

The minimum principle for starshapedness of level sets, for ellip-
tic equations, has been studied in [5] for nonlinear Poisson equation
and in [6] for fully nonlinear elliptic equations, while starshapedness
of level sets was considered in [1] for nonlinear Poisson equation and



STARSHAPEDNESS OF LEVEL SETS FOR SOLUTIONS etc. 51

in [4] for the p-Laplace operator in the elliptic and parabolic case.

In the following section we state the main result (Theorem 1),
that is a minimum principle for starshapedness of level sets for solu-
tions of problem (1) when F is a rotationally invariant and homoge-
neous (in a way that will be defined later) elliptic operator.

The third section is devoted to the proof of Theorem 1. We start
proving a preliminary lemma which is true for a more general class
of equations. This will allow us to indicate some generalization of
the minimum principle for starshapedness (Section 4). In particular,
in Theorem 2, we prove the result for the p-Laplace operator.

2. The main result

Before stating the main theorem, let us point out something about
rotationally invariant operators.

A rotationally invariant operator F' defined on the space of sym-
metric n X n matrices, can be written in the form

F(A) =g (M(A),..., A(A4),
where A\j(A) < ... < \,(A) are the eigenvalues of A. If g € C*(R"),

F is Lipschitz continuous with respect to the matrix A and

oF
o (aaﬂ(A)) ,
v i,7=1,...,n

where it is defined, is a symmetric matrix with the same eigenvectors
dg

k3

of A and eigenvalues fori=1,...,n (see, for example [2]).

F(D*u) =g (Al (DQ‘U) D W (DQ‘U)) (2)

is a second order differential operator which is strictly elliptic at « if
there exists a positive constant g such that
dg

I (Al (DQU) D (DQ‘U)) >o09 forevery 1=1,...,n.

THEOREM 1. Let Q = Qo\Q be a starshaped ring and T' = Qx (0, T].
Letu € C*()NCHT)INC (0 x[0,T]) a solution of problem (1), where
f(ryu,s) € CHRT x IRx IRY) and F(D?*u) = g(MA (D*u),..., A\, (D?
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u)) with g € C1(IR") a homogeneus function of order k.
Suppose that F is strictly elliptic at u,

0<u<1 in I, (3)
of :
4 <
5y = 0 in T, (4)
and of of
Qkf—}—rﬁ—%%go in T, (5)

where f and its derivatives are taken at (r,u,|Dul?).

Assume that ug € C(£) N C?(),

0<up<1 in Q and uy=1 in Q, (6)
uy  has starshaped level sets (7)

and
F(D*ug) + f(r,uo,|Dug|*) >0 in Q. (8)

Then, u(-,t) has properly starshaped level sets and Du(z,t) # 0 in
I'. Moreover, unless €2y and €21 are concentric balls and uq is radial,
starshapedness does not attain its minimum in I, that is the angle
w(z,t) does not attain its mazimum in L.

There are several differential operators of the form (2), since each
invariant of the Hessian matrix is a homogeneous function of the
eigenvalues.

Let us see some examples

EXAMPLE 1. Theorem 1 holds for solutions of

—u; + Au + f(r,u,|Dul?) = 0 in T,

u =10

on 09 x (0,77,

u=1 1in Q x (0,77, )
u=ug in Qo x {0},
where
of of of .
2 < 2L 957t < .
ﬁu_o and 2f—|—r8r 2885_0 in T

In this case, if f(r,0,0) = 0 for every r, assumption (3) is not neces-
sary, since it is a consequence of (6).



STARSHAPEDNESS OF LEVEL SETS FOR SOLUTIONS etc. 53

EXAMPLE 2. Theorem 1 can be applied to maximal operators (see
[8]) which can be written in the form

M, _g~[u] = aAu+ (1 — na)A, (DQ’U) — B|Du| — 'yu —2|u|7
and
2 u+ |ul
Mo gyU] = aAu + (1 — na)dy (D u) — B|Du| — Ty
1
with «, 8 and ~ positive constants such that o < —.
n
af .
REMARK 1. If == = 0, we can consider the starshapedness of level

sets with respectrto any other point of €;. This gives more infor-
mations about the shape of level sets of u. If g, €21 and the level
sets of ug are starshaped with respect to each point of a set K C €4,
the level sets of u(z,t) will still be starshaped with respect to each
point of K. In this case we can consider for each y € K the func-
tion wy(z,t) which represents the angle between —Du(z,t) and the
direction z — y. Let M(y) be the maximum of w, on Q x {0} and
call C'(y) the cone in R™ with vertex y, axis z — y and angle M(y)
with this axis.

For a fixed point (z,t) € T,

—Du(z,t) € m C(y).
yeK

REMARK 2. The minimum principle for starshapedness usually gives
more informations than the starshapedness with respect to each
point in ©; (See remark 4 in [6]).

If Qg and €, are balls with centre at the origin, ug is radial and «
satisfies the assumptions of Theorem 1, since w = 0 on dp[" then
u(z,t) is radial for every positive ¢.

REMARK 3. The assumption that F is rotationally invariant cannot
be removed. Suppose that Qy and Q; are balls in IR? with centre at
the origin and ug is a radial function. Consider the following problem
0*u b82u
“0a2 + T
u=1 in 0% x (0,7),
u=0 on 09 x(0,7),

u=1uy in € x{0},

=u; in T,
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where @ and b are positive constants with a # b. If ug is smooth,
radial and @ (ug)zez + b (ug)yy > 0, there exists a solution and u; > 0
in T

Since w = 0 on dpl’, a minimum principle for starshapedness would
give w = 0 in ' and the solution would be radial. However, it can
easily be seen that no radial solution exists for a # b.

3. Proof of Theorem 1

We start with a preliminary lemma which will be used for the proof
of Theorem 1. This lemma is stated for solutions of a more general
class of equations: this will allow us to study some kind of equations
which do not fit the form of problem (1) (see section 4).

Consider a rotationally invariant nonlinear equation of the form

n
— Uy + G(r, u, | Dul?, Z Ut U5, Ay (DQ’U) sy Ag (DQU) ) =0,
2,7=1
(10)
where A\; (D%u) < ... < X, (D?u) are the eigenvalues of the sym-
metric matrix D%z and G € CH(R'T x R x RT x R"*).
We denote with s = |Dul?, ¢ = 2o wiugugj and [u] = (r,u, s, q,
Aty .-, An). G is a strictly elliptic operator at u if there exists a
positive constant og such that

n

2

,5=1

3 [w]pip; > oolp|? in T for every p € R"™. (11)
ui;

If w e C*(I), the linear differential operator

" 0G 0?

Lh= 8‘&2']' [u] 8I28x]

t,5=1

(12)

is strictly elliptic if G is strictly elliptic at .

REMARK 4. The part of G which depends on the eigenvalues of D?u
has the same behaviour of a rotationally invariant operator on the
space of n X n symmetric matrices. If we denote with

0G0
Gl = (E —[U] ) )
i1 OAe s Ouyj iG=1,m
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and let B be the orthonormal matrix such that

BT D?uB = diag (A (D%u) ..., A (D)),

then 96 9
el T
G' = B diag (3/\1[ ],...,aAn[u])B ) (13)
and
G G
2, . 2 2 T
G'D*u = B diag <a—/\1[u]/\1 (D u) e m[u]/\n (D u)) B*.
(14)
Notice that oG 96
— 7 . . / ..

Define the following functions related to the angle w(z,t):
H =3 swule,t) = Il Dule, | cosw(z,t)  (16)

and

S(z,t) =tanw(z,t) = —%, (17)

where

DN | —

. 1/2
Z Tpup — T )’ )
k=1

Notice that, if u € C1(T'), v is defined in the whole I, while & is
defined in {(z,t) € I : v(z,t) # 0}.

LEvMMA 1. Let G € CYIRY x IR x IRY x IR"™') and u € C3(T) be a
solution of (10) such that G is strictly elliptic at u. Then

—vt+L“v+Qva2+BB—G[ ulpv=d in T, (18)
=1

where
oG

oG -
b; = %[u]uz + 8_q[u] ]2231 UjUij,



56 E. FRANCINI

and

- oG oG oG

Z:: /\h /\h+4q8 [u] + 25 %H TW[‘U] (19)
Moreover, if v < 0 in L', then

—@t—|—L"<I>—|—QZcZ¢ +d<1>>0 in T, (20)

=1

where d is as before and
1 &N 0G oG oG ~
€= ]EZ:I aT”[u]v] + %[u]uZ + a—q[u]; U Ui

Proof of Lemma 1. Directly from (16) and by the regularity
assumption on u, we get

"8G

L% = 22 ulu;; + Z E )t i (21)

el ﬁu”

From (15) and (13) we have
. 0G oG

by 8%[ Wuij = g+t (¢'D*u) (22)
= q%—i[u] };g—/i[u]/\ (DQU)

Differentiating the equation (10) with respect to the variable zj, we
obtain

", IG oG
2 %[U]Uuk = Uk — <$—k5 Zuzuzk‘l'
i,j=1 8G (23)
+ up—— ou Z Uil u]k)

7,7=1

for every (z,t) € I'. Since

n
Z TRpUE, = U; — U
k=1
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and combining (23), (22) and (21) we finally get (18).
Assume now that v < 0 in I'; this mean that w is defined and less
than g in I'. ® is defined in the whole I', is positive, differentiable

in I"=T\{(z,t) €I : h(z,t) =0},

h;, @
q)i:____vi7
v v
and
h;; @ 1
q)i‘:_i__z D, p
J > UU] (UJ + v;®;),
hence

u — lu_éu
L“® + = Z(Za% ) j=—Lth——Ltv. (24)

By the ellipticity of G, ( [u]) is positive definite, then
J=1,.m

Ou;;
applying the Schwarz inequality,

2hL"h > 2_: 3u” Z_: Tpu — xluk)a$8 (zpwr — z1ug)

2,7=1 k=1

" 0G

= 4 Z — [u]wij(zu — zu;) + (25)

= Oy

7,7,l=1
+ Z (:Ukul — mguk) X

k=1

. 0G . 0G
X <$k E BT[U]U”Z — Iy Z aT”[u]u”k)

Gj=1""4 1,5=1

G'D%u is a symmetric matrix, (see (14)), while (z;u; — zju;)i=1,..n
is antisymmetric, hence

" 0G
E a—[u]uzj(mzul —zu;) = E wiwsug; (ziu — 21u;).
igi=1 % igi=1

(26)
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From (25), (26) and (23) and after some calculations, we can con-
clude that

2hL*h > —2h? == —tht —4hZ (u] +Zu2uu 3 )
(27)
From (24), (27), (18) and v < 0 we finally get (20). %

Proof of Theorem 1. In the proof we will strongly use the maxi-
mum principle for linear parabolic equations. (See, for example, [7],
pp. 173-175). We start showing that

up >0 in T (28)

From (8) and from the boundary conditions for u, follows that u; >
0 on dpl'. Differentiating the equation in (1) with respect to the
variable ¢, we see that u; satisfies in I' the linear parabolic equation

" OF of "
it 3 g+ gy e 250 3 () =0

7,7=1

0
with a—[u] < 0. By the maximum principle u; does not assume its
u
negative minimum in [', that is (28).
From (3), the boundary conditions for u and from (7) we also get

v < 0 on dpl'. By Lemma 1, v satisfies in ' the linear parabolic
equation (18) where

"OF . P y O

A i =
Ouy 0w ds

—=[uluy,

1,g=

oG of

3u[] 8u[]<0 and d_QZ ag/\h_l_Qaf 8f

2 9\, s o

Since g is homogeneous of order k,

2:: aAhAh — kg7
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hence,
of of :
— Y — 2L _9s% >
d = 2ku, (Qkf—}—rar 2885)_0 in T, (29)
(from (28) and (5)).
Then, we can apply to v the strong maximum principle and assert
that

v<0 in T. (30)

(If v = 0 at some point in I', then, by the strong maximum principle,
v=01in Qg x {0}, but this cannot be true since ug = 0 on 9y and
up = 1 on 0%).

This means that Du(z,t) # 0 and w(z,t) is strictly less than % in I,
that is, level sets of u(+,t) are properly starshaped for each ¢ € (0,7].
Once we have proved that v < 0in I', ® is defined in the whole I and
differentiable in IV = T'\ {(z,t) € [' : h(z,t) = 0}. Notice that, since
0 < w < —, in order to prove that w achieves its maximum value

on Opl’, it is enough to prove that ® = tan w achieves its maximum
value on dpl.

By Lemma 1, ¢ satisfies (20) in I, and, since £ < 0 (see (29) and
(30)), by the maximum principle, ® attains its maximum value on
dpl'. (Notice that on I' \ I we have & = 0). We can also say
that ® does not assume its maximum value in I unless ug is radial:
if ®(z1,t1) = maz{®(z,t) : (z,t) € Opl'} for (z1,t;) € ', by the
strong maximum principle ®(z,0) = ®(21,¢;) in Q. Since the level
sets of ug are starshaped, the only admissible constant for the angle
w, and hence for ®, is zero, which means that wug is radial and Qg
and €y are concentric balls. &

REMARK 5. In the proof of Theorem 1 we show that
u >0 and < Du(z,t),z><0 in [I.

Thus the level sets {(z,t) € I' : u(z,t) > ¢} are starshaped with
respect to (0,7) € R™ x R.

4. Other results

Lemma 1 has been proved for a class of equations wider that the one
treated in Theorem 1. From the proof of Theorem 1, one easily sees
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that in order to have a minimum principle for starshapedness, it is
enough to know that

d>0 in T
where d is as in (19).

Unfortunately, d depends upon u and, generally, it is difficult to
estabilish its sign without knowing u. Still there are equations that
can be treated although they do not fit the form of problem (1).

In the following we will assume u € C*(T')NCY(I')NC (Qox [0, T1)
solution of (10) with the same initial-boundary value conditions as

in Theorem 1 and such that 0 < u < 1, Z—G[u] < 0 and Glug] > 0.
U

As we showed at the beginning of Theorem 1, u; > 0in I'.
If we drop the dependence from ¢ and consider solutions of

—us 4+ G (ryu, |Dul’, A1, ..., M) =0,

with G' a homogeneous function of order k in Ay, ..., A,, we have
d=2kG+ 258—G[u] — ra—G[u]
ds or
Since G = uy > 0, if
oG oG
lu] — r=—[u] >
2s e [u] —r o [u] > 0,

the minimum principle for starshapedness holds.
However, a lot of interesting equations depend upon ¢, for exam-
ple the equations in divergence form

—us + div(a(|Du|*)Du) + f(r,u,|Dul*) =0

that is

—uy + a(s)Au+ 2a'(s)qg + f(r,u,s) =0 (31)
which are strictly parabolic if a(|Du|?) > 0 and a(|Du|?) + 2| Du|?d’
(|Dul?) > 0.

Recalling that u; > 0, it can easily be checked that if

N2 ! a 8
Aq (Sa//_|_a/_ %) -2 <1—|—%) f—ra—f—i—Qsa—jS[[u] >0, (32)

the minimum principle for starshapedness holds.
Sometimes this can be assured with some additional informations
on 1.
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ExampLE 3. Consider a solution u € C3(T') N C'(Qg x [0,T]) of

—uy + div & =0
! J1+|Dulz)

with the same initial-boundary value conditions upon u, 0 < u < 1

. D‘UO .

d h that div [ —— ] >0. S = (14 s)"1/2,
and ug suc at dwv ( Tr |Du0|2) 2 ince a(s) = (14 s)
d>0if

q<0

which is true, for example, if u is concave in direction of Du.

Another operator in divergence form which can be considered is
the p-Laplace operator

Ayu = div(a(|Du|?) Du)

p—2

with a(s) = s"2 and p > 2. For p = 2 we have exactly example 1
while for p > 2 the equation is degenerate when |Du| = 0.

THEOREM 2. Let Q = Qo\Qy be a properly starshaped ring with the
interior sphere condition, I = Qx (0,T], p > 2 and f € C'(IR* x IR)

such that f(r,0) =0, o1 <0 andpf—l—ra—f <0.
du or

Let ug € C(Q0) NC?*(Q) and suppose 0 < ug < 1 in Qg, ug = 1 on
Qy, the level sets of uy are starshaped and Ayug+ f(r,ug) > 0 in Q.
If u e C3(T)NCYHT) NC(Q x [0,T]) is the solution of problem

—up +Ayut f(r,u) = 0 in T,
u=0 on 09 x (0,T],

u=11in Q; x (0,7T],

u=ug in Qo x {0},

(33)

then the level sets {z € Q : u(z,t) > c} of u are starshaped for every
t € [0,T], Du(t,z) # 0 and the starshapedness attains its minimum
on Opl.

Proof of Theorem 2. The maximum principle holds for (33) (see
[3]) hence we conclude that 0 < u < 1in Q¢ x (0,7) and u; > 0in T
From Lemma 1, we know that v = ) 7_; zjuy, satisfies (18) where

p of
= —pf —r==>0.
2|Du|ut f rﬁr 20
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Since the points at which the equation degenerate are those at which
|Du| = 0 (and hence v = 0), we conclude that v < 0in I'.
In [4] it was shown with a barrier argument that

v<0 in T,

(the proofin [4] is carried on with g and £ convex, but it is enough
to assume that they are properly starshaped with the interior sphere
condition).

We can apply the second part of Lemma 1 and see that the minimum
principle for starshapedness holds.

%
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