A Regularity Result for a Class of Anisotropic Systems

Antonia Passarelli di Napoli and Francesco Siepe (*)

Sommario. - Si prova la regolarità parziale dei minimi del funzionale $I(u) = \int_{\Omega} G(Du)$, con G integrando convesso a crescita anisotropa. Non si fanno ipotesi speciali sulla struttura di G.

Summary. - We prove partial regularity of minimizers of the functional $I(u) = \int_{\Omega} G(Du)$, where G is a convex integrand satisfying anisotropic growth condition. No special structure assumption is needed on G.

1. Introduction

In this paper we study the partial regularity of minimizers of integral functionals of the type

$$I(u) = \int_{\Omega} G(Du(x))dx \tag{1.1}$$

 $u:\Omega\subset\mathbb{R}^n\to\mathbb{R}^N,\ N\geq 1,$ where G is a C^2 convex integrand satisfying the growth condition:

$$C|\xi|^q \le G(\xi) \le L(1+|\xi|^p)$$
 (1.2)

Key words and phrases: regularity, minimizers, convexity. This work has been supported by M.U.R.S.T. (40%).

^(*) Indirizzi degli Autori: Antonia Passarelli di Napoli: Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Universitá di Napoli "Federico II", Complesso Monte s.Angelo, Via Cintia - 80126 Napoli, e-mail: passarel@matna2.dma.unina.it. Francesco Siepe: Dipartimento di Matematica "U. Dini", Universitá di Firenze, Viale Morgagni 67/A - 50134 Firenze, e-mail: siepe@udini.math.unifi.it.

with p > q.

Few years ago it was observed that even in the scalar case, i.e. N=1, minimizers of (1.1) may fail to be regular (see [M2], [G2]), when p is too large with respect to q. On the other hand, one can prove regularity of scalar minimizers of (1.1) if p is not too far away from q (see e.g. [M3], [FS] and the references given in [M3]). More precisely, in [M3] it is shown that if one writes down the Euler equation for the functional I, under suitable assumptions on p and q, the Moser iteration argument still works, thus leading to a sup estimate for the gradient Du of the minimizer.

Clearly this approach can not be carried on in the vector valued case, i.e. when N > 1. As far as we know, the only regularity results for systems are proved under special structure assumptions (see [AF2], [M4]).

Namely, the model case covered in [AF2] is the functional

$$\int_{\Omega} |Du|^p + \sum_{\alpha=1}^k |D_{\alpha}u|^{p_{\alpha}}$$

with $u:\Omega\subset\mathbb{R}^n\to\mathbb{R}^N$, $N\geq 1$, $1\leq k\leq n$, $2\leq p< p_\alpha$, and p_α not too far from p, while in [M4], it is proved everywhere regularity of minimizers of (1.1) when $G(\xi)=f(|\xi|)$.

In this paper we prove that if G satisfies (1.2) and the strong

In this paper we prove that if G satisfies (1.2) and the strong ellipticity assumption

$$\langle D^2 G(\xi) \eta, \eta \rangle \ge \gamma (1 + |\xi|^2)^{\frac{q-2}{2}} |\eta|^2$$

and

$$2 \le q$$

a minimizer $u \in W^{1,q}(\Omega; \mathbb{R}^N)$ of functional (1.1) is $C^{1,\alpha}$ for all $\alpha < 1$ in an open set $\Omega_0 \subset \Omega$ such that $\operatorname{meas}(\Omega \setminus \Omega_0) = 0$.

We point out that a part from condition (1.3), no special structure assumption is needed on G.

The proof of our result goes through a more or less standard blow-up argument aimed to establish a decay estimate on the excess function for the gradient

$$U(x_0,r) = \int_{B_r(x_0)} |Du - (Du)_{x_0,r}|^2 + |Du - (Du)_{x_0,r}|^q dx.$$

The essential tool in the case we consider, is a lemma due to Fonseca and Malý (see [FM] and also Lemma 2.3 below) which makes possible to connect in the annulus $B_r \setminus B_s$ two $W^{1,q}$ functions v and w with a function $z \in W^{1,p}(B_r \setminus B_s)$ if q .

2. Statements and preliminary Lemmas

Let us consider the functional

$$I(u) = \int_{\Omega} G(Du(x)) dx$$

where Ω is a bounded open set of \mathbb{R}^n , $n \geq 2$. Let $G : \mathbb{R}^{nN} \to \mathbb{R}$, $N \geq 2$, satisfy the following assumptions:

$$G \in C^2 \tag{H1}$$

$$C|\xi|^q \le G(\xi) \le L(1+|\xi|^p)$$
 (H2)

$$\langle D^2 G(\xi) \eta, \eta \rangle \ge \gamma (1 + |\xi|^2)^{\frac{q-2}{2}} |\eta|^2$$
 (H3)

where

$$2 \le q$$

It is well known that

$$|DG(\xi)| \le c(1+|\xi|^{p-1}).$$
 (H4)

We say that $u \in W^{1,q}(\Omega, \mathbb{R}^N)$ is a minimizer of I if

$$I(u) \le I(u+v)$$

for any $v \in u + W_0^{1,q}(\Omega; \mathbb{R}^N)$.

Remark 1. If u is a local minimizer of I and $\phi \in C^1_0(\Omega; \mathbb{R}^N)$ from the minimality condition one has for any $\varepsilon > 0$

$$0 \le \int_{\Omega} [G(Du + \varepsilon D\phi) - G(Du)] dx$$
$$= \varepsilon \int_{\Omega} dx \int_{0}^{1} \frac{\partial G}{\partial \xi_{\alpha}^{i}} (Du + \varepsilon t D\phi) D_{\alpha} \phi^{i} dt$$

Dividing this inequality by ε , and letting ε go to zero, from (H4) and the assumption $p \leq q + 1$ we get

$$\int_{\Omega} \frac{\partial G}{\partial \xi_{\alpha}^{i}} (Du) D_{\alpha} \phi^{i} dx \ge 0$$

and therefore by the arbitrariness of ϕ the usual Euler-Lagrange system holds:

$$\int_{\Omega} \frac{\partial G}{\partial \xi_{\alpha}^{i}}(Du) D_{\alpha} \phi^{i} dx = 0 \qquad \forall \phi \in C_{0}^{1}(\Omega; \mathbb{R}^{N})$$

We prove the following

THEOREM 2.1. Let G be as above and let $u \in W^{1,q}(\Omega; \mathbb{R}^N)$ be a minimizer of I. Then there exists an open subset Ω_0 of Ω such that

$$\operatorname{meas}(\Omega \setminus \Omega_0) = 0$$

and

$$u \in C^{1,\alpha}(\Omega_0, \mathbb{R}^N)$$
 for all $\alpha < 1$.

In the following, we will denote by u a $W^{1,q}(\Omega; \mathbb{R}^N)$ minimizer of $\int_{\Omega} G(Du) dx$ and assume that G satisfies (H1), (H2), (H3). We set for every $B_r(x_0) \subset \Omega$

$$U(x_0, r) = \int_{B_r(x_0)} |Du - (Du)_{x_0, r}|^2 + |Du - (Du)_{x_0, r}|^q dx,$$

where

$$\oint_{B_r(x_0)} g = (g)_{x_0,r} = \frac{1}{\text{meas}(B_r(x_0))} \int_{B_r(x_0)} g.$$

The next Lemma can be found in [FM], (Lemma 2.2), in a slightly different form.

LEMMA 2.1. Let $v \in W^{1,q}(B_1(0))$ and 0 < s < r < 1. There exists a linear operator $T: W^{1,q}(B_1(0)) \to W^{1,q}(B_1(0))$ such that

$$Tv = v$$
 on $(B_1 \setminus B_r) \cup B_s$

and for all $\mu > 0$, for all $p < q \frac{n}{n-1}$

$$||Tv||_{W^{1,2}(B_r \setminus B_s)} + \mu||Tv||_{W^{1,p}(B_r \setminus B_s)}$$

$$\leq C \left\{ (r-s)^{\sigma} \left[\sup_{t \in (s,r)} (t-s)^{-\frac{1}{2}} ||v||_{W^{1,2}(B_t \setminus B_s)} + \sup_{t \in (s,r)} (r-t)^{-\frac{1}{2}} ||v||_{W^{1,2}(B_r \setminus B_t)} \right] + \right.$$

$$\left. + \mu(r-s)^{\tau} \left[\sup_{t \in (s,r)} (t-s)^{-\frac{1}{q}} ||v||_{W^{1,q}(B_t \setminus B_s)} + \right.$$

$$\left. + \sup_{t \in (s,r)} (r-t)^{-\frac{1}{q}} ||v||_{W^{1,q}(B_r \setminus B_t)} \right] \right\}$$

where C = C(n, p, q) > 0, $\sigma = \sigma(n) > 0$ and $\tau = \tau(n, p, q) > 0$.

Let us recall an elementary lemma also proved in [FM].

LEMMA 2.2. Let ψ be a continuous nondecreasing function on an interval [a,b], a < b. There exist $a' \in [a,a+\frac{1}{3}(b-a)]$, $b' \in [b-\frac{1}{3}(b-a),b]$ such that $a \le a' < b' \le b$ and

$$\frac{\psi(t) - \psi(a')}{t - a'} \le 3 \frac{\psi(b) - \psi(a)}{b - a}$$

$$\frac{\psi(b') - \psi(t)}{b' - t} \le 3 \frac{\psi(b) - \psi(a)}{b - a}$$
(2.3)

for all $t \in (a', b')$.

Finally the next result is a straightforward generalisation to our case of Lemma 2.4 in [FM]. We give the proof here for completeness.

Lemma 2.3. Let $v, w \in W^{1,q}(B_1(0))$ and $\frac{1}{4} < s < r < 1$. Fix $q , for all <math>\mu > 0$ and $m \in IN$ there exist a function $z \in W^{1,q}(B_1(0))$ and $\frac{1}{4} < s < s' < r' < r < 1$ with r', s' depending on v, w and μ , such that

$$z = v$$
 on $B_{s'}$, $z = w$ on $B_1 \setminus B_{r'}$,
$$\frac{r - s}{m} \ge r' - s' \ge \frac{r - s}{3m}$$
 (2.4)

and

$$||z||_{W^{1,2}(B_{r'}\setminus B_{s'})} + \mu||z||_{W^{1,p}(B_{r'}\setminus B_{s'})}$$

$$\leq C \frac{(r-s)^{\rho}}{m^{\rho}} \Big[\int_{B_{r} \setminus B_{s}} \Big(1 + |Dv|^{2} + |Dw|^{2} + |v|^{2} + |w|^{2} + m^{2} \frac{|v-w|^{2}}{(r-s)^{2}} \Big) + (2.5) \\
+ \mu^{q} \int_{B_{r} \setminus B_{s}} \Big(1 + |Dv|^{q} + |Dw|^{q} + |v|^{q} + |w|^{q} + m^{q} \frac{|v-w|^{q}}{(r-s)^{q}} \Big) \Big]^{\frac{1}{2}}$$

where C = C(n, p, q) > 0 and $\rho = \rho(p, q, n) > 0$.

Proof. As in Lemma 2.4 in [FM], choose $m \in IN$ and set

$$f = 1 + |Dv|^2 + |Dw|^2 + |v|^2 + |w|^2 + m^2 \frac{|v - w|^2}{(r - s)^2} + \mu^q \left(1 + |Dv|^q + |Dw|^q + |v|^q + |w|^q + m^q \frac{|v - w|^q}{(r - s)^q} \right).$$

We may find $k \in \{1, ..., m\}$ such that

$$\int_{B_{s+\frac{k(r-s)}{m}}\backslash B_{s+\frac{(k-1)(r-s)}{m}}} f dx \leq \frac{1}{m} \int_{B_r\backslash B_s} f dx \ ,$$

Set, for $t \in [s + \frac{(k-1)(r-s)}{m}, s + \frac{k(r-s)}{m}],$

$$\psi(t) = \int_{B_t \backslash B_s} f dx$$

which is a continuous nondecreasing function. By Lemma 2.2, there exists $[s',r'] \subset [s+\frac{(k-1)(r-s)}{m},s+\frac{k(r-s)}{m}]$ such that

$$\frac{r-s}{m} \ge r'-s' \ge \frac{r-s}{3m}$$

and

$$\int_{B_{t}\backslash B_{s'}} f dx \leq 3 \frac{(t-s')m}{r-s} \int_{B_{s+\frac{k(r-s)}{m}}\backslash B_{s+\frac{(k-1)(r-s)}{m}}} f dx
\leq 3 \frac{t-s'}{r-s} \int_{B_{r}\backslash B_{s}} f dx,$$
(2.6)

$$\int_{B_{r'}\setminus B_t} f dx \le 3 \frac{r'-t}{r-s} \int_{B_r\setminus B_s} f dx \tag{2.7}$$

for all $t \in (s', r')$. Set

$$u = \begin{cases} v(x) & \text{if } x \in B_{s'} \\ \frac{(r'-|x|)v(x) + (|x|-s')w(x)}{r'-s'} & \text{if } x \in B_{r'} \setminus B_{s'} \\ w(x) & \text{if } x \in B_1 \setminus B_{r'}. \end{cases}$$

A direct computation shows that

$$|u|^2 + |Du|^2 + \mu^q(|u|^q + |Du|^q) \le Cf$$
.

If we apply Lemma 2.1 to the function u, we then find $z \in W^{1,q}(B_1)$ satisfying (2.4). Moreover, from (2.6) and (2.7) one readily cheks

that

$$\begin{aligned} ||z||_{W^{1,2}(B_{r'}\setminus B_{s'})} + \mu||z||_{W^{1,p}(B_{r'}\setminus B_{s'})} \\ &\leq c \left\{ \frac{(r'-s')^{\sigma}}{(r'-s')^{\frac{1}{2}}} |B_{r'}\setminus B_{s'}|^{\frac{1}{2}} \left(\oint_{B_r\setminus B_s} f \right)^{\frac{1}{2}} + \right. \\ &\left. + \frac{(r'-s')^{\tau}}{(r'-s')^{\frac{1}{q}}} |B_{r'}\setminus B_{s'}|^{\frac{1}{q}} \left(\oint_{B_r\setminus B_s} f \right)^{\frac{1}{q}} \right\} \\ &\leq c \left\{ (r'-s')^{\sigma} \left(\oint_{B_r\setminus B_s} f \right)^{\frac{1}{2}} + (r'-s')^{\tau} \left(\oint_{B_r\setminus B_s} f \right)^{\frac{1}{q}} \right\}, \end{aligned}$$

from which (2.5) follows choosing $\rho = \min\{\sigma, \tau\}$.

3. Proof of Theorem 1

As usual, to get the partial regularity result stated in Theorem 1, we need a decay estimate for the excess function $U(x_0, r)$ defined in section 2.

Proposition 3.1. Fix M>0. There exists a constant $C_M>0$ such that for every $0<\tau<\frac{1}{4}$, there exists $\epsilon=\epsilon(\tau,M)$ such that, if

$$|(Du)_{x_0,r}| \le M$$
 and $U(x_0,r) \le \epsilon$

then

$$U(x_0, \tau r) \le C_M \tau^2 U(x_0, r) .$$

Proof. Fix M and τ . We shall determine C_M later.

We argue by contradiction. We assume that there exists a sequence $B_{r_h}(x_h)$ satisfying

$$B_{r_h}(x_h) \subset \Omega, \qquad |(Du)_{x_h,r_h}| \leq M, \qquad \lim_h U(x_h,r_h) = 0,$$

but

$$U(x_h, \tau r_h) > C_M \tau^2 U(x_h, r_h)$$
. (3.1)

Set

$$a_h = (u)_{x_h, r_h}$$
 $A_h = (Du)_{x_h, r_h}$ $\lambda_h^2 = U(x_h, r_h)$.

Step 1. [Blow UP.] We rescale the function u in each $B_{r_h}(x_h)$ to obtain a sequence of functions on $B_1(0)$. Set

$$v_h(y) = \frac{1}{\lambda_h r_h} [u(x_h + r_h y) - a_h - r_h A_h y],$$

then

$$Dv_h(y) = \frac{1}{\lambda_h} [Du(x_h + r_h y) - A_h].$$

Clearly we have

$$(v_h)_{0,1} = 0$$
 $(Dv_h)_{0,1} = 0$.

Moreover,

$$\oint_{B_1(0)} (1 + \lambda_h^{q-2} |Dv_h|^{q-2}) |Dv_h|^2 dy = 1.$$
(3.2)

Passing possibly to a subsequence we may suppose that

$$v_h \rightharpoonup v$$
 weakly in $W^{1,2}(B_1; \mathbb{R}^N)$ (3.3)

and, since $\forall h \mid |A_h| \leq M$,

$$A_h \to A$$
. (3.4)

Step 2. Now we show that

$$\int_{B_1(0)} \frac{\partial^2 G}{\partial \xi_{\alpha}^i \partial \xi_{\beta}^j} (A) D_{\beta} v^j D_{\alpha} \phi^i dy = 0 \qquad \forall \phi \in C_0^1(B_1; \mathbb{R}^N) . \tag{3.5}$$

Since we assume $p-1 \leq q$ we can write the usual Euler-Lagrange system for u (see Remark 1). Then, rescaling in each $B_{r_h}(x_h)$, we get for any $\phi \in C_0^1(B_1; \mathbb{R}^N)$ and any $1 \leq i \leq N$

$$\int_{B_1(0)} \frac{\partial G}{\partial \xi_{\alpha}^i} (A_h + \lambda_h D v_h) D_{\alpha} \phi^i dy = 0.$$

Then

$$\frac{1}{\lambda_h} \int_{B_1(0)} \left[\frac{\partial G}{\partial \xi_\alpha^i} (A_h + \lambda_h D v_h) - \frac{\partial G}{\partial \xi_\alpha^i} (A_h) \right] D_\alpha \phi^i dy = 0.$$
 (3.6)

Let us split

$$B_1 = E_h^+ \cup E_h^-$$

= $\{ y \in B_1 : \lambda_h |Dv_h(y)| > 1 \} \cup \{ y \in B_1 : \lambda_h |Dv_h(y)| \le 1 \},$

then by (3.2) we get

$$|E_h^+| \le \int_{E_h^+} \lambda_h^2 |Dv_h|^2 dy \le \lambda_h^2 \int_{B_1(0)} |Dv_h|^2 dy \le c\lambda_h^2.$$
 (3.7)

Now, by (H4) and Hölder inequality, we observe that

$$\frac{1}{\lambda_{h}} \left| \int_{E_{h}^{+}} [DG(A_{h} + \lambda_{h}Dv_{h}) - DG(A_{h})] D\phi dy \right|
\leq \frac{c}{\lambda_{h}} |E_{h}^{+}| + c\lambda_{h}^{p-2} \int_{E_{h}^{+}} |Dv_{h}|^{p-1} dy
\leq c\lambda_{h} + c \left(\int_{E_{h}^{+}} \lambda_{h}^{q-2} |Dv_{h}|^{q} dy \right)^{\frac{p-1}{q}} \lambda_{h}^{\frac{2p-q-2}{q}} |E_{h}^{+}|^{\frac{q-p+1}{q}} \leq c\lambda_{h}$$

where we used the assumption $p-1 \leq q$. From this it follows that

$$\lim_{h} \frac{1}{\lambda_{h}} \int_{E_{h}^{+}} [DG(A_{h} + \lambda_{h}Dv_{h}) - DG(A_{h})] D\phi dy = 0.$$
 (3.8)

On E_h^- we have

$$\begin{split} &\frac{1}{\lambda_h} \int_{E_h^-} [DG(A_h + \lambda_h Dv_h) - DG(A_h)] D\phi dy \\ &= \int_{E_h^-} \int_0^1 D^2 G(A_h + s\lambda_h Dv_h) Dv_h D\phi ds dy \\ &= \int_{E_h^-} \int_0^1 [D^2 G(A_h + s\lambda_h Dv_h) - D^2 G(A_h)] Dv_h D\phi ds dy + \\ &+ \int_{E_h^-} D^2 G(A_h) Dv_h D\phi dy \,. \end{split}$$

Note that (3.7) ensures that $\chi_{E_h^-} \to \chi_{B_1}$ in $L^r(B_1)$ for all $r < \infty$ and by (3.2) we have, passing possibly to a subsequence,

$$\lambda_h D v_h(y) \to 0$$
 a.e. in B_1 .

Then, by (3.3), (3.4) and the uniform continuity of D^2G on bounded sets, we get

$$\lim_{h} \frac{1}{\lambda_h} \int_{E_h^-} [DG(A_h + \lambda_h Dv_h) - DG(A_h)] D\phi dy$$
$$= \int_{B_1} D^2 G(A) Dv D\phi dy.$$

By (3.6), (3.8) and the above equality, we obtain that v satisfies equation (3.5), which is elliptic by (H3). We have for any $0 < \tau < 1$

$$\oint_{B_{\tau}} |Dv - (Dv)_{\tau}|^2 dy \le c\tau^2 \oint_{B_1} |Dv - (Dv)_1|^2 dy \le c\tau^2.$$
(3.9)

Moreover we have

$$v \in C^{\infty}(B_1; \mathbb{R}^N) . \tag{3.10}$$

and

$$\lambda_h^{\frac{q-2}{q}}(v_h-v) \rightharpoonup 0$$
 weakly in $W_{\mathrm{loc}}^{1,q}(B_1;\mathbb{R}^N)$

Step 3. [UPPER BOUND.] We set

$$G_h(\xi) = \frac{1}{\lambda_h^2} [G(A_h + \lambda_h \xi) - G(A_h) - \lambda_h DG(A_h) \xi]$$

and for every r < 1

$$I_{h,r}(w) = \int_{B_r} G_h(Dw) dy.$$

Note that by the strong ellipticity assumption (H3) it follows that $G_h(\xi) \geq 0$, for any ξ . Fix $\frac{1}{4} < s < 1$. Passing to a subsequence we may always assume that

$$\lim_h [I_{h,s}(v_h) - I_{h,s}(v)]$$

exists. We shall prove that

$$\lim_{h} [I_{h,s}(v_h) - I_{h,s}(v)] \le 0.$$
 (3.11)

Consider r > s and fix $m \in IN$. Observe that , since $v \in W^{1,q}(B_1)$ and $v_h \in W^{1,q}(B_1)$, Lemma 2.3, with $\mu = \lambda_h^{\frac{p-2}{p}}$, implies that there exist $z_h \in W^{1,q}(B_1)$ and $\frac{1}{4} < s < s_h < r_h < r < 1$ such that

$$z_h = v$$
 on B_{s_h} $z_h = v_h$ on $B_1 \setminus B_{r_h}$

and

$$||z_{h}||_{W^{1,2}(B_{r_{h}}\setminus B_{s_{h}})} + \lambda_{h}^{\frac{p-2}{p}}||z_{h}||_{W^{1,p}(B_{r_{h}}\setminus B_{s_{h}})}$$

$$\leq C \frac{(r-s)^{\rho}}{m^{\rho}} \Big[\int_{B_{r}\setminus B_{s}} (1+|Dv|^{2}+|Dv_{h}|^{2}+|v|^{2}+|v_{h}|^{2}+ + m^{2} \frac{|v-v_{h}|^{2}}{(r-s)^{2}}) + (3.12) + \lambda_{h}^{\frac{p-2}{p}q} \int_{B_{r}\setminus B_{s}} (1+|Dv|^{q}+|Dv_{h}|^{q}+|v|^{q}+|v_{h}|^{q}+ + m^{q} \frac{|v-v_{h}|^{q}}{(r-s)^{q}}) \Big]^{\frac{1}{2}}$$

Since by (3.10), Dv is locally bounded on B_1 we get

$$I_{h,s}(v_{h}) - I_{h,s}(v)$$

$$\leq I_{h,r_{h}}(v_{h}) - I_{h,r_{h}}(v) + I_{h,r_{h}}(v) - I_{h,s}(v)$$

$$= I_{h,r_{h}}(v_{h}) - I_{h,r_{h}}(v) + \int_{B_{r_{h}} \setminus B_{s}} G_{h}(Dv)$$

$$\leq I_{h,r_{h}}(z_{h}) - I_{h,r_{h}}(v) + c(r - s)$$

$$\leq c \int_{B_{r_{h}} \setminus B_{s_{h}}} [G_{h}(Dz_{h}) - G_{h}(Dv)] + c(r - s) .$$
(3.13)

where we used the minimality of v_h . As $|G_h(\xi)| \le c(|\xi|^2 + \lambda_h^{p-2}|\xi|^p)$ (see [AF], Lemma II.3), we get by (3.12)

$$\begin{split} I_{h,r_{h}}(z_{h}) - I_{h,r_{h}}(v) \\ &\leq c \int_{B_{r_{h}} \setminus B_{s_{h}}} |Dz_{h}|^{2} + \lambda_{h}^{p-2} |Dz_{h}|^{p} \\ &\leq C \frac{(r-s)^{\frac{2\rho}{p}}}{m^{2\rho}} \Big[\int_{B_{r} \setminus B_{s}} (1 + |Dv|^{2} + |Dv_{h}|^{2} + |v|^{2} + |v_{h}|^{2} + \\ &\qquad \qquad + m^{2} \frac{|v-v_{h}|^{2}}{(r-s)^{2}} \Big) \Big]^{\frac{p}{2}} + \\ &\qquad \qquad + C \frac{(r-s)^{2\rho}}{m^{2\rho}} \Big[\lambda_{h}^{\frac{p-2}{p}q} \int_{B_{r} \setminus B_{s}} (1 + |Dv|^{q} + |Dv_{h}|^{q} + |v|^{q} + |v_{h}|^{q} + \\ &\qquad \qquad + m^{q} \frac{|v-v_{h}|^{q}}{(r-s)^{q}} \Big) \Big]^{\frac{p}{2}} \\ &= J_{h,1} + J_{h,2} \, . \end{split}$$

Since $v_h \to v$ in $L^2(B_1; \mathbb{R}^N)$ we have, using (3.2)

$$\limsup_{h\to\infty} J_{h,1} \le C m^{-2\rho} .$$

Moreover, since

$$\lambda_h^{\frac{q(p-2)}{p}} \int_{B_1} |Dv_h|^q = \lambda_h^{\frac{2(p-q)}{p}} \lambda_h^{q-2} \int_{B_1} |Dv_h|^q \le C \lambda_h^{\frac{2(p-q)}{p}}$$

and

$$\lambda_h^{\frac{q(p-2)}{p}} \int_{B_1} |v_h - v|^q \le c \lambda_h^{\frac{q(p-2)}{p}} \int_{B_1} |Dv_h|^q \le c \lambda_h^{\frac{2(p-q)}{p}}$$

we have

$$\lim_h J_{h,2} = 0.$$

Hence we conclude letting first $m \to \infty$ and then $r \to s$ in (3.13).

Step 4. [LOWER BOUND.] We shall prove that, for a.e. $\frac{1}{4} < r < \frac{1}{2}$, if t < r then

$$\limsup_{h} \int_{B_{t}} |Dv - Dv_{h}|^{2} (1 + \lambda_{h}^{q-2} |Dv - Dv_{h}|^{q-2})$$

$$\leq \lim_{h} \left[I_{h,r}(v_{h}) - I_{h,r}(v) \right].$$

For any Borel set $A \subset B_1$, let us define

$$\mu_h(A) = \int_A (|v_h|^2 + |Dv_h|^2) dx$$
.

Passing possibly to a subsequence, since $\mu_h(B_1) \leq c$, we may suppose

 $\mu_h \rightharpoonup \mu$ weakly * in the sense of measures,

where μ is a Borel measure over B_1 . Then for a.e. r < 1

$$\mu(\partial B_r) = 0$$

and let us choose such a radius r. Consider $\frac{1}{4} < t < s < r$, also such that $\mu(\partial B_s) = 0$, and fix $m \in IN$. Observe that , as $v_h \in W^{1,q}(B_1)$ Lemmas 2.3 implies that there exist $z_h \in W^{1,q}(B_1)$ and $\frac{1}{4} < s < s_h < r_h < r < 1$ such that

$$z_h = v_h$$
 on B_{s_h} $z_h = v_h$ on $B_1 \setminus B_{r_h}$
$$r_h - s_h \ge \frac{r - s}{3m}$$

and

$$||z_{h}||_{W^{1,2}(B_{r_{h}}\setminus B_{s_{h}})} + \lambda_{h}^{\frac{p-2}{p}}||z_{h}||_{W^{1,p}(B_{r_{h}}\setminus B_{s_{h}})}$$

$$\leq C \frac{(r-s)^{\rho}}{m^{\rho}} \left[\int_{B_{r}\setminus B_{s}} (1+|Dv_{h}|^{2}+|v_{h}|^{2}) + \lambda_{h}^{\frac{(p-2)q}{p}} \int_{B_{r}\setminus B_{s}} (1+|Dv_{h}|^{q}+|v_{h}|^{q}) \right]^{\frac{1}{2}}$$

$$(3.14)$$

Passing possibly to a subsequence, we may suppose that

$$z_h \rightharpoonup v_{r,s}$$
 weakly in $W^{1,2}(B_1)$.

and

$$v_{r,s} = v$$
 in $(B_1 \setminus B_r) \cup B_s$

Moreover from (3.14) it is clear that

$$\lambda_h^{q-2} \int_{B_1} |Dz_h|^q \le c \tag{3.15}$$

Consider $\zeta_h \in C_0^{\infty}(B_{r_h})$ such that $0 \le \zeta_h \le 1$, $\zeta_h = 1$ on B_{s_h} and $|D\zeta_h| \le \frac{C}{r_h - s_h}$ and set

$$\psi_h^{\epsilon} = \zeta_h(z_h - v_{r,s}^{\epsilon}) ,$$

where $v_{r,s}^{\epsilon} = \rho_{\epsilon} \star v_{r,s}$, and ρ_{ϵ} is the usual sequence of mollifiers. Now, setting $v^{\epsilon} = \rho_{\epsilon} \star v$, we observe that

$$I_{h,r_{h}}(v_{h}) - I_{h,r_{h}}(v^{\epsilon})$$

$$= I_{h,r_{h}}(v_{h}) - I_{h,r_{h}}(z_{h}) + I_{h,r_{h}}(z_{h}) - I_{h,r_{h}}(v_{r,s}^{\epsilon} + \psi_{h}^{\epsilon}) +$$

$$+ I_{h,r_{h}}(\psi_{h}^{\epsilon} + v_{r,s}^{\epsilon}) - I_{h,r_{h}}(v_{r,s}^{\epsilon}) - I_{h,r_{h}}(\psi_{h}^{\epsilon}) +$$

$$I_{h,r_{h}}(v_{r,s}^{\epsilon}) - I_{h,r_{h}}(v^{\epsilon}) + I_{h,r_{h}}(\psi_{h}^{\epsilon})$$

$$= R_{h,1} + R_{h,2} + R_{h,3} + R_{h,4} + R_{h,5}$$
(3.16)

To bound $R_{h,1}$ we observe that

$$I_{h,r_h}(v_h) - I_{h,r_h}(z_h) = \int_{B_{r_h} \setminus B_{s_h}} G_h(Dv_h) - \int_{B_{r_h} \setminus B_{s_h}} G_h(Dz_h) +$$

$$\geq - \int_{B_{r_h} \setminus B_{s_h}} G_h(Dz_h)$$

on the other hand we have

$$\int_{B_{r_h} \setminus B_{s_h}} G_h(Dz_h) \leq \int_{B_{r_h} \setminus B_{s_h}} |Dz_h|^2 + \lambda_h^{p-2} |Dz_h|^p
\leq cm^{-2\rho} \Big[\int_{B_r \setminus B_s} 1 + |Dv_h|^2 + |v_h|^2 +
+ \lambda_h^{\frac{p-2}{p}q} \int_{B_r \setminus B_s} 1 + |Dv_h|^q + |v_h|^q \Big]^{\frac{p}{2}}$$

and then arguing as we did in Step 3 to bound $J_{h,1}$ we get

$$\limsup_{h} \int_{B_{r_h} \setminus B_{s_h}} G_h(Dz_h) \le Cm^{-2\rho}$$

hence, letting $h \to \infty$ we get

$$\liminf_{h} R_{h,1} \ge -Cm^{-2\rho} \tag{3.17}$$

We obtain that

$$R_{h,2} = \int_{B_{r_h} \setminus B_{s_h}} G_h(Dz_h) - G_h(D\psi_h^{\epsilon} + Dv_{r,s}^{\epsilon})$$

$$\geq -c \int_{B_{r_h} \setminus B_{s_h}} |D\psi_h^{\epsilon} + Dv_{r,s}^{\epsilon}|^2 + \lambda_h^{p-2} |D\psi_h^{\epsilon} + Dv_{r,s}^{\epsilon}|^p$$

$$\geq -c \int_{B_{r_h} \setminus B_{s_h}} (|Dz_h|^2 + \lambda_h^{p-2} |Dz_h|^p + |Dv_{r,s}^{\epsilon}|^2 + + \lambda_h^{p-2} |Dv_{r,s}^{\epsilon}|^p) - c \int_{B_{r_h} \setminus B_{s_h}} \left(m^2 \frac{|z_h - v_{r,s}^{\epsilon}|^2}{(r-s)^2} + m^p \lambda_h^{p-2} \frac{|z_h - v_{r,s}^{\epsilon}|^p}{(r-s)^p} \right)$$

$$= -S_{h,1} - S_{h,2}$$
(3.18)

where we used the bound $r_h - s_h \ge \frac{r-s}{3m}$. By (3.15), since $p < q^*$, we get

$$\int_{B_{1}} \lambda_{h}^{p-2} |z_{h}|^{p} \leq c \lambda_{h}^{p-2} \left\{ \int_{B_{1}} |z_{h} - (z_{h})_{0,1}|^{p} + |(z_{h})_{0,1}|^{p} \right\}
\leq c \lambda_{h}^{p-2} \left\{ \left(\int_{B_{1}} |z_{h} - (z_{h})_{0,1}|^{q^{*}} \right)^{\frac{p}{q^{*}}} + \left(\int_{B_{1}} |z_{h}| \right)^{p} \right\}$$

$$\leq c\lambda_{h}^{p-2} \left\{ \left(\int_{B_{1}} |Dz_{h}|^{q} \right)^{\frac{p}{q}} + \left(\int_{B_{1}} |z_{h}|^{2} \right)^{\frac{p}{2}} \right\}$$

$$\leq c\lambda_{h}^{\frac{2(p-q)}{q}} \left(\lambda_{h}^{q-2} \int_{B_{1}} |Dz_{h}|^{q} \right)^{\frac{p}{q}} + c\lambda_{h}^{p-2}.$$

where we used (3.14) to bound $\left(\int_{B_1}|z_h|^2\right)^{\frac{1}{2}}$. Therefore

$$\limsup_{h\to\infty} S_{h,2} \leq c \frac{m^2}{(r-s)^2} \int_{B_{\frac{1}{2}}} |v_{r,s} - v_{r,s}^{\epsilon}|^2 .$$

To bound $S_{h,1}$, observe that for every h

$$\begin{split} &\int_{B_{r_h} \backslash B_{s_h}} |Dv_{r,s}^{\epsilon}|^2 \\ &\leq c \int_{B_r \backslash B_s} |Dv_{r,s}|^2 + c \int_{B_{\frac{1}{2}}} |Dv_{r,s} - Dv_{r,s}^{\epsilon}|^2 \\ &\leq \liminf_j c \int_{B_r \backslash B_s} |Dz_j|^2 + c \int_{B_{\frac{1}{2}}} |Dv_{r,s} - Dv_{r,s}^{\epsilon}|^2 \\ &= c \liminf_j \int_{(B_r \backslash B_s) \backslash (B_{r_j} \backslash B_{s_j})} |Dv_j|^2 + \\ &+ c \limsup_j \int_{B_{r_j} \backslash B_{s_j}} |Dz_j|^2 + c \int_{B_{\frac{1}{2}}} |Dv_{r,s} - Dv_{r,s}^{\epsilon}|^2 \end{split}$$

We control the second integral as usual using Lemma 2.3, while the first is less or equal than $c\mu(B_r \setminus B_s)$. Moreover we can estimate

$$\int_{B_{r_h}\setminus B_{s_h}} |Dz_h|^2 + \lambda_h^{p-2} |Dz_h|^p$$

as we did in Step 3 to bound $J_{h,1}$. Hence

$$\liminf_{h} R_{h,2} \geq -cm^{-2\rho} - c\mu(B_r \setminus B_s) + \\
- c \int_{B_{\frac{1}{2}}} |Dv_{r,s} - Dv_{r,s}^{\epsilon}|^2 + \\
- \frac{cm^2}{(r-s)^2} \int_{B_{\frac{1}{2}}} |v_{r,s} - v_{r,s}^{\epsilon}|^2$$
(3.19)

To bound $R_{h,3}$ we observe that

$$G_h(A+B) - G_h(A) - G_h(B) = \int_0^1 \int_0^1 D^2 G_h(sA+tB) AB ds dt$$

and

$$D^{2}G_{h}(sDv_{r,s}^{\epsilon} + tD\psi_{h}^{\epsilon}) = D^{2}G(A_{h} + s\lambda_{h}Dv_{r,s}^{\epsilon} + t\lambda_{h}D\psi_{h}^{\epsilon})$$

is bounded and converges to $D^2G(A)$ a.e.. Since

$$R_{h,3} = \int_{B_{r_h}} dx \int_{[0,1]\times[0,1]} D^2 G(A_h + s\lambda_h Dv_{r,s}^{\epsilon} + t\lambda_h D\psi_h^{\epsilon}) Dv_{r,s}^{\epsilon} D\psi_h^{\epsilon} ds dt$$

and we may suppose that $\psi_h^{\epsilon} \rightharpoonup \psi^{\epsilon}$ weakly in $W^{1,2}(B_1)$, where

$$\int_{B_{1}} |D\psi^{\epsilon}|^{2} \leq c \frac{m^{2}}{(r-s)^{2}} \int_{B_{\frac{1}{2}}} |v_{r,s} - v_{r,s}^{\epsilon}|^{2} + c \int_{B_{\frac{1}{2}}} |Dv_{r,s} - Dv_{r,s}^{\epsilon}|^{2}$$
(3.20)

we get easily

$$\limsup_{h} |R_{h,3}| \le c(M) ||Dv_{r,s}^{\epsilon}||_{L^{2}(B_{\frac{1}{2}})} ||D\psi^{\epsilon}||_{L^{2}(B_{\frac{1}{2}})}.$$
 (3.21)

To bound $R_{h,4}$ we observe that

$$nR_{h,4} = \int_{B_{r_h} \setminus B_{s_h}} [G_h(Dv_{r,s}^{\epsilon}) - G_h(Dv^{\epsilon})]$$

$$\geq - \int_{B_{r_h} \setminus B_{s-\epsilon}} G_h(Dv^{\epsilon})$$

$$\geq -c|B_r \setminus B_{s-\epsilon}|.$$

Then

$$\liminf_{h} R_{h,4} \ge -c|B_r \setminus B_{s-\epsilon}| . (3.22)$$

Moreover (H3) implies

$$|R_{h,5}| = I_{h,r_h}(\psi_h^{\epsilon})$$

$$= \int_{B_{r_h}} G_h(D\psi_h^{\epsilon})$$

$$\geq \gamma \int_{B_t} (1 + \lambda_h^{q-2} |Dv^{\epsilon} - Dv_h|^{q-2}) |Dv^{\epsilon} - Dv_h|^2$$
(3.23)

for ϵ small enough.

Passing to a subsequence we may suppose that

$$\limsup_{h} R_{h,5} = \lim_{h} R_{h,5} .$$

Therefore returning to the (3.16), from (3.17), (3.19), (3.21), (3.22) and (3.23) we get

$$\begin{split} & \liminf_{h} \left[I_{h,r}(v_h) - I_{h,r}(v^{\epsilon}) \right] \\ & \geq \gamma \limsup_{h} \int_{B_s} (1 + \lambda_h^{q-2} |Dv^{\epsilon} - Dv_h|^{q-2}) |Dv^{\epsilon} - Dv_h|^2 + \\ & - c|B_r \setminus B_{s-\epsilon}| - c\mu(B_r \setminus B_s) - c||Dv_{r,s}^{\epsilon}||_{L^2(B_{\frac{1}{2}})} ||D\psi^{\epsilon}||_{L^2(B_{\frac{1}{2}})} + \\ & - cm^{-2\rho} - \int_{B_{\frac{1}{2}}} |Dv_{r,s} - Dv_{r,s}^{\epsilon}|^2 - c\frac{m^2}{(r-s)^2} \int_{B_{\frac{1}{2}}} |v_{r,s} - v_{r,s}^{\epsilon}|^2 \,. \end{split}$$

Passing to the limit as $\epsilon \to 0^+$ we get easily

$$\liminf_{h} [I_{h,r}(v_h) - I_{h,r}(v)]
\geq \gamma \limsup_{h} \int_{B_s} (1 + \lambda_h^{q-2} |Dv - Dv_h|^{q-2}) |Dv - Dv_h|^2 +
- c|B_r \setminus B_s| - c\mu(B_r \setminus B_s) - cm^{-2\rho}$$

then passing to the limit as $m \to \infty$ and $s \to r$ we get

$$\limsup_{h} \int_{B_r} |Dv - Dv_h|^2 (1 + \lambda^{q-2} |Dv - Dv_h|^q) \le \lim_{h} [I_{h,r}(v_h) - I_{h,r}(v)].$$

Step 5. [Conclusion.] From the two previous steps we conclude that, for any B_{τ} , with $0 < \tau < \frac{1}{4}$

$$\lim_{h} \int_{B_{\tau}} |Dv - Dv_{h}|^{2} (1 + \lambda^{q-2} |Dv - Dv_{h}|^{q}) = 0.$$

Now, from this equality and by (3.9) we get

$$\lim_{h} \frac{U(x_h, \tau r_h)}{\lambda_h^2} = \lim_{h} \frac{1}{\lambda_h^2} \int_{B_{\tau r_h}(x_h)} (|Du - (Du)_{\tau r_h}|^2 + |Du - (Du)_{\tau r_h}|^q) dx$$

$$= \lim_{h} \oint_{B_{\tau}} (|Du - (Du)_{\tau}|^{2} + \lambda_{h}^{q-2} |Du - (Du)_{\tau}|^{q}) dy$$

$$= \oint_{B_{\tau}} (|Dv - (Dv)_{\tau}|^{2}) dy$$

$$\leq C_{M}^{*} \tau^{2}$$

which contradicts (3.1) if we choose $C_M = 2C_M^*$.

 \Diamond

The proof of Theorem 1 follows by proposition 3.1 by a standard iteration argument, see [G1].

Remark 2. Notice that the proof of Proposition 3.1 and of Theorem 1 still works if, beside assuming $p < \frac{nq}{n-1}$, we have $p \le q+1$.

References

- [AF1] ACERBI E. and Fusco N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Rational Mech. Anal. 99 (1987), 261–281.
- [AF2] ACERBI E. and Fusco N., Partial regularity under anisotropic (p, q) growth conditions, J. Diff. Equat. 107 (1994), 46-67.
 - [D] DACOROGNA B., Direct methods in the calculus of variations, Appl. Math. Sci. 78, Springer Verlag 1989.
- [Ek] EKELAND I., Nonconvex minimisation problems, Bull. Amer. Math. Soc. 1 (1979), 443-474.
- [Ev] Evans L. C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986), 227–252.
- [EG] EVANS L. C. and GARIEPY R. F., Blow-up, compactness and partial regularity in the calculus of variations, Rend. Circolo Mat. Palermo, suppl. no. 15 (1987), 101–108.
- [FM] FONSECA I. and MALÝ J., Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density, to appear.
- [FH] FUSCO N. and HUTCHINSON J., A direct proof for lower semicontinuity of polyconvex function, preprint 1994.
- [FS] FUSCO N. and SBORDONE C., Higher integrability of the gradient of minimizers of functionals with nonstandard growth condition, Communications on Pure and Appl. Math. XLIII (1990), 673-683.

- [G1] GIAQUINTA M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Math.Studies 105 (1983), Princeton Univ. Press.
- [G2] GIAQUINTA M., Growth conditions and regularity, a counterexample, Manu. Math. **59** (1987), 245-248.
- [GM] GIAQUINTA M and MODICA G., Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non linéaire 3 (1986), 185–208.
- [Gi] Giusti E., Metodi diretti in calcolo delle variazioni, U.M.I. (1994).
- [M1] MARCELLINI P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1986), 1-28
- [M2] MARCELLINI P., Un example de solution discontinue d'un probéme variationel dans le cas scalaire, Preprint Ist. U. Dini, Firenze, 1987– 88.
- [M3] MARCELLINI P., Regularity and existence of solutions of elliptic equations with (p,q) growth conditions, J. Diff. Equat. **90** (1991), 1–30.
- [M4] MARCELLINI P., Everywhere regularity for a class of elliptic systems without growth conditions, Preprint Ist. U. Dini, Firenze 1993.
- [Mo] Morrey C. B., Multiple integrals in the calculus of variations, Springer, New York (1966).

Pervenuto in Redazione il 3 Febbraio 1996.