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SOMMARIO. - La trasformazione di Radon é uno strumento largamente

usato in problemi di ricostruzione d’immagine, cosicché le tecniche
d’inversione hanno raggiunto un interesse considerevole. Viene qui pre-
sentato un metodo basato sulla decomposizione dello spettro dell’opera-
tore di Dirac.
E cosa ben nota che la trasformazione di Radon & invariante per trasfor-
mazioni ortogonali. L’invarianza di rotazione della trasformazione di
Radon wviene illustrata tramite la trasformazione di Gegenbauer. In
questo articolo viene trattata la relazione tra la trasformazione di Radon
e loperatore di Dirac, un operatore differenziale del primo ordine che
é anche invariante per trasformazioni ortogonali. Entrambi soddisfano
ad una certa proprietd d’interazione. Inoltre sia ’operatore di Dirac
che la trasformazione di Gegenbauer sono strettamente collegati anche
se in dimensioni differenti. In questo modo possono essere dimostrate
due decomposizioni singolari della trasformazione di Radon: una nella
palla unitaria ed un’altra nello spazio completo Fuclideo. Esse appaiono
come una diretta conseguenza della formula di Rodriguez per polinomi
ortogonali in molte variabili come viene stabilito in [3].

SUMMARY. - The Radon transformation is a widely used tool in image
reconstruction problems, and thus inversion techniques have attracted
considerable interest. Here a method is presented based on the spectral
decomposition of the Dirac operator.

It is well known that the Radon transformation is invariant under
orthogonal transformations. The rotational invariance of the Radon
transformation is illustrated by the Gegenbauer transformation. In this
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paper the relation between the Radon transformation and a first order
differential operator which is also invariant under orthogonal transfor-
mations, the Dirac operator, is considered. The two satisfy a certain
intertwining property. Moreover both the Dirac operator and the Gegen-
bauer transformation in different dimensions are closely linked. In this
way two singular value decompositions for the Radon transformation
can be proved: one in the unit ball and one in the complete Euclidean
space. They appear as a straightforward consequence of the Rodrigues
formulae for orthogonal polynomials in several variables as defined in

[3].

Introduction.

In numerical inversion problems for the Radon transformation
attention has been paid by several authors to the case where the
transformation is defined between two (weighted) Lo-spaces. One of
the tools used is a decomposition of functions into spherical harmon-
ics, since this decomposition satisfies some orthogonality properties
and since the Radon transforms of the components can be easily cal-
culated using the Gegenbauer transformation. In this paper a rela-
tion between the Gegenbauer transformation for functions involving
a spherical harmonic of degree greater than zero and the transform of
spherical symmetric functions in a higher dimension is proved. Using
this it is straightforward to see that the Rodrigues formula for or-
thogonal polynomials in several variables transforms to the classical
formula for polynomials in one variable. This way two singular value
decompositions are obtained. Similar decompositions were proved
by Davison (see [4]) and later by Louis ([10]), using quite different
methods. Here the relation between the Radon transformation and
the Dirac operator is made clear. Using these decompositions it can
be proved that the Radon transformation in both cases is not only
continuous, but is also compact.

THE CLIFFORD ALGEBRA.

To express the Dirac operator we work in a Clifford algebra.
We consider the 2™-dimensional real vector space Rg ,, given by the
basis vectors {e4 = A C {1,2,...m}} with the notation ey = ey and
€A = €hy. by for A={h1,...,hx}and 1 < h; < ... < hy <m.
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On this vector space an associative product is defined by
€h1€hy - -+ €hy = €hy..hy forl<hi<...<hg<m

which is governed by the rules e? = —1 and e;e; = —e;e; for i # j.

Hence Ry, is the linear associative (but not commutative) al-
gebra generated by the elements e, es,...,e,. It is clear however
that Ry, is not commutative. Moreover for m > 3, Rg,, has zero
divisors and hence is not a field. Since e is the unit element for mul-
tiplication we can identify A € R with Aep. An involution on Ry p,
is defined by & = —e; and ab = ba. The Euclidean norm in Ro,m
will be denoted by |.|. A vector Z(z1,...,zTy,) € R™ can be identified
with the Clifford number Z = Y, e;z;; a real number A can be
identified with Aeg. Thus the real part [a]p of a Clifford number a is
defined as the coefficient of eg in the development of a in the basis
{e4}. For the product of a vector with itself we have 72 = —|7|2. A
unit vector will be indicated in the sequel by a Greek letter, e.g. E,
0, etc.

HILBERT-MODULES OVER Rg .

Let H be a right Ry ,,-module (i.e. there is a representation of
Ro,m over H which can be written as right multiplication with Clif-
ford numbers). A function (.,.) : H x H = Ry, is called an inner
product on H if for all f, g, h € H and A € Ry,

(W) (f,gx+h) = (f,9A+(f,h)

(i) (f,9) =(9,[)
(iii) [(f,)]o >0and [(f,f)lo=0« f=0.

From this Rg,-valued inner product a real valued norm can be de-
rived by [|f|? = [(f, f)]o- If H is complete for this norm we call it a
Hilbert module.

An important example of Hilbert modules are the modules Ly(€2,
w) of Ry ,-valued measurable functions over Q@ C R™, where the
module structure is given by right multiplication, i.e. fA(Z) = f(Z)A,
and with the inner product

(f.g) = /Q Fowdz,
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where w is a real valued weight function on 2. Also we shall use the
Hilbert module Ly(S™ ') with the inner product

1 —
(f.9) = —— [, Tads

in which w,,_; is the surface area of the unit sphere S™7!.

THE RADON TRANSFORMATION.

Let f be a measurable, Ry, valued function on R™ and let P™
the set of m — 1-dimensional hyperplanes in R™. The Radon trans-
form of f for a hyperplane o ( which can be characterized by a unit
vector orthogonal to o, 5, and the oriented distance p of o to & such
that pf € o) is defined as

Rf(0,p) = Rf(0) = / F(@)dT

g

as far as this integral exists. It should be noted that o can also be

characterized by (—6, —p), and so Rf is always an even function on
S™=1 x R, where S™ 1 is the unit sphere in m dimensions.

THE DIRAC OPERATOR.
The Dirac operator is given by

m

D= Zeiaﬁ .

=1

If fis a C'-function in a domain ) then f is called monogenic if
Df =01in Q.

Since D? = —A, where A is the Laplacian, each monogenic func-
tion is harmonic and hence analytic. The operator D can be sepa-
rated in a radial and a spherical part:

—

D =&, +-T).

S| =

The eigenmodules of the operator I' are given by

Pe={f€C'(S™"):Tf =k},
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the module of inner spherical monogenic functions of degree k and
Q= {feC"(s™™):Tf = (k+m—1f},

the module of outer spherical monogenic functions of degree k. Cle-
arly Pr C Hi and Qp C Hyy1, where Hy is the module of spherical
harmonics of degree k. With Py (Q) we shall denote an arbitrary
element of Py (Qg). Since I' is selfadjoint all its eigenmodules are
orthogonal The mapping, which maps Py on EPk is an isometry be-
tween Py, and Q.

The module Py has dimension K (m, k) = % and has an or-

thogonal basis {P,gi) ci=1,...,K(m, k)} For details on this para-
graph we refer to [1].

GENERALIZED GEGENBAUER AND HERMITE POLYNOMIALS.

In [3] we proved that Gegenbauer and Hermite polynomials admit
a straightforward generalization to several dimensions. The defining
Rodrigues formulae read

—Q

C (@) PR(E) = (1=12) " (D)" (1 = r)™*P(2))

H g, (8) Pi(Z) = € 222(=D)" (e 712 P(2))

These functions constitute an orthogona% basis for the Hilbert mod-
ules Ly(B(1), (1 —r2)®) and Ly(R™,e " /2) respectively.

1. The Gegenbauer transformation.

The Gegenbauer transformation was introduced by Ludwig [11]
and Deans [6]. We give it here in a slightly modified form and indi-
cate precisely under which conditions it can be used. The proof is
similar to the one given in [6] and will be omitted. Notice that |F|
is defined by |F|(Z) = |F(Z)|, where | - | is the norm on the Clifford
algebra.

THEOREM 1.1. (Gegenbauer transformation) If F is of the form
Sk(Z)f(r), where Sk is a spherical harmonic function of degree k,
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and moreover |F| has a Radon transform in (5, p), p >0, then

-

REF(0,p) = Sk(0)g(p)

2" I(2) S (P p2\" 77
g(p)_I‘(l/—i—%)F(%/—{—k)/p P (F) (1__2) o

where v = mT*Q

In the sequel we shall denote the coefficient before the integral
as b(k,m) i.e. (using the doubling formula for the I" function)

(4m) 7T + DT (52)
r'l+t—2)

b(l,t) =

There is a close relation between the Radon transform of a function
of the form S(Z)f(r) in m dimensions and the Radon transform
of f (|b|) in m + 2k dimensions (in the sequel we shall denote by

b = p.3, p = |b], a variable in m + 2k dimensions). To obtain the
relations between the different Radon transforms we introduce the
following notations: let f be a real valued function defined on RT.
Let Sk (Z) = r*Sk(€) be a spherical harmonic function of degree k.

We shall indicate by R, (6, p) and Rpok (&, 1) the Radon transfor-
mation in m and m + 2k dimensions respectively. We have

—

Rin(Sk(Z) £ (r))(0,p) = Sk(8)G(p)

Runs2k(f () (0,1) = G* (1)

as far as these exist. We now show

THEOREM 1.2. If f € L (R+,rm_2+2k) and Ry, (|f]) ezists

everywhere then
G(p) = ( ! d) G*(p)
P 2w dp P
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Proof. From the formula for the Gegenbauer transformation we
have that

9] 9\ M—3+2k
G* (p) = b(0,m + 2k)/p f(r) [(1 — %) ] Fm=2+2k g

This integral exists and converges absolutely since the term between
brackets is bounded. Under the conditions for f derivation under the
integral sign is allowed and it is easy to see, by a limit procedure (the
integrand is not continuous, so we cannot use Leibniz’ rule directly)
that the boundary term vanishes. Repeating this & times gives

o0

(%)kg*(p) = b(O,m+2k)/ f(r) x

p

m—3
k 2 7tk
X [(%) (1 — p_2> ] rm—2+2k gy
T

From the definition of the Gegenbauer polynomials

C’:T_S (u) <1 — uQ)mT_3 = a(%)k@ — u2) I

where a is a constant given by

_ (=DFrm -2+ K75
©2KEIT (m — 2)T( 2L + k)

it follows that the term between square brackets is equal to

11 m—3 P p2 2
o () (1‘72) | @

Inserting this gives, after simplifying the necessary constant, the
desired result. &



182 J. CNOPS

2. Singular value decompositions for the Radon
transformation.

2.1. Singular value decompositions.

A much used technique for inversion problems for operators be-
tween Hilbert spaces is the singular value decomposition, which we
describe shortly first.

Let A: Hy — Hi be a closed densely defined operator where Hy
and H; are separable Hilbert spaces. Then one tries to find sequences

{95}, {fi} and {h;} of vectors such that
(1) {g;} U{fi} is an orthonormal basis of Hy.

2) Ag; =0, for all j
Afz =a;h; a; € R(_)}—, for all 1.

(3) {hi} is an orthonormal sequence.

Here the sequence {g;} can be finite or infinite, possibly empty,
the sequence {f;} can also be finite or infinite. The scalars a; are the
singular values of the system. We shall limit ourselves to the infinite
case. The singular value decomposition is used to describe explicitly

the Moore-Penrose inverse Al of A. Given the image Af = g the
least square approximation of f is the vector AT g, which is the vector
with the smallest possible norm satisfying AATg = ¢. In terms of
the singular values At g is given by

Alg = > filg, hi)% :

It is classical to consider singular value decompositions only for com-
pact operators. However there is a more general criterion for decom-
posability.

THEOREM 2.1. If A : Hy — Hi is a closed densely defined
operator where Hy and Hy are separable then A has a singular value
decomposition if and only if A*A has pure point spectrum!.

1. We use the definition of operator with pure point spectrum as being an
operator such that an orthogonal basis of eigenvectors exists.
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Proof. If A has a singular value decomposition then we have for
all 7, j that

A*Ag; =0, and A*Af; = alf;.

Hence Hj has an orthogonal basis of eigenvectors of A*A and A*A
has pure point spectrum.

Conversely, assume that A*A has pure point spectrum. Then
an orthonormal basis {g;} of ker(A*A) and an orthonormal basis
{fi} of ker(A*A)', existing of eigenvectors of A*A can be taken.
The elementary operator (partial isometry) R associated with A has
ker(R) = ker(A) = ker(A*A) and is an isometry of ker(A*A):t —
Range(R). Hence {Rf;} is an orthonormal sequence in H;. If more-
over A*Af; = N\ f; then A\; > 0, since A*A is non-negative and
fi & ker(A*A). Hence Af; = /A;Rf;, taking into account the polar
decomposition A = RV A*A. As a consequence {g;}, {fi}, {Rfi} is
a singular value decomposition of A. &

REMARK. The singular value decomposition can be used to prove
compactness of an operator: indeed, A is compact if and only if
lim; , 40 a; = 0.

2.2. The Radon transformation on Lo (B(l), (1+ 52)_a).

In [2] it was proved that the Radon transformation is continuous
considered as an operator from H_, to h_,, a > —1, where H_,

is the Hilbert module Lo (B (1), 1+ 5:'2)_a) and h_, is the image
module

— m=1
h, = {f € L, (sm—l x [~1,1], (1 —p2) e+ ) :
o f (@p) =f (—5, —p)} :
An orthogonal basis of H_, is given by the functions

k= (1—1)0C8 k(@) P(T)

= (D)"(1—r*)*"Pi(@)
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The closure of D as operator from H_, to H_,4+1 based on the
formula, DPO"k = P;L)‘Hhk will also be denoted by D. The opera-
tor D_o = (1 + &%)*D(1 4 Z2)~**! is the adjoint of D and D_,D
has eigenfunctions P;fzk We can also introduce the operators D,

h_a-1—+h_qand Dy _o_1:h_q — h_q_1 as the closure of the oper-
m+1l — m—1
(a+%57)

ators 98 with domain C_,_; and (1—p*)** 72 09,(1—p?)~
with domaln C_,, where

C_o={f€Eh_4u: (1—p2)a+mT_1f has continuous derivative w.r.t. p}.

Here use is made of the orthogonal basis of h_,

-

Q@ = @) (- T 0 0),
n, k€N, 1 < K(m,k)}.

The functions g}c are connected to the Gegenbauer polynomials
by Rodrigues’ formula (for the basic properties of the Gegenbauer
polynomials we refer to [7]) giving

(=) 2" (A+ L 4n)0(2\)n!

. . ! INA— 1L
g%(e’p) - F()\+%)F2(2)\+n) (1 4 ) 2 X (3)

-

x CN(p)0™++ P (4)

with A = a + . The norm of Qg,@(é', p) follows immediately from
this relation and the norm (P,gl) , P,gz)) =1:

o (~1)"2'T (A + § +n) T (20) n! 2><
e I (A+4) (@A +n)

x ||CA|? iy —
|| n||L2([—1,1],(1—p2)a+_2_1) 2

Wm

22T (A + § +n) T (20)? (n))”
= 2 X
T (A+3) T @A +n)”
VAT @A +n)T (A+1) 1%
“TENal(n+ N () T (Z)
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2 m
220nIT (A + 5 +n) T (2)) 775

B T (A+3)T@A+n)(n+ )T (V)T () “

m
2

222 t2n—1p I ()\ + % + n)2 T
- (n+ANTA+n)T (Z) (5)

According to the definition of the functions Q%% we have that
i o=l
DPan - Qn—|—1,k
while from the derivation formula

d
%02 (p) = 2)C, "1 (p)
it follows that

Dp,_an;i’z = n(n + 20 +m —2)Q% .

Hence D, _, is the adjoint of D,,. For the singular value decomposi-
tion we shall make use of some properties of the image of the Dirac
operator under the Radon transformation.

LEMMA 2.2. If f € H_,_1 with o > —1 is such that Df exists
(D looked upon as a closed operator between Hilbert modules) and if
moreover Rf € dom(Dy), then RDf = DyRf.

Proof. For ¢ € D(R™) we have (cfr. [5])
ROz 0 = 0;0,Rep

where 6; is the i-th coordinate of 6. Multiplication at left with e;
and summing over ¢ completes the proof for these ¢. The general
case follows by a density argument using the adjoint operators. <

It is now possible to give a singular value decomposition for the
Radon transformation.

THEOREM 2.3. The basis { P%} is mapped by R to an orthogonal
system where

m

-1

wi w2z I'(a+n+1) -

R( nkZ:) = — nr k- (6)
2T (a+n+1+ 250 + k)
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Proof. Using the explicit calculation of R ((1 + 12'2)'6 ) and theo-
rem 2.2 for the Gegenbauer transformation we obtain

m—1
+n 27z AT 1
e((r ) pim) - T
T(a+n+1+2L4k)

<(zra) (-2)T
Pi(d).

For j <n, R (Dj (1+22)*" P (:E')) € dom(Dj) and we can apply
lemma 3.2. We get

R (PS5 (@) = R(D” (1+&)"" B (5:'))
- DI'R ((1 +2)"" P (f))
205 TR (a4 n+ 1)
T(a+n+1+77 +k)

() #@re (-2)" T R ()

WmTle(oH—n—i—l)
2T (a+n+1+ 250 + k)

ai
k+n,k

¢

Starting from this we can calculate the singular values. The
squared norm of the image is given by
™12 (a+n+1)
2#T2 (o +n+ 25 4k +1)
712 (a+n + 1)
T2 (a4 n+ 25 4k +1)

a

1kl
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2
gratmiat2k(p 4 )N (a+ 2+ 5 +n+k) 7%
(n+k+a+2)TR2a+m+n+k)(F)

3m—2

oz 22nt2atmol (p L D2 (a+n + 1)
F2a+m+n+k)(a+2+n+k)T (3

where || 23_,6’,6”2 is given by (4). The last transition can be obtained

applying the doubling formula for the I-function for z = o + 3.

Since the norm of P% squared is given by by 7% (see [3]), the
singular value decomposition is given by

nk_ ) _ o _“ntkk
[Tl R (O
with, for n even,
Ank
Vnk
7 g2+ 2atm—1 (n+ k)2 (a+n+1) y
F2a+m+n+k)(a+Z+n+k)T(F)
Fa+5+2 4k (a+5+1)
27’y ()72 (@ +n+1)
(%) (a+n+Z+E)
T(E+Fk+3)
22etm—lgm=l(n + BT (a+ % + B +k)
()T (2a+m+n+k)

(Knp)? =

X

For n odd we have
nk = 4a+n+ 1)2Ag—1,k+1

Yo =4(a+n+1)°70 k0

and hence
( g,k)Q = (Kﬁ—Lk—l)Z-
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From (5) it follows that the K, are positive and hence are the
singular values.

COROLLARY 2.4. The Radon transformation R : H o — h_4
has a range which is not dense in h_o. Moreover R is compact, and
so the generalized inverse RY is not continuous.

Proof. The image of H_, under R is given by

at
+k,k ]
Range(R) = {f Eha:f=) Wagg—k,ka
n+k,k
ap’y il }
— s < +00 ;.
2 (Ko k)?
The orthogonal complement of this clearly is given by
spanA{Q%fk :n < k}.

Hence R(H_,) is not dense.

To prove compactness we have to prove that the singular values
tend to zero or that for each € > 0 only a finite number of Kg‘,k are
greater than €. First we prove that

LT

We have, for n even that
K&\’ (n+k+1)(a+2+2+Fk)
K2y a+m+n+k)(F+5+k)
Bt (a+2+24+1)k+0+1) (a+L+2)

B+ (20432 +3)k+ (3+3) (n+20+m)

Since a > —1 and m > 2 both the coefficients for k and k° of the nu-
merator are smaller than the corresponding ones in the denominator,
proving this first part.

Moreover for n fixed we have that limy . Ky p = 0. Indeed
from Stirling’s asymptotic formula for the I'-function,

r
tm & _ /o

T—+00 o—Z T~ 3
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we can deduce that there exists a constant C, independent of k, such
that
n+kT(a+5+ % +k)
IF'2a+m+n+k)(F+k+3) —
Ce(MHhtl)(n 4 k4 1)t
e (2at+m+n+k) (2a +m4n+ k)2a+m+n+k X
e—(a-l—%-l—%-l—lc)(a_'_ % + % _{_k)a-l—%-l-%-l-k
e—(%-}—k-}—%)(% +Ek+ %)%—Hﬁ%
) (nAk+ ) (a4 24 )ty
(2c+m +n+ k)2a+m+"+’€( +k+3)2thte

X

— Ce(a—kmfl

The difference between the exponents in numerator and denominator
is 1 — a —m and since o > —1 and m > 2 this is negative. Taking
the limit at both sides for kK — 400 gives

lim K;,=0.

k—+o00

We finally have to prove that lim,_, . K7y = 0. By a direct calcu-
lation

Kipo) _ 0+ )(n+2) (a+3+3) (e %+1)

( ) T B+1)2a+mtn)Ra+tmtn+1)(2+2)
(n+1)2a+n+2)
(n+2)2a+m+n+1)

Since m > 2 we have that (2a+n+2) < (2a+m+n+ 1) and so,

for n even ,
2 n—z
KOé 2 2 . + 1
( Z’O) <[ L=
K¢ =0 2j +m
The limit for n going to +oo for the right hand side is zero. &

REMARK. Similar singular value decompositions for the Radon
transformation have been constructed by Marr ([12]) for the special
case m = 2 and a = 0, for the general case by Davison ([4]) using
the spectral decomposition of RR*, later followed by Louis([10]),
who used the connection between the Radon transformation and the
Fourier transformation.
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[

r

2.3. The Radon transformation on Lo (R™,e 7).

In a complete analogical way a singular value decomposition for
R : H— h, with

2

H=LyR",e?)
and ,
h={f € Lo(S™ ' xRe7): f(0,p) = f(~0,~p)}
is constructed.

Using the generalized Hermite polynomials Hy, ,, one obtains
that an orthogonal basis for H is described by {P}, : n,k € N , i <
K(m,k)} where

: = = pli) (=
wk(E) = e Hpmi(Z) P (Z)
2 .
= (-D)y'e T BY(@),
while an orthogonal basis of h is given by {Qﬁb,C tn,k € N,1 <
K(m,k)} where

N -

AN N 2
inlp) = (~68,)"e T g P (4)
2 -

_ e—%H ( )9n+kP(Z)(0)

Here H, is the n-th Hermite polynomial. The norm of these basic
functions is given by

nf3

. 2
19l = T

n!
7

The closure of 581, again will be denoted by D,, while its adjoint
2 2

I3

D;‘ is defined as the closure of the operator ef%é'ape% in a similar
way as before. From the definition of the basic functions we obtain
immediately that

DPQan = _an—l,k
while from the derivation formula for the Hermite polynomials

d

G Ha(p) = nH (1)
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it follows that . _
D;DPQ’ZIL/C = nQZk .
The adjoint R* of R is given by

Reg@) = [ 0@, (@,7)e s
Sm—

for ¢ € D(R™) and hence we have in this case the counterpart of
Lemma 2.2.:

LEMMA 2.5. If f €e H, Df exists in H and Rf € dom(D,) then
RDf = D,R.

Hence the singular value decomposition follows from the following
theorem, the proof of which is similar to the preceding one.

THEOREM 2.6. The basis {P.,} of H is mapped by R to an
orthogonal system where

R(Phy) = (—)F(vV2m)™ ' Ql 1y .-

The squared norm of the image of a basic vector Pr(fk) under R is
given by

w[3

I'(

=10 (V)™ Qi = 2™ V2 + B! i

B

Hence the singular value decomposition is given by

R( Pék ) (_1)kQ%+k,k

1Pl @l

where for n even

K 23”5 (n 4 k)T (2)
nk %

T(2)(2)r 2 2nt 3 (D 4 k4 1)
25 k=3 1m=3 (n + k)
(BNr(F +k+73)
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while for n odd we have that ng = Ki_l,k_l. Again these results
are similar to those obtained by Davison.

REMARK. For image reconstruction in the case of real valued
functions it is possible to take linear combinations of the Clifford
valued functions corresponding to the same singular values in such a
way that a new orthogonal set, but this time of real valued functions
is obtained. For the first case the functions P,‘f,g and ngl,k_l, for
n even and fixed and k arbitrary and fixed can be combined. If we
take H,(CZ),Z' =1,...,N(m,k) is an orthogonal basis of the module
‘H ., consisting of real valued spherical harmonics we get the real set

(@) = (1= ) @ Hy (@)
(n even, k arbitrary) and in the module h_, the orthogonal basis of
real valued functions
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(n + k even) and where the mapping relations are given by
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For the second case we have analogically the orthogonal, real valued
bases

. _7«2 = - =
(@) = e Hymp(@H (@)
where again n is even and k arbitrary and

-

. - 2 .
Six(0,p) = e~ Ha(p) H{ (6)
where n + k is even. The transformation here is given by

R(T) = (—1)F(V2m)™ 1Sh k.
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