On some Local Properties
of Semigroups
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SOMMARIO. - Vengono presentate dimostrazioni alternative di alcune pro-
prieta locali per i semigruppi studiate da Hall [3]. Vengono inoltre stu-
diate ulteriori proprieta inerenti il medesimo argomento e viene data
una generalizzazione del risultato di Hall [3].

SUMMARY. - We provide alternative proofs of some local properties of
semigroups studied by Hall [3]. In addition to that we contribute some
more local properties of semigroups and generalization of a Hall’s result

[3]

1. Introduction

McAlister [5] defines a semigroup S to have the property P-locally,
if the property P is held by each of its local subsemigroups. Further,
he defines a local subsemigroup of a semigroup S as the semigroup
of the form eSe for an idempotent e € S.

Nambooripad posed a problem in the Dekalb conference 1979:
whether, for regular semigroups, the property of having idempotents,
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form a band, is inherited from the local subsemigroups by the larger
subsemigroups €S and Se 7 This is answered in affirmative by T. E.
Hall [3]. That is, the class of regular semigroups is locally orthodox.

Apart from the property of regular semigroups being orthodox,
there are many more local properties as discussed Theorems 1 and
5 of Hall [3].

Here we have divided our whole work in three Sections 4, 5, 6. In
Section 4 we discuss alternative proofs of Hall’s results [3]. In Section
5 we generalize some of the Hall’s results [3], while in Section 6 we
give some more local properties. In the end we add appendices as a
comment on further generalization.

2. Preliminary

Though, we freely follow the notations of Clifford and Preston [1],
and Hall [3], yet for convenience, we restate a few definitions and
notations which are used every now and then in our text. However
we omit the notations £, R, H,D for Green’s relations as they are
given in [1].

(2.1) Reg(S) denotes the set of regular elements of S.
(2.2) V(z) denotes the set of inverses of an element z of S.

(2.3) (p,q,7)-Reg(S) denotes the set of (p,q,r)-regular ele-
ments of S.

(2.4) (p,q,r)-Regular element: an element @ of a semigroup
S is called (p, q,r)-regular (where p, g, r are nonnegative
integers) if a € a?Sa?Sa” (cf. [4]).

(2.5) An element @ of a semigroup S is said to be right (left)
divisible by an element b if and only if a = zb, 2 € S (e =
bzy;z1 € 5). An element a is said to be divisible by an
element b if and only if it is both right and left divisible
by b.

(2.6) A semigroup S is said to be right (left) archimedean if
and only if for any two elements a, b € S, some power
of each one of them is right (left) divisible by the other.
A semigroup is said to be archimedean if and only if it is
both right and left archimedean.
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(2.7) Weakly commutative semigroup: a semigroup S is called
weakly commutative if for any a,b € S, we have (ab)* =
za = by for some z,y € S and a positive integer k (cf.

[61)-

(2.8) Bisimple: A semigroup S is said to be bisimple if it con-
sists of a single D-class.

However the rest of the definitions are presumed well-known (cf. [1]).

3. Preparatory results

ProrposiTION 3.1. (Lemma 2.14), [1]). Any idempotent element e
of a semigroup S is a right identity element of L., a left identity
element of R., and a two sided identity element of H..

ProposiTION 3.2. (Theorem 2.17, [1]). If a and b are elements of
a semigroup S, then ab € R, N Ly if and only if Ry N L, contains an
idempotent. If this is the case, then aH, = H,b = H,Hy, = H,, =
R, N Ly.

ProrposiTION 3.3. (Lemma 2.13-(i), [1]). If @ is a regular element
of a semigroup S, then aS' = aS and S'a = Sa.

ProposIiTION 3.4. (Theorem 2.16, [1]). If a, b and ab all belong to
the same H-class H of a semigroup S, then H is a subgroup of S.
In particular, any H-class containing an idempotent is a subgroup of

S.

REMARK 3.5. In all the proofs of Sections 4, 5 and 6 we have used
the result ez = z; V2 € eS and ey = y; Vy € eSe which is straight
forward, to check.

REMARK 3.6. For an element p € S and p’ € V(p), it can be easily
checked that p £ p'p and p R pp'.

4. Alternative proofs

In this section we discuss the alternative proofs of some of the Hall’s
results [3].
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THEOREM 4.1.

(i) If Reg(eSe) is an idempotent-generated subsemigroup
then Reg(eS) is also an idempotent-generated subsemi-

group.

(ii) If Reg(eSe) is a subsemigroup on which H is a con-
gruence then Reg(eS) is a subsemigroup on which H is a
congruence.

(iii) If Reg(eSe) is a union of groups (not necessarily a
subsemigroup) then Reg(eS) is also a union of groups.

(iv) If eSe has at most one idempotent per L-class, then
€S has at most one idempotent per L-class.

Proof. (i)-If Reg(eSe) is subsemigroup then so is Reg(eS) as
proved by Hall [3]. Clearly Reg(eS) C Reg(eSe)E(eS) and Reg(eSe)
is idempotent-generated hence Reg(eS) is also idempotent generated.
(ii)~As Reg(eSe) is a subsemigroup, so Reg(eS) is also a subsemi-
group as proved by Hall [3].

To show that H is a congruence on Reg(eS). Let p and ¢ €Reg(eS5)
such that p 7 q. We show that pc H gc and dpH dq ¥V ¢, d €Reg(eS5).

pHq viz. pLgandpRyq.
But £ is a right congruence and p L ¢q,so pcLqgc. (4.1)
Since p L q and pR q therefore pe £ ge and also pe R pR ¢R qe, (as
it is easy to verify that pe R p and ge R ¢). This yields pe R ge. Thus

finally pe M ge. By hypothesis pce H gce; (for ce € Reg(eSe)), that
is, pce L gce and pce R gce. Now,

pce Rpc and gce R ge, hence pcR ge. (4.2)
From (4.1) and (4.2) we have pc £ ge. Further,

pHq viz. pLqgand pRyq.
Since R is a left congruence and pR ¢ so dpRdq. (4.3)
We now show that dp £ dq. We have Reg(eSe) = Reg(eS)e. Now,

pLq implies Reg(eS)p = Reg(eS)g which implies Reg(eSe) pe =
Reg(eSe)ge. That is Reg(eSe)de pe = Reg(eSe) de ge hence Reg(eS)-
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-dpe = Reg(eS) dge. So, Reg(eS) dp=Reg(eS) dp ep’'p=Reg(eS) dg-
-ep'p = Reg(eS) dqp'p = Reg(eS) dgq (because g € Reg(eS) p).

Hence dpLdgin Reg(eS). (4.4)

From (4.3) and (4.4) we have dp H dg.

Hence pcH qc and dpH dq; Ve,d € Reg(eS). Therefore, H is a con-
gruence on Reg(eS).

(iii)~We want to show that Reg(eS) is a union of groups. Since the
union of subgroups of Reg(eS) is contained in Reg(eS), we need only
show that Reg(eS) is contained in the union of subgroups of Reg(eS).
Let a € Reg(eS). To show H, = Ry N Ly, contains an idempotent.
Now ae € Reg(eSe), therefore by hypothesis, Hy,e = Raare N Lyrge
contains an idempotent. So by Prop. 3.2 a’a?a’e € Ryrqe N Lagre.
Now, a’a?a’ R a'a’a’e R a’'ae R a’a. And, since a’aa’e L ad’e, so a’'a?-
~a' L aa'. Therefore, a'a’a’ € R,y N Ly, So, by Prop. 3.2, H, =
Ryq N Ly, contains an idempotent. So, by Prop. 3.4 H, is a sub-
group. Hence a belongs to a subgroup.

(iv)-Let f,g € E(eS), such that f £ g. We wish to show that f = g.
It is easy to check that f £ g implies fe L ge. Since fe, ge € F(eSe),
so fe = ge. Now, f = ff = fef = gef = gf. As fLg, hence by
Proposition 3.1, we have gf = g. Therefore f = g. &

REMARK 4.2. It appears that the statement of Theorem 4.1-(iv) can
be generalized as “If eSe has at most one regular element per L-class
then eS has at most one regular element per L-class”. However we
note that every regular element z is £ -related to its corresponding
idempotent 2’z and every idempotent is a regular element, hence
Theorem 4.1-(iv) the result of Hall and its so called generalization
stated above are one and the same.

5. A generalization

In an attempt to generalize Hall [3] Theorem 1-(iv) to (p, ¢, r)-regula-
rity, we make the following query:

QUERY 5.1. If (p, q,7)-Reg(eSe) is a subsemigroup whether (p, ¢, 7)-
Reg(eS) is also a subsemigroup.
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The answer is partially true. According to the choices of p, ¢, r >
0 we divide all 27 cases in three categories.

Category I (i) (p,g,7) = (0,0,0)

Category II: p>1,¢q,7>0

(i) (1,0,0) (i) (1,0,1)
(iv) (1,1,0) () (10,1 r > 1
(vi) (1,1,1) (vil) (1,1,r)r > 1
(viii) (1,¢,0)¢>1  (ix) (1,¢,1) ¢ > 1
x) (Lg,r)q,r>1 (xi) (p,0,0)p>1
(xii) (p,0,1)p>1 (xiii) (p,0,7r) p,r > 1
(xiv) (p,1,0)p > 1 (xv) (p,1,7) p,r > 1
(xvi) (p,¢,0) p,g > 1 (xvii) (p,1,1)p>1
(xviii) (p,q,1) p,q > 1 (xix) (p,q,7) p,q,7 > 1
Category III: p=0,q,7>0
(xx) (0,0,1) (xxi) (0,0,7)r > 1
(xxii) (0,1,0) (xxiii) (0,¢,0) ¢ > 1
(xxiv) (0,1,1) (xxv) (0,1,7)r > 1
(xxvi) (0,¢,1) ¢ > 1 (xxvii) (0,¢,7)q,7 >0

For the case of Category I the query’s answer is affirmative.

THEOREM 5.2. If (0,0,0)-Reg(eSe) is a subsemigroup then so is
(0,0,0)-Reg(eS).

Proof. Suppose a,b € (0,0,0)-Reg(eS) then

a = x1 ¢y forzy, r9 € eS and
b=1y1y2 fory, yz €€S.

Now

ab = (z122) (y12)
= (ab)°(z1 z2) (ab)° (y1 y2) (ab)° € (ab)°(eS)(ab)’(eS)(ab)°

So ab € (0,0,0)-Reg(eS). The query’s answer is again affirmative
for all the cases of Category II.
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THEOREM 5.3. If (p,q,7)-Reg(eSe) is a subsemigroup then so is (p,
q,7)-Reg(eS) for p> 1, and q,r > 0.

Proof. Let a,b € (p,q,r)-Reg(eS). If p > 1 then b € b(eS) and
b = bec for some ¢ € S. We have ae, be € (p,q,r)-Reg(eSe) so
abe = (ae) (be) € (p,q,r)-Reg(eSe). Hence abe € Te where T =
(ab)?(eS) (ab)?(eS) (ab)". Therefore ab € abec € Tec C T &

REMARK 5.4. All the cases of Category III are believed to lead the
answer of the query in negative. The counter examples can be con-
structed. We give below such an example for the case (p,q,r) =

(0,1,0).

EXAMPLE 5.5. Let I’ be a monoid over an alphabet {0, 1} with re-
spect to concatenation and with the empty word 4. For x, y € I’ we
say zpy iff z = u010vy = wlv for some u,v € F and zoy iff there
exists a sequence z = 1, T3,...,%, = y (n > 1) where z;pz;4; or
Tip1pz; fori=1,2,...,n—1 (n > 2). It is easy to check that o is a
congruence on F.

Now let T" = F/o be the factor monoid with identity A = {§}.
For X, Y € T we have XY = A =— X = A =Y. Suppose B,C €T
where 1 € B and 0 € C. It can be proved that B = CBC and B? =
XB?Y = X = A =Y. We denote by E the right zero semigroup
containing two elements a, 3. Consider the semigroup FXT with
coordinatewise usual operation. FXT satisfies the condition:

(v, X) (w,Y) = (0, A) = (u,Y) = (o, A) .
Put S = (EXT)\{(a,A)} and e = (3,A), b = (o, B), ¢ = (o, C).

We have €2 = e, eb = b and ec = c. It is easy to show that the
semigroup S is generated by e,b,c and so eS = S, eSe = Se. Now
for any element z of Se we have z = exe € SexSe and so (0,1, 0)-
Reg(eSe) = Se is a semigroup of S. It can easily be checked that
b = cbc and so b € (0,1,0)-Reg(eS). On the contrary suppose, that
b* € (0,1,0)-Reg(eS). Then b? € Sb%S and so b* = zb?y for some
z and y € S. Hence we have (a, B?) = (u, X) (o, B?) (v,Y) where
z = (u,X) and y = (v,Y). Therefore v = o and B? = XB%Y.
This implies that Y = A and so y = (a,A) € S, a contradiction,
consequently b* ¢ Sb2S and b ¢ (0,1,0)-Reg(es). This shows that
(0,1,0)-Reg(es) is no subsemigroup of S.
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6. Additional properties
This section contains a few additional local properties.

THEOREM 6.1. (i)-If eSe is a bisimple subsemigroup, then eS is
also a bisimple subsemigroup.
(ii)-If Reg(eSe) is a right zero subsemigroup, then so is Reg(eS).

Proof. (i)-Let D, and Dj be two D-classes of €S, for a,b € eS.
Then we need to show that D, = Dy for proving the assertion.
Let p € D,, i.e. pDa, namely, pL o Ra, viz. pLz and zR a for
some z € eS. This yields pe £ ze and ze R ae (as 2R ze and a R ae).
Therefore pe D ae. But by hypothesis D,. = Djy.. So peD be, i.e.
pe Lk and kR be (for some k € eSe). Also, be R b. Therefore pe L k
and kR b, yields pe D b. Further, pe R pimplies pe D p, which further
yields pDpeDb, so that pDb, i.e. p € Dy. Therefore, D, C Dj.
Similarly it can be shown that Dy C D,. Hence D, = Ds.
(ii)~As Reg(eSe) is a subsemigroup, so by Hall’s result [3], Theorem
1-(iv) Reg(eS) is also a subsemigroup. Let p,q € Reg(eS). So pg =
P99'q = pgeq'q = qeq'q (by hypothesis) = qq'q = q. Therefore pq =
q; VD, q € Reg(eS). &

THEOREM 6.2. In a weakly commutative semigroup S, if eSe is right
(left) archimedean then eS is also right (left) archimedean.

Proof. Let eSe be right archimedean then we show that eS is
also right archimedean. Let a,b € S, then ae, be € eSe. But eSe
is right archimedean, hence (ae)” = z(be) and (be)™ = y(ae) for
some positive integers n and m and z, y € eSe. Now, a"t! = ¢"a =
(ae)"a (by Remark 3.5) = (zbe)a = zba. Further (zba)? = uzb for
some positive integer p and u € eSe. So, a"tVP = (zba)? = uzb.
Analogously, we can have b(m*1)7 = yyq for some positive integer ¢
and v € eSe. Hence eS is right archimedean. The theorem for left
archimedean can be proved on similar lines. &

7. Appendix I

We have used Definition 2.6 of archimedean property in the Theo-
rem 6.2. This property is of two types, left archimedean and right
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archimedean. We furnish here some examples of various combina-
tions of these two possibilities. Let

S = {[ig] ta,b,c,de Zg}

where 7, denotes integers modulo 2.

ExXAMPLE 7.1. Suppose

t= 4] fas])

Then A which is a subsemigroup of 5, is left archimedean but not
right archimedean.

ExaMPLE 7.2. Let

- (1)

Then B which is a subsemigroup of S, is right archimedean but not
left archimedean.

EXAMPLE 7.3. Suppose

= {0 ] [l

Then C' which is a subsemigroup of S is neither left nor right archime-
dean.

EXAMPLE 7.4. Suppose

vl

Then D which is a subsemigroup of S is both, right as well as left
archimedean.
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8. Appendix II

There arises a natural question whether the concept of local property
can further be generalized. Namely, if we replace idempotent e in
Hall’s literature by a regular element z € S and take subsemigroups
xSz and z5, whether the local properties are carried from zSx over
to 5. The answer is in negative. This is because Hall’s [3] results in
this perspective need consideration of the fact that z’ € xSz, which
is false. We furnish below the two counter examples-one suggested
by T. E. Hall and other given by the referee of a Journal of American
Mathematical Society.

(i) Let U = U' be any semigroup with an identity element 1. Put
S = MO(U;2,2;A), the 2 x 2 Rees semigroup over U with sandwich

10

matrix A = 01l Then

S =A1,2} x U x {1,2} u{0},
with multiplication given by

o _ G, 1) A #0
(z,u,])(k77]71)_{0 if A;p=0.

Put 2 = (1,1, 2). The unique inverse of z in S'is 2’ = (2,1,1). Now,
xSz C {1} x U x{2}U{0},s0z" & zSx.

(i) Consider the inverse semigroup S.

a a ' e f O

a 0 e 0 a O
a”l | f a0 0
e |a 0 e 0 0
fl10 ' 0 f O
0 |0 0 0 0 0

This is the Brandt semigroup M°({1};2,2;A) = By. Put z = a.
Then 2’ = a™!, the unique inverse of @ in S. Checking shows that
aSa={0,a},s0 a~' € aSa, that is 2’ & zSz.
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