SPANNED VECTOR BUNDLES
ON ALGEBRAIC CURVES AND LINEAR SERIES (*)

by E. BALLICO (in Trento)(**)

SOMMARIO. - Sia X una curva complessa compatta di genere g. In questo
lavoro usiamo risultati molto fini sulle serie lineari di X per studiare i
fibrati vettoriali generati da sezioni globali su X (ad esempio per quali
d,n esiste un fibrato vettoriale stabile di rango n e grado d su X gener-
ato da sezioni globali). Risultati pit completi sono dimostrati nel caso
di fibrati di rango 2.

SUMMARY. - Let X be a complex genus g smooth complete curve. Here we
use a detailed knowledge and very refined results on the linear series on
X to study the spanned vector bundles on X (e. g. for which integers
d,n there are degree d spanned and stable rank n vector bundles on
X ). More detailed results are proved for rank 2 vector bundles. Their
existence (for suitable degrees) depends strongly on the gonality of X .

In this paper we continue (with other tools) the program started
in [BR] whose aim is the study of spanned vector bundle on algebraic
curves. Let X be a smooth complex projective curve of genus g. In
this paper we will link the numerical and geometric properties of
the sections of rank n > 1 vector bundles on X (the so called Brill-
Noether theory for rank n) to the properties of special divisors on
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X (the classical Brill-Noether theory). There are many subtilities
in the case n > 1. First of all, we are mainly interested in stable
and semi-stable bundles. Set p(g,7,d) := (g — (r + 1)(g + r + d)
(the Brill-Noether number) and p(n,d,r,g) := n*(g —1) +1— (r +
1)(r+1—d+n(g—1)) (the Brill-Noether number for rank n degree d
bundles with at least r + 1 sections). In the case n > 1 the condition
p(n,d,r,g) > 0 is not sufficient for the existence of rank n stable
bundles on X (even for general X) with degree d and at least r + 1
sections; see [Tel], [KN], [BGN] and the updated problem list on the
subject distributed through Europroj by P. Newstead. But fixing
hO(E) is not enough to understand the geometry of E because H°(E)
may span a subsheaf J of E with rank (J) < rank (E) (see Definition
8.2), while if H(E) spans a proper subsheaf T' of E with rank (T) <
rank (E) T may be unstable. Thus, contrary to the usual rule for
special divisors, for rank n > 1 bundles it is not easy to reduce to
the case of spanned bundles. In this paper (for the first time in
this area, as far as we know) we will make an essential use of very
refined results and definitions on the rank 1 case (see in particular
[CKM1] and [CKM2]). The aim is to find the “building blocks” for
the spanned bundles (see Definition 1.2). In section 1 we introduce
the notion of “primitive vector bundles” and a few related notions
and study their elementary properties. A spanned vector bundle E
on X is primitive if and only if there is no bundle F' with £ C F,
length (F/E) = 1 and h°(F) = h%(E) + 1 (see Remark 1.3). In
section 2 we study the primitive bundles on the hyperelliptic curves.
Then in section 3 we generalize the constructions made in section
2 just assuming the existence and a cohomological property of a
gi, t > 2, on X. These generalizations will be used in section 4
to study trigonal curves and in section 5 to study “generic” curves.
In section 6 we introduce and study the Clifford index for vector
bundles. In section 7 we give other results on primitive bundles. In
the last section we study (in terms of the numerical properties of
special divisors on the curve X) the dimensional properties of the
rank 2 bundles with a given number of sections. In particular we
point out the deep difference from this point of view between the
case in which H°(E) spans a rank 1 subsheaf of E and the case in
which H°(E) generically spans E. This is the section in which in a
very extremistic way we use the following general strategy and rule
of this paper.
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We assume as a datum the distribution of the “rank 1”7 linear
series on X and we use this knowledge for the construction (or proof
of nonexistence) of suitable vector bundles on X. For instance, when
we study in section 5 curves with general moduli we state explicitely
what assumptions on the linear series on X (assumptions satisfied
by curves with general moduli) are used in each statement. More
precisely, we prove the following results.

PROPOSITION 0.1. Assume that X has a g. if and only if p(g,1,
z) >0 and a g§ if and only if p(g,2,y) > 0. Fiz an integer d < g,
such that there is no g3, on X (hence 4d < 3g +12) and there is
a base point free gg on X. Then there is a stable spanned primitive
degree d rank 2 bundle E on X. Furthermore, h°(E) = 3 for every
such bundle.

THEOREM 0.2. Assume that X has a spanned g, L and that for
all integers c with 1 < c¢ <r—1, X has no g[ccd/T]. Then there is a
rank r stable spanned vector bundle F on X with det(F) = L. If L
18 primitive, then F' is primitive.

Concerning the relation between stability and spannedness for
vector bundles on curves with general moduli, we will prove in section
6 the following result.

THEOREM 0.3. Let W[4(X) be the scheme of a stable vector
bundles, E, on X with rank (E) = n, deg(E) = d and h°(E) > r+1.
Let X be a genus g > 2 curve with general moduli. Assume that
the statement of [Tel], Th. 1, gives the existence of a non empty
component W (c,b) of dimension p(n,c,b,g) of WS(X) for all pairs
of integers (c,b) = (d,r), (d—1,7) and (d+1,r+1). Then the general
E € W(d,r) is a primitive rank n stable bundle with deg(E) = d and
RYE) =7 +1.

1. In this paper we work over an algebraically closed base field with
characteristic 0. Here we fix a few notations and introduce the key
notion of primitive vector bundle. Let X be a smooth genus g curve.
For any sheaf T on X, H*(T) and h*(T) := dim(H*(T)) will denote
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the cohomology groups on X. Let E a rank 2 vector bundle on
X. Set L := det(E) and d := deg(FE) = deg(L). We fix an exact
sequence

0 —A—FE—M—0 (1)

with A, M line bundles and set a := deg(A), m := deg(M) =d — a.
We are interested in the case in which E (and hence M) is spanned.
We will use often the following well-known lemma.

LEMMA 1.1. If a spanned vector bundle F' on an integral complete
variety Y has Oy as a quotient, then F' has Oy as a direct factor.

Proof. Since F' is spanned we have a surjection {0y — F which
induces a surjection u : tOy — Oy. Since Y has only the constants
as global sections, the surjection w splits and induces a splitting of
the surjection F — Oy O

The following definition in the rank 1 case is equivalent to the
classical definition of primitive line bundle (see e. g. [CKM1] and
Remark 1.3 below). Recall (see the introductions of [CKM1] or
[CKM2]) that in the rank 1 case the primitive linear series are the
“building blocks” for all special linear systems.

DEFINITION 1.2. Let E be a rank r vector bundle on X with
h'(E) # 0. E is said to be primitive if it is spanned and if for every
rank 7 vector bundle F on X with deg(F) = deg(E) + 1 and such
that E is a subsheaf of F, we have hO(F) = h%(E) (or, equivalently,
F is not spanned).

REMARK 1.3. Let E be a rank r vector bundle on X. We will
check here that E is primitive if and only if both E and Kx ® E*
are spanned. Indeed Kx ® E* is not spanned if and only if there is a
rank 7 bundle T" contained in Kx @ E*, with length(Kx Q E*/T) =1
and with h%(T) = h°(Kx ® E*). Set F := Kx @ T*. E is a subsheaf
of F with length(F/E) = 1. By Riemann-Roch we have h(F) =
hO(E) + 1.

REMARK 1.4. By Remark 1.3 if E is primitive, then deg(E) <
(29 — 2)rank (E).
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LEMMA 1.5. Assume rank(E) = 2 and that E is given by (1)
with h°(A) # 0. If E is primitive, then h'(A) # 0.

Proof. Assume h'(A) = 0. Take a general P € X and con-
sider the push out by the inclusion A C A(P) of the exact se-
quence (1). Equivalently, consider the map H' (Hom (M, A)) —
H' (Hom (M, A(P))) induced by the inclusion Hom (M, A) — Hom
(M, A(P)). We obtain an exact sequence

0— AP) —E — M —0 (2)

and an inclusion E C E' with length(E'/E) = 1 and h'(E') =
hO(E) + 1. o

REMARK 1.6. Assume rank (E) = 2 and E primitive. By Re-
mark 1.3 and Lemma 1.5 there is an exact sequence (1) such that
hO(K ® M*) #0 i. e. h1(M) # 0.

DEFINITION 1.7. Let E be a rank r spanned vector bundle on
X with h'(E) # 0. E is called maximally stable primitive (resp.
maximally semi-stable primitive) if it is stable (resp. semi-stable)
and if for every rank r vector bundle F' with E subsheaf of F' with
length(F/E) = 1 and h°(F) = h%(E) + 1, F is not stable (resp. F is
not semi-stable).

PROPOSITION 1.8. Fiz an integer ¢ > g +2 (resp. x > g+ 1)
such that there is a primitive M € Pic®(X). Then there is a rank
2 mazimally stable primitive (resp. mazimally semi-stable primitive)
bundle E on X with deg(E) = 2x — 1 (resp. 2x) and which is not
primitive.

Proof. Fix a spanned line bundle A with h!(A) = 0 and deg(A4) =
z—1 (resp. deg(A) = z). Take as E a bundle fitting in a non splitted
exact sequence (1). Since h'(M) # 0, we have h'(E) # 0. Since
h'(A) = 0, E is spanned. By Lemma 1.5 E is not primitive. First
assume deg(A) = deg(M). Hence E is semi-stable but not stable.
Fix a rank 2 bundle F' with E subsheaf of F, length(F/E) = 1 and
RO(F) = hO(E) + 1. If A is saturated in F, F/A is a line bundle V
containing M, with deg(V) = z+ 1 and h°(V) = h®(M) + 1 because
h'(A) = 0. This is impossible because M is primitive.
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Hence the saturation, B, of A in F is a line bundle with deg(B) >
deg(A) = deg(M) and F//B = M. Thus F is not semi-stable and E is
maximally semi-stable primitive. Now assume deg(A) = deg(M)—1.
Since (1) does not split, we see that E has no subbundle of degree
> z. Thus F is stable. Fix a rank 2 bundle F' with E subsheaf of
F, length(F/E) = 1 and h°(F) = h°(E) + 1. If A is saturated in
F, F/A is a line bundle V containing M, with deg(V) = z + 1 and
RO(V) = hO(M) + 1 because h'(A) = 0. This is impossible because
M is primitive. Hence the saturation, U, of A in F is a line bundle
with deg(U) > deg(A) + 1 = deg(M) and F/U = M. Thus F is not
stable and F is maximally stable primitive. O

LEMMA 1.9. Assume E spanned and with h*(E) # 0. If det(E)
18 primitive, then E is primitive.

Proof. Take a rank r bundle F containing E and with length (F'/
E) = 1. Since det(F') = det(E)(P) for some P € X, and det(E) is
primitive, det(F’) is not spanned. Hence F' is not spanned. &

2. Here we consider the case X hyperelliptic. Let R be the g on X.
Let E be a spanned degree d rank 2 vector bundle with h'(E) # 0.
We fix an exact sequence (1) with h%(A) # 0. Since h°(E) # 0, there
is at least one such exact sequence.

2.1. Here we assume that in the exact sequence (1) we have
h'(A) = 0. Thus deg(A) = h°(A) + g — 1. Since h!(E) # 0, we have
h'(M) # 0. Since M is spanned we have the following possibilities.

2.1.2. M =2 0. By Lemma 1.1 we have E =2 A ® O.

2.1.2. deg(M) > 0. Hence there is an integer u > 0 with M =
R®¢. Thus d = h°(4) + g — 1 + 2u, h%(E) = h%(4) +u + 1. In
particular there are such bundles for all integers d > g + 3 (taking A
spanned). If deg(A) > 2u (resp. > u), no such bundle is semi-stable
(resp. stable). If deg(A) < 2u, there are non trivial exact sequences
(1). If deg(A) > g + 1 every such bundle is spanned. By Lemma 1.5
no such bundle is primitive.
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2.2. Here we assume h'(A) # 0 and h'(M) = 0 By Remark 1.6
no such bundle is primitive. Since M is spanned, we have deg(M) >
g+1

2.3. Here we assume h'(A) # 0, h' (M) # 0. Since M is spanned,
there is an integer b > 0 with M = R®?,

2.3.1. First assume h!'(L) # 0i.e. a +b < g — 1. Note that
RO(L) = hO(A) + h®(B) + 1. Set u :=[(a+b+1)/2],Q :== R®* &
R®(atb—u) Note that both in the case a+b even and in the case a+b
odd we have h°(End(Q)) = 4 and h%(Q) = a + b+ 2 = hO(L) + 1.
Consider the possible spanned E with fixed L := det(E). Since any
rank r spanned bundle on a smooth curve is spanned by r+1 sections,
all such bundles are given by an exact sequence

0—L*"—30—FE—0 (3)

Since
dim(G(3,h°(L))) = dim(G(3,h°(Q))) +3

= dim(G(3,h°(Q))) + h°(End(Q))+

— h%(End(L)),

we see that an open subset of the set all bundles E fitting in (3)
is given by bundles isomorphic to (). Since stability is an open
condition, we see that no such bundle is stable. In summary we have
proved the following result.

PROPOSITION 2.3.1.1. Assume X hyperelliptic. There is no
stable rank 2 spanned bundle on X with det(E) special. In particular
there is no rank 2 stable spanned bundle on X with degree < g+ 1.

PROPOSITION 2.4. Assume X hyperelliptic of genus g. Fix an
integer © with g < < 29—2 and set L := R®® and u := [£/2]. Then
there exists a family of stable spanned rank 2 vector bundles on X
with determinant L and which have the splitted bundle R®"@ R®(*~v)
in its closure.

Proof. 1t is sufficient to prove that the general bundle FE fitting
in the exact sequence (3) is stable. The proof will be a dimensional
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count similar to the one used in the proof of 2.3.1.1 and will be
divided into 4 steps.

Step 1. Note that for all positive integers v, w the product map
H°(R®") ® HY(R®") — HO(R®(*®)) is surjective.

Step 2. Fix any exact sequence (1) with A = R® and M = R®/. The
extension class f of (1) is given by an element of HO(R®U—+

9-1)* by Serre duality and the coboundary map 8 of (1)
induces a map HY(R®/) — HO(R®(9-1-9)* (again by Serre
duality). Ker(d) is the subspace of H°(R®7) which lifts to
HO(E).

Step 3. Among the bundles fitting in (3) there is the splitted bundle
R®'@R®(%)_ Assume that the general E given by (3) is not
stable and let (1) be a destabilizing sequence of E. We have
M = R®" because M is spanned. Hence A = R®(E—4)  Set
t := dim(H°(R®“)/Ker(9)). Note that dim(G(3,h°(E))) <
—3t+dim(G(3,h%(A)))+h (M) < —3t+dim(G(3,h°(L)))+3
because h’(L) > z+1 by the assumption on z and Riemann-
Roch.

Step 4. Set ¢ = £ — u and j = u. Consider the multiplication map
H'(M)® HY(Kx ® A*) — H°(Kx ® M ® A*). By Step 1
we see that if 1 = j only the trivial extension lifts non zero
sections of M to E, while if j = 741 for every ¢t > 0 the set of
all extensions with dim(H°(R®*)/Ker(9)) = t has dimension
< 1. By Steps 2 and 3 we get a contradiction. &

3. Here we generalize the construction made in the case X hyper-
elliptic. We fix a genus g smooth curve X, an integer ¢ > 2 and
a base point free complete gf R. There is an integer e(1,R) > 1
such that h%(R®7) = v + 1 if and only if 0 < j < e(1,R). Since
e(1,R)+1 > t(e(1,R)) + 1 — g by Riemann-Roch, we have e(1, R) <
[g/(t — 1)]. By [B] we have e(1,R) = [¢/(t — 1)] if X is a general
t-gonal curve. Assume L := det(E) = R®* with 1 < z < e(1, R).
Set u := [£/2], A" := R®¥ M':= R®@%) and Q := A’ ® M'. As in
2.3.1 we see that an open subset of the bundles fitting in an exact
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sequence (3) are isomorphic to @. In particular no such bundle is
stable. Thus we have proved the following result.

PROPOSITION 3.1. Let R be a base point free complete g} on X.
Set L := R®* with 1 < x < e(1,R). Then there is no stable rank 2
spanned bundle E on X with det(E) = L.

In the case £ = 2 more is true.

PROPOSITION 3.2. Let R be a base point free complete g} on
X. Assume e(1,R) > 2. Set L := R®2. Then every spanned rank 2
bundle E with det(E) = L is either isomorphic to RO R or to O® L.

Proof. If h°(E*) # 0, then E 2 O @ L by Lemma 1.1. Assume
h°(E*) = 0. Since h°(L) = 3 the dual of the map 30 — H'(L)
induced by the exact sequence (3) is an isomorphism. Hence E is the
unique bundle (up to isomorphism) which fits in the exact sequence
(3) and with R9(E*) = 0. Since R @ R fits in that exact sequence,
we conclude. )

In the opposite range we have the following result.

PROPOSITION 3.3. Let R be base point free complete gi on X.
Set L := R®* with z > e(1, R) and z even. Set u := x/2 and assume
u < e(1,R). Then there is a spanned rank 2 semistable vector bundle
E with det(E) = L and either E 2 U @V with U # V, h%(V) =
hO(R®*) =u+1 or h°(E) > 2u+1 and E is simple. In particular,
if R®" is the unique g, on X (or at least if R®" is an isolated point
of the reduction of the scheme of all gi,’s on X ), E is simple.

Proof. The same dimensional count made to prove Proposition
3.1 now shows that a general E fitting in the exact sequence (3)
is not isomorphic to @ := R®® @ R®%. Since @ is semi-stable
and semi-stability is an open condition, we see that E is semi-
stable. Furthermore, by semicontinuity we have h°(E) < h%(Q).
The same dimensional count gives that either h%(E) = h%(Q) and
RO(End(E)) < h°(End(Q)), or h°(E) = h°(Q)—1 and h°(End(E)) <
KO(End(Q)) — 3 = 1 o
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4. Here we consider the case of a trigonal curve X of genus g > 5.
Let R be the unique g3 on X. We have (g—1)/3 < e(1,R) < g/2. If
0 <y <e(l,R) we have h(R®Y) = y+1;ife(l,R) <y < g—e(1,R)
we have hY(R®Y) = ¢(1,R) +1+2(y — e(1,R))) = 2y — e(1, R) + 1;
if y > g —e(1,R) we have h' (R®Y) =0, i. e. AO(R®Y) =3y — g + 1.
Set @ := R®* @ R®? and L := R®?. Set $(a,e) = h°(L) — h%(Q).
Note that if e(1,R) < a < g — e(1, R) we have 2a > g — e(1, R).

4.1.1. f0 < a < e(1,R) and e(1, R) < 2a < g — e(1, R), we have
$(a,e) =2a —e¢(1,R) — 1.

41.2. If e(1,R) < a < g — e(1, R) we have $(a,e) = 2a — g +
2¢(1,R)—1> (g —1)/3.

REMARK 4.2. Let A be a spanned line bundle on X with h!(A) #
0. Then either A = R®Y for some y > 0 or A = Kx ® R®? for some
z < 0. In particular if deg(A) = 3a for some integer a we have
—z = 2(¢g —1)/3 —a. Thus if g — 1 is not divisible by 3, then
A= Ree,

THEOREM 4.3. Assume 0 < a < g—e(l,R)—1, 2a > e(1, R) and
$(a,e > (g—1)/3 i. e. by 4.1.1 and 4.1.2 either a < e(1,R), e(1,R) <
2a < g—e(l,R) and 2a—e(1,R)—1 > (g—1)/3 or 2a > g—e(1, R).
If g =1 mod(3) assume that R®9-1/3 is not isomorphic to K)(?Q.
Then there is a flat family of stable spanned rank 2 vector bundles
on X with determinant L := R®?® and with Q := R®* @ R®® as flat
limat.

Proof. We will use the set-up for the dimensional count intro-
duced in the proof of 2.3.1. Let E be a general bundle fitting in the
exact sequence (3). Here by the assumption on $(a,e) we see that
FE is not isomorphic to Q. Since @) is semi-stable F is semistable.
Assume by contradiction that E is not stable and let M be a de-
gree 3a quotient line bundle of E. Since M is spanned, by Remark
4.2 either M = R®% or ¢ = 1 mod(3) and M = Kx ® R®* with
z=—a+(g—1)/3. First assume M = R®? Hence F is given by an
exact sequence (1) with A =2 M. We claim that h°(E) < h1(Q), i. e.
not all sections of M lift to sections of E. The claim is well-known
and easy: indeed it is proved in [BR, Prop. 1.3], the much stronger
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assertion that h(E) = h°(A) + max (0, h' (M) — h'(A)). Hence by
assumption on $(a,e) we have dim(G(3,h°(L)) > dim(G(3,h°(E)))
and we conclude. Now assume M = Kx ® R®? with —z = —a +
2(g —1)/3. Thus E fits in an exact sequence (1) with either A = M
or A~ R®% Since AQ M = L, if A=~ R®? then M = R®? while if
A= M we

have R®49-1)/3 = K 2 contradiction. &

Now we consider the case in which L = R®(%+1) for some integer

THEOREM 4.4. Fiz integers g > 5, e(1,R), a with 0 < a <
g — e(L,R) and set $3(g,e(1, R))) := 3(h ( ©(20+1)) _ pO(RS1) —
RO(R®(e+1))) — 3. Assume $$(g, (1,R)) > g—1 and let X be a
trigonal curve whose gi R has invariant e( ) If g = 1 mod(3)
assume that R®49=Y/3 is not isomorphic to K)‘?Q. Then there is a
flat family of stable spanned rank 2 vector bundles with Q' = R®* @
R®@t1) g5 flat limit.

Proof. The proof is exactly the same as the one of Theorem 4.3.
Indeed, note again that if E is not stable by the semicontinuity of
the Harder-Narasimhan filtration and the assumption when g = 1
mod(3) any destabilizing quotient M of E must be isomorphic to
R®e, O

5. Here we discuss the case of spanned vector bundles on a smooth
curve X which is “general” in a very weak sense.

Fix an exact sequence (1) with h%(A) # 0. Since E is spanned,
if M # A ® O, then h°(M) > 2. Note that if d is such that there
is a base point free gg, say L, we obtain a spanned rank 2 bundle £
with det(E) = L and fitting in the exact sequence (3). For instance
this is the case if d is the first integer such that p(g,2,d) > 0. Since
for such d we have p(g,1,d/2) < 0, for this particular example every
A fitting in (1) has h°(A) = 1. Furthermore, since the existence of
a g5 implies the existence of a g2>_;, in this particular example we
have A = O. Since E is not trivial, h%(E) > 2. Thus in any exact
sequence

0—A—E-—M —0 (4)
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we have deg(A’) < 0. Hence for this particular d, E is stable and
with Harder-Narasimhan-Lange-Segre invariant d (see e. g. [LN]). If
d is larger we have at least deg(A’) < d — d’, where d’ is the first
integer with p(g,2,d’) > 0. Note that d < 2d’. Note that if there
is a spanned g7, L, on X but no ggill, then L is primitive. Hence
Lemma 1.9 and the discussion just given prove Proposition 0.1.

Proof of Theorem 0.2. Take F given by the following exact se-
quence:
0—L"—(r+1)0 —F —0 (5)

Assume by contradiction the existence of a rank ¢ (1 < ¢ < r —
1) quotient bundle U of F' with deg(U) < cdeg(F)/r. Since F is
spanned, U is spanned. Hence det(U) is spanned and not trivial.
Hence there is a gfjeg(U) on X, contradiction. If L is primitive, then
F is primitive by 1.9. &

REMARK 5.1. Note that we have a spanned g, on X if dim W},
(X) < dimW](X) — 2 and there is a primitive g, if we have also
dim W} (X) > dim W7 (X).

6. In this section we consider 5 generalizations (5 among the many
possible ones) of the Clifford index (and the geometric theory behind
it) to the case of vector bundles of rank n > 1. No unique definition
seems to be the best possible one for all aims and targets (stable
or semistable vector bundles, inductive proofs, classifications of ex-
tremal cases and study of nice examples). We fix a smooth genus g
curve X. Let W%(X) be the scheme of stable vector bundles, E,
on X with rank (E) = n, deg(E) = d and h%(E) > r + 1.

DEFINITION 6.1. Let E be a rank n vector bundle on X with
hO(E) # 0. Set Cliff(E) := deg(E) — ZhO(E) + 2n. Cliff(E) is called
the Clifford index of E.

REMARK 6.2. We have ClLiff(0) = 0, Cliffi(A & B) = Cliff(4) +
CLiff(B); if h}(E) # 0 we have Cliff(E) = Cliff(E* ® K).
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DEFINITION 6.3. Set c¢(n,X) := inf{Cliff(F) with E rank n
spanned indecomposable vector bundle on X with h?(E) # 0, h!(E)
# 0}.

Set s(n, X) := inf{Cliff(F) with E rank n spanned stable vector
bundle with h°(E) # 0 and h'(E) # 0}.

Set p(n, X) := inf{Cliff( E) with E rank n primitive stable vector
bundle with h°(E) # 0 and h'(E) # 0}.

Set ms(n, X) = inf{Cliff(E) with E rank n maximally stable
primitive vector bundle with h%(E) # 0 and h!(E) # 0}.

Set gs(n, X) := inf{Cliff( E) with E rank n vector bundle with
h'(E) # 0 and such that H°(E) spans a rank n subsheaf of E}.

EXAMPLE 6.4. Fix an integer n > 2. Assume the existence on X
of a degree t pencil R such that n < e(1, R) (i. e. R9(R®") =n + 1)
and that there isno g7, ; on X. Assume that s(n, X) is computed by
bundles, E, with h°(E) = n+1. Then we have s(n, X) > nt—2n—2.
Indeed, take a spanned rank n vector bundle F' computing s(n, X)
and set L := det(F). Since F is spanned by n + 1 sections and
hO(F*) = 0 by the stability of F, F fits in an exact sequence (5)
(taking r = n) and we have h°(L) > n + 1. Thus deg(L) > nt.
Hence Cliff(F) > nt — 2n — 2. Furthermore, if we assume that R®"
is the unique g7, on X, then we have s(n, X) > nt — 2n — 2 for the
following reason. With the notations of the first part, assume by
contradiction s(n,X) = nt — 2n — 2. Then we have L = R®". If
a bundle F which fits in (5) (with r = n) has h°(F*) = 0 (and in
particular if it is semistable with degree > 0 or stable of degree > 0),
then the induced map V* —s H?(L) is an isomorphism. Hence the
unique such bundle which fits in (5) (with 7 = n) is R®™ which is
not stable.

Now we will consider again the case of curves with general moduli
with very different methods with respect to the ones of §5. The main
tool is the existence theorem (and the proof that it has the expected
dimension min{p(n,d,r,g), n?(g—1)+1)} for W>4(X) when X has
general moduli and p is not too small (see [Tel], Th. 1, for the precise
statement). Here we consider the problem of the spannedness of the
corresponding bundle and prove Theorem 0.3.

Proof of Theorem 0.3. The main point is to show that a general
E € W(d,r) is spanned. First, note that the proof of [Tel, Th. 1],
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implies that for a general F' € W (c,b) with ¢ > n + 1, the bundle
F is generically spanned; this is proved in §4 and §5 of [Tel] (see
in particular the explicit data for the existence part at page 397,
Proof of Theorem 1). Note that the schemes W (c, b)’s for all pairs of
integers (c,b) come from the same construction. Hence if a general
E € W(d,r) is not spanned we would have dim(W(d — 1,7)) > p(n,
d—1,r,g), contradiction. Similarly, if a general E € W (d,r) is not
primitive, we would have dim(W (d+1,7+1)) > p(n,d+1,r+1,7,9),
contradiction. )

REMARK 6.5. Note that the vector bundle E whose existence
was proved in Theorem 0.3 has Cliff(E) = d — 2r — 2 4 2n.

7. For the existence of primitive bundles with a given determinant
the following result is often useful.

PROPOSITION 7.1. Assume the existence of a primitive g,%A on

X with k < g—1. Then there is a unique rank g —k primitive bundle
F with det(F) = Kx ® A* and h°(F) =g —k + 1.

Proof. By Serre duality Kx ® A* is a gggik% - By definition of
primitive line bundle, Kx ® A* is spanned. Hence we may define F'
using the exact sequence (5) taking Kx ® A* as L and g — k instead
of r. F is primitive by Lemma 1.9. Viceversa, any such F' must be
given by (5) with g — k instead of r and L =2 det(F). O

COROLLARY 7.2. X has a primitive g,i (hence a primitive rank
g — k bundle) for all integers k with g/2+ 1<k < g—1 if either X
has general moduli or X is a general t-gonal curve for some integer
t with 3 <t <g/2.

Proof. If X has general moduli, the result follows from the classi-
cal Brill-Noether theory ([ACGH]) and the fact that for these integers
k we have p(g,1,k — 1) < p(g,1,k) + 1. If X is a general t-gonal
curve, the result is [CKM2, Th. 3.1]. O

Now we study the stability and semi-stability of the primitive
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bundles we obtain.

PROPOSITION 7.3. Fiz an integer t with3 <t < g/2+1. Assume
that X has 2 different base point free gt R and R', no gL with z < 2t/3
and no 933 with y < 4t/3. Then there is a stable rank 3 vector bundle
F with rank (F) = 3 and with det(F) = RQR'. If RQR' is primitive,
then F' is primitive.

Proof. Since R and R’ are not compounded with the same ratio-
nal involution, by the strong form of a lemma of Segre-Hopf we have
h'(R® R') > 4. Take 4 general sections of R ® R’ and take as F
the bundle induced by the exact sequence (5) (with » = 3). Assume
that F' is not stable. Since rank (F') = 3, either F has a quotient line
bundle N with deg(N) < deg(F')/3 = 2t/3 or a quotient stable rank
2 bundle Z with deg(Z) < 4t¢/3. Since F' is spanned, N and Z should
be spanned. Since X has no pencil of degree < 2¢/3, N cannot exist.
We claim that h%(det(Z)) > 3. Since Z is stable and spanned, it has
a section s # 0 vanishing at a general point P. Let D be the zero
locus of s; we have P € D. Since Z is stable, deg(D) < 2t/3. Since
Z is spanned, both det(Z) and det(Z)(—D) are spanned. Hence we
get the claim. Hence Z cannot exist. The last assertion is Lemma

1.9. &

PROPOSITION 7.4. Assume that X has two base point free gi R
and R'; we allow the case R = R'. Assume R ® R' primitive. As-
sume that X has no pencil of degree < t. Then there is a semistable
primitive rank 2 bundle E on X with det(E) 2 RQ R'.

Proof. Set U := R®R' and take a general 4-dimensional subspace
of H°(U) spanning U. Hence we may define the bundle E by the
exact sequence

0 —U"—V®O0—E-—0 (6)

By construction E has no trivial factor. Hence any quotient line
bundle of F has at least 2 sections. Hence E has no destabilizing
quotient line bundles. &

REMARK 7.5. Note that by [CKM2, Prop. 1.1], if X is a general
t-gonal curve, 3 < t < g/2, and R is its g}, then R®? is primitive for
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all z < (¢ —2)/(t —1).

8. In this section we will give estimates for the dimension of families
of rank 2 vector bundles with sections and with particular properties
on a curve X. For instance we will study the case in which the
sections generate a rank 1 subsheaf of the bundle E. The estimates
will be in terms of the numerical invariants of the schemes of the
special divisors on the fixed curve X. As a byproduct of these bounds
the interested reader may easily extend [Te2, Prop. 1.3 and Th. 2]
(and other similar results!) from the case of curves with general
moduli to the case of curves with too many gl and gg. We will
introduce the following notations. Let X be a smooth genus g curve.
Let W/4(X,gen) be the subset of W 4(X) parametrizing spanned
vector bundles. Unless otherwise stated, the subsets of W4(X )red
will be taken with the reduce structure and the induced topology.
Set w(n,r,d) = dim(W/4(X)); if u > g+, we set w(l,r,u) :=g.

The following elementary lemma is due to B. Feinberg for r = 2
(see also [Te2, Lemma 1.1 and Cor. 1.2]).

LEMMA 8.1. Let E be a rank r vector bundle on X and W C
HC(E) a linear subspace with dim(W) > 2 and such that for every
P € X there is s € W with s(P) # 0. Then either W spans a rank
1 subsheaf of E or a general s € W has no zero.

Proof. Assume that W spans a subsheaf of rank t > 2. For
every P € X, set W(—P) := {s € P: s(P) = 0}. By assumption
W(—P) # W for every P € X. Furthermore, for a general P € W
the linear space W (—P) has codimension ¢ > 2. Hence, since the
algebraically closed base field is infinite, a general s € W has no zero.

o

Motivated by Lemma 8.1 we introduced the following definition.

DEFINITION 8.2. A rank r vector bundle E on X with h°(E) > 2
is said to de of line bundle type if H°(E) spans a rank 1 subsheaf of
E. More generally a pair (E, W) with W C H°(E) and dim(W) > 2
is said to be of line bundle type if W spans a rank 1 subsheaf of
E. Call W24(X;lin) the subset of W/¢(X) formed by the vector
bundles of line bundle type.
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We want to show that the structure of the subscheme W4(X) g

is essentially determined from the structure of W{*(X) with a < r.
However, from the point of view of the (rational) maps from X to
the Grassmannian G(n,v) we are essentially interested to the com-
ponents of the subscheme W¢(X,gen) (hence to the subvarietes of
wnd(X )red Whose general element is spanned by its global sections).

Now we will introduce other notations. Set z(1) = 0. If z > 1
let z(z + 1) be the minimal integer z such that X has a gZ; hence
x(2) is the gonality of X. Fix a line subbundle A of E; often A will
be a maximal degree subbundle of E or the saturation of a rank 1
subsheaf spanned by V C HY(E). Set M := E/A, i. e. take E as an
extension given by (1) with A = A”(D), M = R(B), D base locus
of HY(A), a := deg(A), a" := deg(A"), v := deg(D); B base locus
of HY(M), b:= deg(B).

REMARK 8.3. Note that 0 < b < g; if a > g, then D = 0, i. e.
a=a";ifd—a> g, then b= 0; if u =r+ 2+ g, with z > 0 then we
set w(l,r,u) ;= g.

We need the following well known observation.

REMARK 8.4. If we are looking for families of simple bundles, F,
fitting in the exact sequence (1) we may assume H°(Hom(M, A)) =
0. Hence by Riemann-Roch for fixed M and A the set of all possible
extensions has dimension d — 2a + g — 1 and the corresponding set
of isomorphism classes of bundles has dimension < d —2a+ g — 2.

PROPOSITION 8.5. Let T be an integral variety parametrizing
finite to one rank 2 vector bundles on X not of line bundle type and
simple with invariants v > 2, d, b, a and fitting in an exact sequence

(1). We have:

(a) Assume hO(A) = 0. Ifa = g — 1, then dim(T) < d —2g+2 +
w(l,r,d —b—g+1)+b+g. Ifa # g—1, then dim(T) <
d—a+w(l,r,d—a—-0)+b—1.

(b) Assume h’(A) = 1. Ifa = g, then dim(T) < d—g+b+w(l,r,d—
g—b)+b. Ifa # g then dim(T") < d—a+w(1,r—1,d—a—b)+b—1.

(c) Assume h°(A) = = > 2. Ifa = g+ x — 1, then dim(T) <
g+d—2a+b+w(l,r —x,d—2a)+0b. If a#£g+x—1, then
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dim(T) <d—2a+w(l,z,a) + w(l,r —z,d —2a) + b — 1.

Proof. We will check part (b), since the same proof works almost
verbatim for part (a) and part (c). Assume h°(A4) = 1. Here we have
h'(A) = 0 if and only if a = g. Since dim(Im(V)) = dim(V) -1 =r,
in this case dim(7") is bounded by the dimension of all possible A
(which is @ := g) plus the dimension of all possible M (which is
w(l,r,d—2a—b) = w(l,r,d—2g—b)+b, because the base locus varies
in a b-dimensional family) plus the dimension Ext! of the extensions
in (1) with A and M fixed (which is d — 2a + ¢g by Riemann-Roch
since we assumed h?(Hom(M, A)) = 0). If a # g, to the previous
computation we add Remark (see [BR, Prop. 1.3], for much more)
that for every fixed A and M and a general extension in (1) we have
dim(Im(V)) < h%(E) + h°(A). Since w(l,r —1,d —2a — b) — 1 >
w(l,r,d — 2a — b) we conclude. O

By Proposition 8.5 we have the following corollary.

COROLLARY 8.6. Let T be an integral variety parametrizing finite
to one rank 2 vector bundles on X not of line bundle type and simple
with invariants v > 2, d, b, a and fitting in an ezact sequence (1). If
a < g—2, then dim(T) < d—a+w(l,r,d—a—b)+b—1. Assumea =
g+y—1 withy > 0; Then dim(T) < d—2a+g+w(l,r—y,d—a—b)+b.

REMARK 8.7. Let T be an integral variety parametrizing finite
to one rank 2 vector bundles on C' not of line bundle type, not
decomposable and not simple, fitting in an exact sequence (1) with
invariants r > 2, d, b, a. Fix an exact sequence (1) and assume w :=
h?(Hom(M, A) > 0. By Riemann-Roch we have h'(Hom(M, A)) =
w+g—1+d—2a. Assume a < g — 1; if hO(A) = 0, the set of all
possible line bundles A has dimension g, the set of all possible M has
dimension < w(1,r,d—a —b)+ b and the set of extensions with fixed
A and M has dimension d —2a+ g — 1+ w; hence dim(7") < —1+d—
2a+g—1+w+g+w(l,r,d—a—>b)+b; if h1(A) > 0 we obtain better
bounds. However, there is no such extension unless d — 2a > z(w).
Now assume a > g and set a := a + 1 — g. To have T # () we have
again the necessary condition d — 2a > z(w); if h'(A) = 0 we have
dim(T) < —1+4+g+w(l,r—a,d—a—b)+b+w+g—1+d—2a;
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if h1(A) > 0 we have a better bound.

PROPOSITION 8.8. Let T be an integral variety parametrizing
finite to one rank 2 splitted vector bundles on X not of line bundle
type with invariants v > 2,d, b, a. Then dim(7T) < dim{A4} +
dim{M} = max{w(1,a,s) + w(l,d — a,s') for all possible s and '
with s+ >r+1,s >0,s>0}.

ProrPOSITION 8.9. Let T' be an integral variety parametrizing
finite to one rank 2 vector bundles on X of line bundle type with
invariants r > 2, d, b, a, a = a" +b", " = deg(D). Then dim(T) <
b +w(1,a",7r) + g withd — (a" +b") <g—1.

LEMMA 8.10. Fiz invariants a = a” +b",d, r,b. Let T be
an integral variety parametrizing finite to one simple rank 2 vector
bundles of line bundle type on X with h® = r 4+ 1. Then dim(T) <
w(l,r,a”)+b"+g9+d—2a+g—2 and T = () unlessd < 2g+r— 1.

Proof. In the extension (1) the condition “no section of M is lifted
to a section of E" implies h'(A) > h°(M). Since h'(A) =r —a+g
and h®(M) > (d—a) + 1 — g, we have the emptyness statement. The
dimension of the set of all possible M € Pic{4=%)(C) is bounded by
g, while for fixed A and M we may apply Remark 8.4. O

LEMMA 8.11. Fiz invariants a = a” +b",d, r,b. Let T be
an integral variety parametrizing finite to one non simple rank 2
vector bundles of line bundle type on X with h® = r 4+ 1. T =
unless d < 2g +r — 1. Let w be the mazimal integer > 0 such that
d —2a > z(w); if there is no such w, then T = (). Assume T # (.
Then dim(T) < w(l,r,a")+b" +g9g+d—2a+g9—2+w.

Here we will give an elementary observation on the existence part
in Brill-Noether theory.

LEMMA 8.12. Fiz integers g, d, v, n such that for a general genus
g curve X the scheme W4(X) is not empty and has a component
of dimension w > 0. Then for every smooth genus g curve Y there
is a non empty family T(Y) of semistable bundles on Y of degree d
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and rank n such that every E € T(Y) has h°(Y,E) > r + 1.
In particular if d and n are coprime we have W (Y) # 0 and
dim(W4(Y)) > w.

Proof. The result follows from the properness of the semistabil-
ity condition in families of curves and from the semicontinuity of
cohomology. &
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