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SOMMARIO. - Presentiamo alcuni risultati riguardanti il sistema dinamico
discreto zy = F(y:) dove y é una variabile ritardata su x con ritardo
distribuito, ed F'(s) = us(1 — s) é la mappa logistica. Dimostriamo
che un’appropriata distribuzione del ritardo produce una notevole sem-
plificazione della complessita dinamica in confronto a tutti i risultati
basilari concernenti il caso del differimento fisso yy = x¢—1.-

SUMMARY. - We present some results concerning the dynamics of a discre-
te-time dynamical system x; = F(y;) where y is a variable lagged on x
by means of o distributed lag, and F(s) = us(1 — s) is the logistic map.
We show that a suitable distribution of the delay produces a significant
simplification of the dynamical complexity when compared to all basic
results concerning the choice of a single fized delay y; = xs 1.
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1. Introduction.

Consider the logistic one-dimensional map F : R — R, F(s) =
ps(1 — s). The semi-cascade (discrete-time dynamical system)

Iy = F(.’L‘t_l) (1)

t integer, ¢ > 1, is a well-known deterministic model for the dis-
crete time evolution of complex phenomena arising in different ap-
plied fields, among which: ecology and population dynamics (R. May
[10]), economics (J.-M. Grandmont [7]), and urban modeling (J. R.
Beaumont et al. [4]). The complex and possibly chaotic behavior
exhibited by (1) can be conceived as a product of two features. The
former is the mixed feedback assumption (corresponding to the “ex-
panding and folding” character of F, “tuned” by the parameter p).
The latter is the fixed delay assumption, i.e. the implicit understate-
ment that the state of the system at time ¢ depends only on its state
at the previous time ¢ — 1. Pointing out these two different aspects,
we rewrite (1) by introducing the hidden variable y; = z;_1, lagged
on z by a delay of one period, thus:

{ Tt = F(yt) (2)

Yt = Tt—1

Accordingly, the study of the dynamics of (1) or (2) can be addressed
to the analysis of the role either of the nonlinearity (at the different
values of 1) or of the implicitly assumed synchronization of all lagged
responses in a single fixed delay. The former approach is the most
common. On the contrary, the latter has been rather neglected in
the literature, even if it should be considered undoubtedly important
for applications. Actually, already in 1957, R. G. D. Allen wrote
in his classical book on mathematical economics that ‘It is already
clear that an essential feature of an economic model in dynamic form
is the inclusion of time lags in the relations of the model, in the
influence of one variable to another. The existence of time lags is
generally recognized; what is not so clearly appreciated is that the
form assumed for the lag is very important, particularly when the
variables are aggregate’ [2, page 23].

In this paper we propose a study of a model in which the fixed
delay in (2) is substituted by a distributed lag informally written
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thus:
Yt = MT—1 + XoTi_2 + A3x4_3 + ... + Ao (3)

where A\; + Ao+ A3 +...+ A\, = 1 [2, page 21]. In particular we shall
consider lags distributed according to a geometric progression:
_1=p 2 t—1 4

yt—l_pt($t—1+P$t—2+P$t—3+---+P ) (4)
with 0 < p < 1, and, more generally, lags whose distributions are
“dominated” by geometric ones, in a sense specified by the subse-
quent Lemma 2.1. The sequence w; = 521 pi_lwt,i is obtained
from z; through an infinite impulse response (IIR) filter. An impor-
tant property of IIR filters [3] is that they can increase the Lyapunov
dimension of the pertinent attractor. We recall that the Lyapunov
dimension of an attractor is the number Dy, = k + X%, X/ Ars1l,
where the Lyapunov exponents of the attractor are Ay > Ao > ...,
and where k is determined by Zle A >0> Zfill A; Therefore, y;
can be more complex than z; when these series are linearly coupled
externally to the closed-loop system x; = F(z;—1). This is not the
case when the coupling of z; and y; is interior to the nonlinearity:
zy = F(y;). Actually, we shall prove that an interior IIR filtering pro-
cess (with suitable lag distributions) works against the “expanding
and folding” property of the nonlinearity, leading to a considerable
simplification of the dynamics. For example, a map which is fully
chaotic for the fixed delay (like the logistic at gy = 4) can be forced
to a dynamics with a globally attracting fixed point by a suitable
simple ITIR. This would be a partial answer to the following question
raised by R. May: ‘In general, there has been a tendency for the
natural populations to exhibit dynamical behavior that is relatively
tame: for the difference equations with one critical point ... most of
the biological populations appear to exhibit stable point behavior’ [11,
page 559], and also by the biologist L. Edelstein-Keshet: ‘Compar-
ison between observations and model predictions indicate that many
dynamical behavior patterns, which are theoretically possible, are not
observed in nature. We are thereby led to inquire which effects in
natural systems have influences on populations that might otherwise
behave chaotically’ [5, page 77).
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2. Basic preliminaries.

2.1. Regular, Norlund, and geometric matrices.

Let us recall for the sake of completeness some basic facts on
countably infinite matrices (an), (n,k) € N x N.

DEFINITION 2.1. A matrix (agx) is regular if the following three
conditions hold: (i) there is a number M > 0 such that, for every
n €N Yir2glank] < M; (ii) for every k € N, apr, — 0 as n — oc;
(iii) Y72 ank — 1 as n — oo.

The classical Toeplitz theorem [8, page 43] states that an arbi-
trary infinite matrix (a,x) “preserves convergence” (that is: for ev-
ery real sequence (&,),>0 convergent to a limit [ € R, and for every
n € N, the series Y po ankéx has a finite sum (,, and the sequence
(Cn)n>0 converges to [) if and only if (ayy) is regular.

DEFINITION 2.2. A matrix (ay,) is a weighted mean matriz if, for
each row-index n € N (i) a,r > 0 and a,; = 0 for each column-index
k> n,and (i) > p_gank = 1.

DEFINITION 2.3. Let a real sequence (dy,)n>0 with d, > 0 be

def

given, and let D, = Y}, di. Then the Norlund matriz generated

. . . . def
n)n = Pn
by (dn)n>0 is the countably infinite matrix P = (pp;) defined by

dn—k .
if k<mn,
Pnk = Dn ="
0 if £k > n.

for any (n,k) € N x N.

Observe that any Noérlund matrix is by definition a weighted
mean matrix. Moreover, it is easy to show that a Norlund matrix
P = (dy,—k/Dn)nk generated by a sequence (dy)n>0 is regular if and
only if d,,/D,, — 0 as n — oco. Actually, (i) and (iii) in Definition
2.1 are trivially satisfied; (ii) becomes: for every k, d,,—x/Dn — 0 as
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n — oo. This implies d,,/D,, — 0 (for k = 0); on the other hand, if
dyn/Dy,, — 0, then for every k

0 < dnfk _ dnfk . ank < dnflc
Dn Dn—lc Dn Dn—k

— 0.

In particular, any bounded sequence generates a regular Norlund
matrix. A regular Norlund matrix can be generated by an unbounded
sequence as well: for example, if d,, = n+1 we get D, = 2 (n+1)(n+
2), and so the resulting Norlund matrix is regular.

Let us define a special subset of the class of Norlund matrices:

DEFINITION 2.4. The geometric matriz (with initial value v > 0

and ratio p > 0) is the Norlund matrix generated by the geometric

. f
progression d, def vp", n > 0.

Since
n ’U(l _ pn-l—l)
Rndéfz’l)pk:{ ]_fp fOI'p;él
k=0 v(n+1) forp=1

a geometric matrix is regular if and only if 0 < p < 1. The impor-
tance of geometric matrices among regular Norlund matrices lies in
the following comparison lemma, which is an easy consequence of the
Hardy Inclusion Theorem for regular summation methods (Theorem
23 in [8, page 69]).

LEMMA 2.1. Let P % (pnk) be a regular Norlund matriz gen-
erated by the sequence (dn)n>0. Suppose that there exist numbers
m € N and p, 0 < p <1, such that dpy1 > pdy for alln > m. If
(Zn)n>0 s a sequence of real numbers such that Y p_o(p" %/ Ry)xy
converges to a limit px € R, then the sums > j_qPnkZr converge to
p* too, as n — o0.

2.2. Mann iterations.

Let J C R be a compact interval, let f : J — J be a continuous
function, and let A def (ank) be a given real weighted mean matrix.
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Obviously, if g, z1, ..., T, are in J, then z, def Y k=0 GnkZk is in J,
too. A Mann iteration [9] on J is the iterative process (f, A)

{ Tn+1 = f(zn)a (5)

g € J.

The sequence (zy,)n>0 defined inductively by (5) is called the orbit of
(f, A) starting at zo. An equilibrium of (f, A) is a point z* € J which
is the limit of an orbit of (f, A) starting at some point in J. Observe
that any fixed point z = f(z) of f is an equilibrium of (f, A), but
the converse is not necessarily true. However, if the matrix A is
regular, the orbit (z,),>0 converges if and only if (2, ),>0 converges.
Moreover, when these sequences converge, they converge to the same
limit, which is necessarily a fixed point of f.

2.3. Geometric matrices with p = 1.

If A is the geometric matrix with ratio p = 1, the Mann iteration
coincides with the Cesaro iteration scheme. It is known that in this
case the dynamics of (5) is totally trivial. Actually [6], for every
continuous map f : J — J, and for every initial point g € J the
sequence in (5) converges to a fixed point of f. Now it is easy to see
that also a regular non-decreasing Norlund matrix does not allow any
dynamics different from global convergence towards an equilibrium.
In fact we have:

COROLLARY 2.1. Let Q = (quk) = (dn—r/Dy) be a regular
Norlund matriz such that dpy1 > dn. Then for every continuous
map f : J — J, and for every initial point xq € J the sequence
(Tn)n>0 defined by the iteration

Tn+l1 = f (ZZ:O anl'k)

converges to a fized point of f.
Proof. Just use the comparison lemma 2.1. &

The results of this section allow us to consider in the sequel only
geometric matrices with ratio p < 1.
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3. Segmented form of iterations with geometric
matrices.

Consider now the system (5) in the equivalent form:

n
Zn = PnkTk
" Ig) " i o = 29 € [0, 1] (6)

Tnt1 = f(2n)

We say that the sequence (2,),>0 defined in (6) admits a seg-
mented form if there exists a divergent series Y oo t,, of real numbers
tn € [0,1] such that, for every n > 0,

Zn+1 = tnf(zn) + (1 - tn)zn (7)

The following result is contained in [1, Prop. 1.2]:

PROPOSITION 3.1. If P = (puk) is the geometric matriz with
ratio 0 < p < 1, and initial value v, letting

1—7r
def 1 U(l - ,r.n+2)
Rn—|—1 B 1
v(n +2)

forr #1

forr=1

then the sequence (zp)n>0 inductively defined in (6) admits the seg-
mented form (7).

The segmented form of a sequence is often a useful tool for prov-
ing its convergence. For example, using this technique one can prove
that:

THEOREM 3.1. Let f : [0,1] — [0,1] be a globally lipschitzian
map with Lipschitz constant L, and let P be a geometric memory
with ratio (L —1)/(L +1) < p < 1. Then for every initial point
zo € [0,1] the sequence (z,)n>0 defined by the iteration (6) converges
to a fized point of f.
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Proof. See [1, Prop. 1.2]. &

Remark that for any given globally lipschitzian map f : [0,1] —
[0, 1] it is always possible to choose a ratio p < 1 forcing the dynamics
of (7) to the global convergence to an equilibrium. For example, in
the case of the tent map

) 2z 0<z<1/2
TQ(x)_{ 201l—2) 1/2<z<1

which is chaotic on [0, 1] (for the fixed 1-period delay), we get global
convergence to the positive equilibrium as soon as the lag is geomet-
rically distributed with ratio p > 1/3.

4. Main results.

4.1. Reduction to a two-dimensional map.

We shall assume from now on that P is a geometric memory with
ratio 0 < p < 1 (the case p = 0 reduces to the ordinary iteration,
the case p = 1 has been discussed in the preceding section), and
initial value v = 1, for the sake of simplicity. We shall consider the
particular aspect assumed by the segmented form (7) when F(s) =

ps(1 —s).
Since

Rn+1 =1+ PRn,

the study of (6) can be reduced to the study of

1 1
- - F 1~
et = 1y MO0+ (1 1)

20 € [0,1], Ro = 1.
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that is, after simplifications,

; :_<L)Zz+(w>z
ntl 1+ pR,) ™ " \1+pR,) "

Rpt1 =1+ pR,
z9 €10,1], Ry = 1.

Let

def p 2 u+pRn)
G = — | — —_— 0,1). 10
0 = () () s seloal (o

Since t, — t defy _ p as n — oo, the sequence (G,) converges to

G(s) = —p(l = p)s” + [u(1 — p) + pls (11)

in the CP-topology on any compact interval, for any p > 1. The fixed
points of G are 0 and p*x = (u — 1)/u; they do not depend on p.

4.2. Conjectures.

Observe that (11) is topologically conjugate through the change
of coordinates
_ul=p)+p
§=——=35
u(l —p)
to the logistic map
s p's'(1—4§)
with parameter
y def

po= p(l—p)+p.
Since, intuitively, the maps G,, are closer and closer to G as n — oo,
and it is natural to conjecture that the asymptotic behavior of the
sequence (2, )n>1 defined in (9) is exactly the same as the asymptotic
behavior of the orbits of the one-dimensional map s — G(s). This
would imply, for example, that the (increasing) sequence (jiy)n>0 of
parameter values at which the logistic map undergoes the bifurcation
of the stable orbit of period 2", starting from gy = 1 (where the
positive equilibrium bifurcates from the origin) and converging to
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foo = 3.571456... (where the chaotic region begins) is more and
more expanded as 7 increases from 0 to 1. The same would happen
for the point u!, = 4 of the “final bifurcation” (where divergent orbits
appear). Actually, for the logistic map s’ — p's’(1 — s'), we have
approximately:
po =1, ph = 3.000, ph = 3.449, s = 3.544,
py = 3.564, ..., plo = 3.571,
pr = 4.0,

while for the map G in (11) we have, for p = 0.6,

po =1, py = 6.000, py = 7.122, pg = 7.360,

pa = 7410, ..., poo = 7.427,
pe = 8.5,
and, for p = 0.9,

Mo = 1, M1 = 2100, Mo = 2549, M3 = 2644,

e = 26.64, ..., g = 26.71,
Be = 31.

In this sense we could say that the geometric distribution of the
delay would produce a significant simplification of the dynamical
complexity when compared to the basic results concerning the choice
of a single fixed delay.

4.3. Some abstract results.

We formalize and prove the preceding suggestions by setting a
simple general result on non-autonomous asymptotically autonomous
iterations which should be interesting into itself.

Let M be a metric space, and let g, : M — M be a sequence
convergent to a continuous map g : M — M, uniformly on compact
subsets of M. For z € M, let O, be the (g,)-orbit of z (i.e. the set
{zn|n € N} of all points defined by the non-autonomous iteration
Tnt+1 = gnl(Tn), o = z), and let w, be the pertinent w-limit (i.e.
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the set of limits of the possibly convergent subsequences of O, =
(xn)TLZO)-

LEMMA 4.1. For any given x € M, if Oy is relatively compact,
then wy 1s g-invariant.

Proof. Let y € wy: there is a sequence (, x>0 convergent to y.
Then 2, 1 = gn, (Zn,) = G(y) as k = oo. Hence g(w;) C wy. Since
O, is relatively compact, the sequence (z,,—1)k>0 has a subsequence
(Tny,—1)i>0 convergent to some z € wy. As before, Tn,, — g(z) for
I — o0; by uniqueness, g(z) =y, and so g(w;) = wy. &

We say that a closed set A C M attracts the compact subsets of
M with respect to g when for any compact subset K C M and for
any € > 0 there exists an integer m = m(e, K') such that for n > m
we have g"(K) C B.(A), being B.(A) the e-neighborhood of A. The
following example is obvious:

EXAMPLE 4.1. Let M = J be an interval of R, let g : J — J be
a continuous map, and let p be an attracting fixed point of g, with
basin of attraction the whole interval J. If g is piecewise-monotone,
then {p} attracts the compact subsets of (0,1) (with respect to g).

We say that g is piecewise-monotone if there are an integer N
and points a1, ag, ..., ay such that the restriction of g to each of
the subinterval [a;, a;+1] (1 =1, 2,..., N—1) is monotone. To prove
the lemma we have just to observe that for every [a,b] C J the image
9" ([a, b]) is union of N subintervals with endpoints some suitable of
the ¢"(a;), (i =1, 2,..., N —1); thus for a given € > 0 we have only
to choose an integer m such that for n > m all the endpoints g"(a;)
(1=1,2,..., N—1) arein [p—€,p+ €.

COROLLARY 4.1. Let A be a closed subset of M attracting the
compact subsets with respect to g. Then A contains all the w-limit
sets of the orbits of (gn).

Proof. Any w, is compact. By assumption, for arbitrary ¢ > 0
there is an integer n. ,,, such that for n > n.,, we get wy = ¢"(wy) C
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B.(A). Being A closed, we have w, C A. O

4.4. Global convergence to fixed points.
Now we can state the main result of the paper.

THEOREM 4.1. Let (dp)n>0 be a real sequence, dp > 0, and let
D,, =>}_,di. Suppose that

(a) limp—o0 dp /Dy, = 0;

(b) there are an integer ng and a number p, 0 < p < 1, such that
dpi1/dn > p for all n > ny.

Let F' : [0,1] — [0,1] be the logistic map F(z) = pr(1—z), 1 < p < 4.
Consider the iteration

1 n
Tny1 =F (D_ D dnk 371c> ; (12)

" k=0
Ty € [0, 1].

If
PP
7 p )
then for every initial condition 0 < zo < 1 the sequence (zp)n>0 18
convergent to the positive fized point px = (u— 1)/ of F.

Proof. First, the comparison lemma, 2.1 allows us to assume that
dy = 1land d,+1 = pd, for alln > 0, that is that (d,) is the geometric
progression with initial value 1 and ratio p. Then we consider the
iteration (12) in this particular case, and we reduce it to the non-
autonomous iteration (11) as in section 4.1. Example 4.1 allows us
to apply the abstract results of section 4.3 to the case g, = G,
g = G, (see resp. (11) and (12)): since the positive equilibrium p*
of G attracts the compact subset of (0,1), then all the w-limit sets
of G, corresponding to orbits starting from the open interval (0,1)
reduce to the single point px. Hence z, (and thus z,) converges to
the same limit. O
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4.5. Global convergence to periodic points.

The 2-periodic orbits are treated in the same way, by remarking
that the composite map G110 G, converges to the second iterate
G? of G, and the extension to g-periodic orbits is similar.

It is also interesting to remark that at any level p, 0 < p < 1, the
ratio

HUn — Bn—1
Mn+1 — Hn

does not depend on p, being equal to (u, — p, 1)/ (tn 41 — t1,), and
so the period-doubling ‘route to chaos’ of the map G in (11) follows
the well-known Feigenbaum pattern, with Feigenbaum constant § =
4.6692. ... (See Fig. 1 here and [1, Fig. 1]).

P
1

0.8
0.6
0.4
0.2

W

o 1 2 3 4 5 6 7

Figure 1: Curves p(l —p) +p = pj, (kK = 0,1,2,3,4,00,¢) in the
(14, p)-plane.
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