A Regularity Result for a Class of
Anisotropic Systems
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SOMMARIO. - Si prova la regolaritd parziale dei minimi del funzionale
I(u) = [, G(Du), con G integrando convesso a crescita anisotropa.
Non st fanno ipotest speciali sulla struttura di G.

SUMMARY. - We prove partial regqularity of minimizers of the functional
I(u) = [, G(Du), where G is a convex integrand satisfying anisotropic
growth condition. No special structure assumption is needed on G'.

1. Introduction

In this paper we study the partial regularity of minimizers of integral
functionals of the type

I(u) = /QG(Du(m))dm (1.1)

w:Q c R — RV, N > 1, where G is a C? convex integrand
satisfying the growth condition:

ClEl" < G(&) < L(1+ [€7) (1.2)
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with p > ¢.

Few years ago it was observed that even in the scalar case, i.e.
N =1, minimizers of (1.1) may fail to be regular (see [M2], [G2]),
when p is too large with respect to g. On the other hand, one can
prove regularity of scalar minimizers of (1.1) if p is not too far away
from ¢ (see e.g. [M3], [F'S] and the references given in [M3]). More
precisely, in [M3] it is shown that if one writes down the Euler equa-
tion for the functional I, under suitable assumptions on p and ¢, the
Moser iteration argument still works, thus leading to a sup estimate
for the gradient Du of the minimizer.

Clearly this approach can not be carried on in the vector valued
case, i.e. when N > 1. As far as we know, the only regularity
results for systems are proved under special structure assumptions
(see [AF2], [M4]).

Namely, the model case covered in [AF2] is the functional

k
/ Dul? + 3" [ DyulPe
Q a=1

withu : QCR" RN, N>1,1<k<mn,2<p< pa, and p, not
too far from p, while in [M4], it is proved everywhere regularity of
minimizers of (1.1) when G(§) = f(|¢]).

In this paper we prove that if G satisfies (1.2) and the strong
ellipticity assumption

(DG(&)n,m) > v(1+ (¢ T [n]?
and

. qn
2§q<p<m1n{q—}—1,ﬁ}, (1.3)

a minimizer u € W9(Q; RY) of functional (1.1)is C1 for all @ < 1
in an open set g C Q such that meas(€ \ €2y) = 0.

We point out that a part from condition (1.3), no special struc-
ture assumption is needed on G.

The proof of our result goes through a more or less standard
blow-up argument aimed to establish a decay estimate on the excess
function for the gradient

Ulzo,r) = ]é . |Du — (D) sy |? + | Dt — (Dtt) g 1|l
r{Zo

The essential tool in the case we consider, is a lemma due to Fonseca
and Maly (see [FM] and also Lemma 2.3 below) which makes possible

to connect in the annulus B, \ B; two W functions v and w with
a function z € WHP(B, \ B;) if ¢ < p < 2.
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2. Statements and preliminary Lemmas

Let us consider the functional
I(u) = / G(Du(z))dz
Q

where Q is a bounded open set of R”, n > 2. Let G : R — IR,
N > 2, satisfy the following assumptions:

GeC? (H1)
Cle]? < G(E) < L(1 + [€f7) (H2)
(D2G(€)n,m) > (1 + [€%) T |nf? (H3)
where  2< ¢ < p< min {q—l— 1, nq_"l}
It is well known that
|DG(E)] < e(14]€P7T). (H4)

We say that u € W9(Q,RY) is a minimizer of I if
I(u) < I{u+v)
for any v € u 4+ W, (Q; RN).
REMARK 1. If u is a local minimizer of T and ¢ € C3(€Q;IRY) from
the minimality condition one has for any ¢ > 0
0 < / [G(Du + eDé) — G(Du)lde
Q
1 .
= 5/ da:/ a—G(Du—}—gthb)Daqb"dt
a Jo 0&,

Dividing this inequality by e, and letting € go to zero, from (H4) and
the assumption p < ¢ + 1 we get

oG
o 08,

and therefore by the arbitrariness of ¢ the usual Euler-Lagrange
system holds:

(Du)Dy¢'dz > 0

G

A @(Du)paqy'dm =0 Vo € CL(; RY)
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We prove the following

THEOREM 2.1. Let G be as above and let w € W' (Q;RYN) be a
minimizer of I. Then there exists an open subset (g of ) such that

meas(2\ Qo) =0

and
uwe CV(Q,RY)  for all a<l.

In the following, we will denote by u a W1(Q;IRY) minimizer
of [o G(Du)dx and assume that G satisfies (H1), (H2), (H3). We set
for every B, (zo) C Q

Ulzo,r) = ]é . |Du — (D) sy |? + | Dt — (Dtt) g |0,
r{Zo

where

1
J%m) 9= @eor = s (B (w0)) /BTW g

The next Lemma can be found in [FM], (Lemma 2.2), in a slightly
different form.

LEMMA 2.1. Let v € WH9(B1(0)) and 0 < s < r < 1. There exists
a linear operator T : W1%(By(0)) — W14(By(0)) such that

Tv=v on (Bi\ B,)U B;

and for all p >0, for all p < q-25
[ Tvllw2\B.) + #ITVWwreB,\B.)

< C{(T —s)7 [tzlp)(t - 5)_%||U||W172(Bt\BS) +

+ sup (r = 1) 73| [vllwregm\By | +
te(s,r)

_1
+p(r = 8)" [gp)(t = 5) 7 |lvllwragsam,) +

+ sup (r_t)_EHUHWUZ(BT\Bt)}}
te(s,r)

where C' = C(n,p,q) >0, c =a(n) >0 and 7 = 7(n,p,q) > 0.
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Let us recall an elementary lemma also proved in [FM].
LEMMA 2.2. Let ¥ be a continuous nondecreasing function on an
interval [a,b], a < b. There exist o’ € [a,a+3(b—a)], b’ € [b—1(b—
a),b] such that a < o’ < b' < b and

v~ $l) _ B~ (o)

o T bh—a 2.3)
P) Bl p06) ~ (a)

b —t - b—a

for allt € (a',0').
Finally the next result is a straightforward generalisation to our
case of Lemma 2.4 in ['M]. We give the proof here for completeness.

LEMMA 2.3. Let v, w € WH(B1(0)) and 1 < s < r < 1. Fiz

q < p< 2, forall g > 0 and m € IN there exist a function
z € Wh(B(0)) and ; < s < s’ <r' <r <1 withr', s depending
on v, w and u, such that

z=v on By, z=w on B;\B, (2.4)

r—s , ;. Tr—s
> -8 >

m 3m

and

[2llwr2(,\B.) + #ll2llwirB B,

AV
scu[][ (1+1Dv] + |Dwl? + o] + [+
By \B.

mP

2 |v —w|?
+m (7‘—5)2)+ (2.5)

FurL (U Dol Dol o]+ '+
B,\B;

Jrmqlv—wlq)}%

(r —s)

where C'= C'(n,p,q) > 0 and p = p(p,q,n) > 0.
Proof. As in Lemma 2.4 in [FM], choose m € IN and set
v — w|?
(r—s)?

v — wl®
1 (14 Dol | Dol ol + o]+ m" 7).

f =1+ [Dv]*+ [Dw]*+ [v]* + |w|* + m® +
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We may find k € {1,...,m} such that

1
/ jle< — [ jda
B k(r=s) \BS+(k—1)('r—s) m JB,\Bs

m m

Set, for 1 -4 =M= iy

m

v = [ e

which is a continuous nondecreasing function. By Lemma 2.2, there
exists [/, 7] C [s+ (k_lzrfr_s),s + k(:;s)] such that

r—s , ,._T—8
>r —s >
m - 3m
and
t _ o
/ fdz < 3= fdz
B/\B, r—s B Kr=s) \BS+(k—12'(zr— ) (2.6)
t—s
<3 / dx,
r—s .JB,\B
r—t
/ fdz <3 / fdz 2.7)
Br/\Bt r—s BT\BS
for all t € (s, 7). Set
v(z) if z € By

u = Clhvtlz=u) ¢ 5 c B\ B,

w(z) if z¢€ By \By.
A direct computation shows that
|ul® + [ Dul® + p?(Jul” + |Dul) < Cf .

If we apply Lemma 2.1 to the function u, we then find = € W17(By)
satisfying (2.4). Moreover, from (2.6) and (2.7) one readily cheks
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that

[2llwr2(8,\B,) + #ll2llwisB,\B.)

0= g\ B
< { g\ B (ﬁT\BS f) +
(T,/_SI)T é é
e\ B (]%\Bsf) }

< c{(r'—s')a (]ér\Bs f)%-l-(r'—s')f (]é,\Bs f)é}7

from which (2.5) follows choosing p = min{o, 7}.

o=

Q=

3. Proof of Theorem 1

As usual, to get the partial regularity result stated in Theorem 1,
we need a decay estimate for the excess function U(zg,r) defined in
section 2.

ProposiTioN 3.1. Fiz M > 0. There exists a constant Cpy > 0
such that for every 0 < 7 < %, there exists € = e(r, M) such that, if

(D) gy r| < M and Ulzo,r) <

then
U(zg,7r) < CMTQU(;ro, r).

Proof. Fix M and 7. We shall determine C'ys later.

We argue by contradiction. We assume that there exists a se-
quence B,, (z) satisfying

B,, (z1) C €, |(Du) g, rn| < M, li}rln Ul(zp,ry) =0,

but
U(zp, mr) > Cyr?Ul(ah, ma) - (3.1)

Set

ap = (u)rhﬂ“h Ap = (Du)ﬂi’hﬂ"h ’\i = U(‘rfm rh) .
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Step 1. [BLow up.] We rescale the function u in each B,, (z3) to
obtain a sequence of functions on By (0). Set

R (Y) [u(zp + rry) — ap — rR ARy,

~ Aarh

then .
Do (y) = " [Du(zn + rry) — Anl.

Clearly we have

('Uh)O,l = 0 (D’Uh)oJ = 0 .
Moreover,

][ (14 A2\ Dy =2) | Doy [2dy = 1. (3.2)
B;(0)

Passing possibly to a subsequence we may suppose that
vp — weakly in WY2(By; RM) (3.3)
and, since Vh |An| < M,
A, =~ A. (3.4)

Step 2. Now we show that

592G . .
— (A)Dgv'Dydldy=0 Vo e CHB:;RY). (35
S gy Do Dad S(BiRY). (3.5)

Since we assume p — 1 < g we can write the usual FEuler-Lagrange
system for u (see Remark 1). Then, rescaling in each B,, (z), we

get for any ¢ € C3(B;IRY) and any 1 <i < N

0G .
—(A A D D, o'dy=0.
/&(0)%&( » + A Dvw) Dadidy

Then

1 G G :
— T (Ap 4 A Do) — —— (A Do dy = 0. 3.6
5 oo B (4 A0 = G (AN]Dady (36)
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Let us split
By = Ef UE;

21

={y € By : Ap|Duop(y)| > 1} U{y € By : Ap|Dop(y)| < 1},

then by (3.2) we get

(EfL < [ 2iDuldy <A
By Bi(

1(0

: | Dvy |2dy < e)i.

Now, by (H4) and Hélder inequality, we observe that
1
- / [DG(An + M. Duy) — DG(A,)|Dédy|
h JEF

C
< —|EF AH/ D[P~ 1d
_/\hl h|+ch E}'1|'| vhl Yy

p—1
Zp—g=2 g=p+1

q
<ecAp+te (/+ ,\%_2|Dvh|qdy) /\h q |E}j—| q
By

where we used the assumption p — 1 < q.
From this it follows that

1
lim — / [DG(Ap + ADuy) — DG (AR)]Dédy = 0.
h Ap JEf

On E;” we have

Ai / _[DG(An + ADuy) — DG(A)]Dédy
n JB;

1
- / / D*G(Ap + s\ Doy) Do Ddsdy
E; Jo

(3.7)

<eAp

(3.8)

1
- / / [D?G(Ap + shyDuy) — D2G(An)] Dop Dédsdy +
B Jo

+ | D*G(An)DvpDédy .
By

Note that (3.7) ensures that x,- — xp, in L"(B;) for all r < oo
h

and by (3.2) we have, passing possibly to a subsequence,

AnDuy(y) — 0 a.e. in Bj.
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Then, by (3.3), (3.4) and the uniform continuity of D?G on bounded
sets, we get

1
lim — / [DG(An + MDvy) — DG(A)]|Débdy
h AnJE;

= fBl D*G(A)DvDédy .

By (3.6), (3.8) and the above equality, we obtain that v satisfies
equation (3.5), which is elliptic by (H3). We have for any 0 < 7 < 1

][ |Dv — (Dv),|*dy < 072][ |Dv — (Dv);|*dy < er®. (3.9)
B,

T

Moreover we have

v e C™(B;;RY). (3.10)
and s
/\}LT(Uh —v)—=0 weakly in Wlﬂcq(Bn IRN)
Step 3. [UPPER BOUND.] We set

1

Gr(§) = /\_i[G(Ah + An€) — G(Ar) — AeDG(Ap)E]

and for every r < 1

r(w) = [ Gr(Dw)dy.

Note that by the strong ellipticity assumption (H3) it follows that
Gr(€) > 0, for any €. Fix ; < s < 1. Passing to a subsequence we
may always assume that

li}ILn [Th,s (V) = In,s(v)]

exists. We shall prove that
lifm[lh’s(vh) —1p,5(v)] <0. (3.11)

Consider r > s and fix m € IN. Observe that , since v € W7(By)
p—2

and v, € WH9(By), Lemma 2.3, with pu = )\hT, implies that there
exist z;, € W4 (By) and i < s< 8y <rp<r<1such that

zp=v on B, zp=v, on By\B,,
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and

p—2
l[zullwr2m,,\B.,) + A" lzellwir s, \B.,)
r—s)f
<UL (Do 4 Dol 4 ol 4 ol
mP B, \B.
2|V — :

+m WH (3.12)

p—2
+ AL q]é \B (1+[Do|? + [Dupl? + [v|? + [vs|*+
T s |U _ ,Uh|q %
q
+m (r—s)? )}
Since by (3.10), Duv is locally bounded on B; we get
Iy s(vp) — 1 5 (v)
S Ihﬂ“h (,Uh) - Ihﬂ“h (U) + Ihﬂ“h ('U) - Ih75(,0)
=1, — Iy, / Gr(D
horn (V1) = Inr, (0) + B, r(Dv) (3.13)
< nyry, (21) = Inry, (0) + €(r = 5)
<e [Gh(Dzy) — Gr(Dv)] 4+ c(r — s) .

By, \Bs),

where we used the minimality of vy, . As |G,(€)| < c(J€]* + /\Z_2|£|p)
(see [AF], Lemma I1.3), we get by (3.12)

Ihr, (21) = Ty (V)

<ec |Dzp|2 4+ A2 Dz |P
Br,\Bs,

_ P

< clr=s7

2—|—|’U|2—|— 2_|_

v
m2e g

[][ (14 |Dof? + | Do
B,\B.

b
2

_ 2
2|U vh| )} T

_ 2
(r—s)? 2224 =
e AU L R LI E R B

P
2

+m

+C

m2e
|v — vp|?
g
+m (r—s)1 )}
=Jn1+ Jnz2.
Since vy, — v in L%(By; RY) we have, using (3.2)

limsup Jp1 < Cm™2° .
h—00



24 A. PASSARELLI DI NAPOLI and F. SIEPE

Moreover, since

a(p=2) 2(p—q) 5 2(p—q)
A, 7 / IDupl? =X, 7 A / |Dupl? < O, 7
B1 Bl
and
a(p—2 a(p—2 2(p—q
AT / lop —v|? <eAy P / |Dug|? < eAj, *
Bl Bl
we have

li = 0.
1}1Ln Jrha=10

Hence we conclude letting first m — oo and then r — s in (3.13).
<r<K

3

Step 4. [LowER BOUND.] We shall prove that, for a.e.
if t < r then

[Nl

1
4

2(14 M 7% Dv — Duy|?72)

lim sup/ |Dv — Duy,
h By

< li}rln Unr(vn) — Inr(0)].

For any Borel set A C By, let us define
() = [ (lonl? + | Dvnl)da

Passing possibly to a subsequence, since uy(B1) < ¢, we may suppose
ptr — - weakly * in the sense of measures,

where p is a Borel measure over By. Then for a.e. r < 1
©(0B,) =0

and let us choose such a radius r. Consider i <t < s<r,alsosuch
that u(0Bs) = 0, and fix m € IN. Observe that , as v, € W1?(By)
Lemmas 2.3 implies that there exist z, € W'?(B;) and 1 < s <
sp < 1 < r <1 such that

zp=v, on B, zp=wv, on Bi\B,,

r—s

3m

TR — Sp >
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and

p—2
lznllwrem,,\B.,) + 217 [lzellwir s, \B.,)

(7“ — S)p 2 2 3.14
<UL (14 Do + o)+ (3.14)
(TPrL—?)q Br\B:

+A, 7 ][ (14 |Duvy,
B,\B;

1
" oal”)]?
Passing possibly to a subsequence, we may suppose that

Zh = Ups weakly in WI’Q(Bl) .

and
ves=v in (B \B,)UB;

Moreover from (3.14) it is clear that
A;{—Q/B D247 < ¢ (3.15)
1

Consider ¢, € C§°(B,,
| D¢r| < E'Sh and set

Th

) such that 0 < ¢, < 1, ¢, = 1 on By, and

¢}i = C}L(Zh - U;,s) ’

where Ups = PeKXUrs, and p, is the usual sequence of mollifiers. Now,
setting v = p. * v, we observe that

T (08) = Tnyry, (V°)
= Thry(0n) = T, (20) + Thry (28) = Thpry, (vr s + 95)+
+ Ty, (5 + 075) = T, (U 5) = Thr, (V5)+ (3.16)
Ty (U7 5) = Thyr, (V) + Inr, (97,)
=Rpi+Rpo+ Rpz+ Rpa+ Rys

To bound R} ; we observe that

Iy (vn) = Iy, (21) = /B 5 Gr(Duy) — /B Gr(Dzp) +
Th Sh

V
|
T
I~
—_
v}
F
D
o>~
S
I
=



26 A. PASSARELLI DI NAPOLI and F. SIEPE

on the other hand we have

/ Gr(Dz1)
Br,\Bs),

IN

/B |Dzy|* + Mo 72| Dz P

Th Sh

IN

cm_Q’){][ 1+ |Dop|* + |vp|* +
B,\B.

p—2

+ /\th]é SRR jonl]

ST

and then arguing as we did in Step 3 to bound J;,; we get

lim sup/ Gr(Dz) < Cm=?
h  JB.,\Bs,

hence, letting h — oo we get

lim inf /2., > ~Cm™? (3.17)
We obtain that
Rho = / Gr(Dzp) — Gr(Dy, + Dvy )
- \Bs),
s [ IDU D XD + D
BTh *h 7 7
> —¢ <|D2’h|2 + X2 Dzy|P + | Du,|* +
By, \Bs, (3.18)

| 2

p—2 e |p Zh — U;,s
+ Ah |Dvr,s| ) —cC +

2
m*—
By, \Bs, ( (r—s)?
- |Zh - v;s|p
+ mPAY 2 st

(r—s)

= —Sp1— Sho

r—s
3m °

where we used the bound rj, — sp > By (3.15), since p < ¢*, we

get

[oal < o { [l - Gaoal + noal”}
B B

1
b
*

< er? { </131 |zn — (Zh)o,llq*) "t </131

Zh

)
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CVTQ{(/BI |Dzh|q)§—|- (/. W)%}

2(p—q) §
chy, ! </\%_2/B |Dzh|q> +eX2,
1

IN

IN

1
where we used (3.14) to bound (fBl |zh|2) ? Therefore

. m? 2
limsup Sp 2 < Cm /B |Ur,s - ,U;,s| .
1
2

h—oc0

To bound Sj, 1, observe that for every A

2
[ o
Brh\BSh

< c/ |Dv,n75|2 + c/ |Dv, s — Dvﬁ75|2
T\BS Bl

2

< lim'infc/ |Dz;|? + c/ |Dv, s — Dot |2
J Bs B 7

T

= clim inf | Dv;|* +
7 J(Br\B:)\(Br\Bs))

+ clim sup/ |Dz;|? + c/ |Dv, s — Duvt |?
j B, \B: B, ’

J
2

We control the second integral as usual using Lemma 2.3, while the
first is less or equal than cu(B, \ Bs).
Moreover we can estimate

/B |Dzy|? + Ay Dz P

Th Sh

as we did in Step 3 to bound Jj, ;. Hence
limhinf Ry > — em™% — cu(B, \ Bs)+

—c [ 1Duns - Duf P+
B,

2

cm? /
— [ s P
(T’ _ 8)2 B% s r,Ss

(3.19)
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To bound R} 3 we observe that

1 1
Gh(A + B) — Gy(A) — Gp(B) = / / DGy (sA + tB) ABdsdt
0 0

and
D*Gy(sDvf , + tDv}) = D*G(An + shuDvf , + tAL DY)

is bounded and converges to D%G(A) a.e.. Since

Rp3 = / d.ac/ DQG(A;L + sApDvf  +
B, [0,1]x[0,1] '

+tAn D) Duy Dy dsdt

and we may suppose that if — ¥ weakly in W'?(By), where

/ DU < e / | ol
C v — U
Bl = (T‘ _ 8)2 Bl r,Ss s
2

(3.20)
+ c/ |Dv, , — Dvt,|?
B, '
2
we get easily
ﬁthUP |Rus| < c(M)]|Dvy ||z )l DY |28, - (3.21)
2 2
To bound R} 4 we observe that
nna = [ 1GH(Dv) = Ga(DV)]
Br, \Bs),
> / Ga(Dv)
Brh\Bs—e
> —c¢|B,\ Bs—| .
Then
limhinf R4 > —c|B, \ Bs_(| . (3.22)
Moreover (H3) implies
|Rrsl = Thr, (V1)
= D¢
B, Gh( ¢h) (323)

> 'y/ (14 X2 Dvf — Duy|*=2)|Dve — Dy |?
By
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for € small enough.
Passing to a subsequence we may suppose that

limsup Ry 5 = lim Ry 5 .
h h
Therefore returning to the (3.16), from (3.17), (3.19), (3.21), (3.22)
and (3.23) we get
limhinf[lhm(vh) — 1Ip, - (v%)]

> v lim sup/ (14 A72|Dv® — Dup|72)| Do — Dup|? +
h B

—¢|B; \ Bs—¢| — ep(Br \ Bs) — CHDU;,5||L2(BL)||D'1/)E”L2(B )+
2

B[

2 2 m? 2

—2p € €

—cm _él |D’UT75—D’UT7S| _C(T‘—S)Q /BL |Ur,s_vr,s| .
2 2

Passing to the limit as € — 07 we get easily

lim inf {1y, - (va) = I » (v)]

12| Dv — Duy|* +

> ~vlim sup/ (14 /\z_2|Dv — Dy,
h Bs
—¢|B.\ Bs| — cu(B, \ Bs) — em™?°

then passing to the limit as m — oo and s — r we get

limsup/ |DU—Dvh|2(1—}—/\q_2|Dv—Dvh|q) < li}lln[lhw(vh)—lhw(v)].
h By

Step 5. [CoNcLusION.] From the two previous steps we conclude
that, for any B,, with 0 < 7 < %

li}rln/ |Dv — Dup|*(14 X772 Dv — Duy|?) = 0.
B,

Now, from this equality and by (3.9) we get
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=lim L (|Du— (Du),|> + \i7%|Du — (Du),|%)dy

h B.
=L (Do = (Do), 1By
B,

< C’XJTQ

which contradicts (3.1) if we choose Cyr = 2C'5;.

%

The proof of Theorem 1 follows by proposition 3.1 by a standard
iteration argument, see [G1].

REMARK 2. Notice that the proof of Proposition 3.1 and of Theorem

1 still works if, beside assuming p <

[AF1]

ng
n—1"

we have p < g+ 1.
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