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SOMMARIO. - Studiamo il limite superiore sull’ordine degli automorfismi
delle curve X soddisfacenti almeno una delle seguenti ipotesi: 1) X
€ un rivestimento di grado m di esattamente una curva di genere vy,
dove m é primo; 2) il centro del gruppo degli automorfismi di X é non
banale.

SUMMARY. - We study upper bounds on the order of automorphisms of
curves X satisfying at least one of the following hypothesis: 1) X is an
m-sheeted covering of exactly one curve of genus v, where m is prime;
2) the center of the group of automorphisms of X is non-trivial.

NoTATION. Throughout this paper, by a curve we mean a non-
singular, irreducible and projective algebraic curve defined over an
algebraically closed field k of characteristic p. Let X be a curve and
P e X;

e k(X) and Aut(X) will denote, respectively, the field of rational
functions and the group of automorphisms of X. The symbol
diveo(f) will stand for the polar divisor of f € k(X).

e For 7 € Aut(X), ord(7), Fix(7) and v(7) will denote, respec-
tively, the order, the set of fixed points and the number of fixed
points of 7. k; and g, will denote, respectively, the field of ra-
tional functions and the genus of the quotient curve X /(7). m,
will denote the natural morphism X — X/(7).

(*) Pervenuto in Redazione il 1° Settembre 1995.

(**) Indirizzo dell’ Autore: Mathematics Section, ICTP; P. O. Box 586, 34100
Trieste (Italy). E-mail: feto@ictp.trieste.it
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e H(P) and G(P) will denote, respectively, the Weierstrass semi-
group and the set of gaps at P.

Introduction.

In this paper we study upper bounds on the order of automor-
phisms of curves satisfying at least one of the following hypothesis.

Hi(m,7) : X is an m-sheeted covering of exactly one curve X of
genus <y, where m is prime.

H, : The center of Aut(X) is non-trivial.

Let X be a curve of genus g > 1 and let 7 be an automorphism
of X. We assume v(7) > 1 if g = 1. It is known that the order of 7
satisfies
2g+1 if ord(7) is prime
<
ord(r) < { 2(2g 4+ 1) otherwise, (1)

except for some exceptional cases occurring for wildly ramified ex-
tensions k(X) |k, (Wiman [Wi], Harvey [Har], Singh [S, Thms. 3.3,
3.3"], Stichtenoth [St, §4]).

Suppose that X satisfies Hi(m,7y). The following discussion
follows from Accola’s [A, §4] (see also [A2, Chapters 4, 5]). Let
G(X|X) be the group of covering transformations of X — X, and let
7 € Aut(X)\G(X|X). Then 7 induces an automorphism 7 € Aut(X)
whose order is the smallest 72 € N such that 77 € G(X | X). If y > 2
or v(7) > 1 if v = 1, from (1) we have upper bounds for 7 and
hence for ord(7). For instance if ord(r) is a prime different from
#G(X | X), then

ord(r) <2y +1. (2)
(see §2). We remark that one can also obtain information about
#Aut(X) because Aut(X)/G(X | X) is isomorphic to a subgroup
H of Aut(X). For example Accola (loc. cit.) used this to give
an explicit construction of curves admitting of only the identity as
an automorphism. On the other hand if £(X) | £&(X) is a Galois
extension, then

#Aut(X) = m#H.



BOUNDING THE ORDER OF AUTOMORPHISMS etc. 87

Thus if X has many automorphisms, then either X does not satisfy
Hy(m,~) with v > 1 (e.g. Hermitian curves, see [St]), or if X does,
then 7 = 0 (e.g. the Klein curve, see [Hur]; the curve y?> = 2P + ,
see [Ro]), or H has many automorphisms (see [Mac]).

We also remark that Hi(m,~y) is satisfied if X is an m-sheeted
covering of a curve of genus v and g > 2m~y+(m—1)2. The hypothesis
on g implies the uniqueness property of Hi(m,7y) by means of one
of Castelnuovo’s genus bound (see 1.1). The existence of an m-
sheeted covering from X to a curve of genus v can be characterized
by means of the existence of certain Weierstrass semigroups as well
as the existence of certain linear series on X (see [T]).

Now suppose that X satisfies Hy. Fix ¢ in the center of Aut(X)
with m := ord(oy) being a prime. Let 7 € Aut(X) \ (0p). We bound
ord(7) by using the data (m,gs,,). As the main consequence of Ho
we can “pushdown” the data (ord(7),v(7)) on X to (ord(7),v(7))
on X := X/(op), where 7 is the pushdown of 7 to X. Moreover,
X/(0g,7) is isomorphic to X /(7), and v(7) satisfies an equation of

type

v(T) = mu+ f,

where u € N and f = #Fix(op) NFix(7). In particular, if m { ord(r)
and Fix(7%) = Fix(r), for d | ord(7), d < ord(r) we find

2950 —2+u+ f =ord(7)(29, —2+u+ f),

where 71 := og o 7. If X also fulfils H(m,g,,) the above relation
improves (2) (see §3).

Typical examples of curves satisfying both the hypothesis above
are the 2-sheeted coverings having genus large enough. Assume that
X is a 2-sheeted covering of a curve of genus 7y, and let J, be an
involution on X whose orbits are the fibers of the 2-sheeted covering.
Then J, is unique provided g > 4y+1 (Farkas [F, Corollary 2], Accola
[A, Lemma 5]). Also in this case J, belongs to the center of Aut(X)
(Farkas, [F, Thm. 2]; Accola [Al, Application 4]). Furthermore
Farkas (loc.cit.) showed that

v(r) <4y +4

for 7 € Aut(X) \ (J,). For the case of hyperelliptic curves (y = 0)
of genus g > 1 it is well known that all the possibilities for v(7)
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in {0,1,2,3,4} occur and the unique restriction on ord(r) is the
Riemann-Hurwitz formula for k£(X) | k. (cf. Hurwitz [Hur]). How-
ever, if v > 1, g > 4y + 1, and if we assume v(7) > 1 for y = 1
the situation for both v(7) and ord(r) is different as we can see
from (2) and the above relation involving u and f. For instance it
was announced by Yoshida [Yo] that if v = 1 and g > 5, then the
possibilities for (ord(r),v(7)) are

(3,3), (3:5), (3,4), (3,2), (52), (53),
(7,3), (9,2), (12,1), (8,2), (6,1), (6,2), (4,4),

provided Fix(J1) N Fix(1) # 0.
The prototypes of our results are the following rather simple ex-
amples. They also illustrate the methods used here.

ExXAMPLE 1. Let X be a hyperelliptic curve of genus g > 1
defined over k with p # 2. Let 7 € Aut(X) such that ord(r) is
an odd prime different from p. Set f := #Fix(Jy) N Fix(7). Then

(v(7), f) €{(4,0),(3,1),(2,2)}.

The hypothesis on g implies that Jy and 7 commute with each
other. Hence if P € Fix(7) \ Fix(Jp), then Jo(P) € Fix(7). Thus
there exists u € N such that v(7) = 2u + f. Let 7 be the pushdown
of 7 to X/(J). We have that ord(r) = ord(7) because ord(r) is odd.
Hence the Riemann-Hurwitz formula applied to 77 gives

—2+u+ f=ord(7)(—2+u+ f),
and so u + f = 2, which establishes the example.

EXAMPLE 2. Let X be a 2-sheeted covering of an elliptic curve X
defined over k with p # 2. Suppose that the genus of X satisfies g >
5, and let 7 € Aut(X) with Fix(7) # and ord(7) an odd prime differ-
ent from b. Then (OI‘d(T),’U(T)) ¢ {(57 2)7 (33 2)7 (53 3)a (77 S)a (9, 2)}

Suppose that such a 7 exists. Let 7 be the pushdown of 7 to X.
Then ord(7) = ord(7) because ord(7) is odd. Now since 3 is the only
possible odd order for a non-trivial automorphism of X fixing a point
(this follows from the well known group structure of automorphism
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fixing a point on elliptic curves; see Silverman [Sil, Thm. 10.1]), we
reduce the example to analyze the case (ord(7),v(7)) = (3,2). With
the notation from the above example we have v(7) = 2u+ f = 2 and
so u+ f € {1,2}. Consequently applying Riemann-Hurwitz to 73 we
find

u+f=302—-2+u+f),

where § stands for the genus of k(X)/(7). This is a contradiction.

In particular, we see that not all the cases listed by Yoshida can
occur. We will also see that most of the known results on auto-
morphisms of hyperelliptic curves (e.g. Farkas-Kra [F-K; II[.7.11,
V.2.13]) will emerge as simple corollaries of ours (see 5.1). Yoshida
and Farkas - Kra use Lewittes’ results concerning representations of
the group of automorphisms as linear maps of differential spaces (see
[L]). To compute diagonal matrices, here one uses the sequence of
Weierstrass gaps at fixed points. Then, by means of the character of
the representation, one produces an equation (%) involving the genus
of the curve, the order of the automorphism and the number of its
fixed points. This equation and the Riemann-Hurwitz formula imply
restrictions for the order and the number of fixed points. When the
curve satisfies Hy we obtain an analogous of () by pushing down
the automorphism to an appropriated curve. The advantage of this
equation is that it does not involve gaps sequence at fixed points.

The contents of the paper are as follows. In §1 we sumiarize
the results needed for the results stated here. We mainly based
our computations on one of Castelnuovo’s genus bound (1.1), the
Riemann-Hurwitz formula (1.3) and on some results involving Weier-
strass semigroups (1.2).

In §2 and §3 we bound the order on automorphisms of curves
satisfying hypothesis Hi(m,y) and Hg respectively. In §4 we consider
necessary and sufficient conditions for automorphisms having large
number of fixed points. In 4.3 we improve Farkas’ [F, Thm. 1].

In §5 we specialize §2 and §3 to the case of double coverings of
curves. In 5.4 we consider automorphisms of elliptic-hyperelliptic
curves. In 5.5 we deal with automorphisms of certain double cover-
ings of hyperelliptic curves, and we finish with 5.6 where we indicate
how to obtain results similar to those of 5.4 and 5.5 for certain double
covering of trigonal curves.
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1. Preliminary results.

1.1. Castelnuovo’s lemma ([C], [St1]).

Let X be a curve of genus g. Let k; and k9 be two subfields of
k(X) with compositum equal to k(X). Let n; = [k(X) : k;] and g;
be the genus of k;. Then

g S ni1g1 +nogs + (ng — 1)(ng — 1).

1.2. Remarks on Weierstrass semigroups.

Let X be a curve and 7 € Aut(X) with p {ord(r).

(i) If P € Fix(7) and h € N, then

ord(T)h € H(P) < h € H(m:(P)).

This is included in an implicit way in Kato’s [K, p. 393] (see
also [T, Lemma 3.4]). Consequently ([Sch])

gr =#{£ € G(P) : £ =0 (mod ord(7))}.
(ii) The above remark implies the following. Let o € Aut(X) such
that ord(c) = ord(7) and Fix(c) N Fix(7) # 0. Then
9o = 9r-
(iii) Let P € Fix(r) and £ € G(P) such that £ = 0 (mod ord(r)).
Since H (7 (P)) 2 {2¢+,29- + 1,...}, then (i) also implies
£ < (2g; — 1)ord(T).

In particular, if ord(7) = 2 then H(P) has g, odd non-gaps
< 2g — 1. Moreover, let U; < ... < Uy, be such a non-gaps.
Then Uy > 2g — 49 + 1 and
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H(P) = (2mq,...,2mg, 49, +2,U1,...,Uy, ),

where the m; are the first g, positive non-gaps at n,(P) ([T,
Lemmas 2.1, 2.3]).

1.3. The Riemann-Hurwitz formula.

Let X be a curve of genus g, and 7 € Aut(X). Assume p{n :=
ord(7). We will use the following version of the Riemann-Hurwitz
formula for 7, ([F-K, p. 274])

29 —2=n(2¢g, —2) + Z w(n/d)v(
d|n,d<n

where ¢ is the Euler function. In the formulae of §3 we will also use
the number

Y. @n/d)(v(r?) — (7).

dln,d<n

The following definitions allow us to have a way of computing A,
([F-K, p.261]). The ramification set of 7, can be partitioned into a
disjoint union of subsets By with d | n and d < n where

By = Fix(7),
By = {PeX:74P)=P, 7/(P)# P for 0 <i<d}ford>1.

Let g = z4(7) := #m:(Bg). Then

A= Z (n—d)zg.

d|n,1<d<n
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2. Consequences of H, (m, 7).

Let X be a curve of genus g satisfying Hy(m,). Let 7 : XX
be the m-sheeted covering of X over a curve of genus -, and let
G = G(X | X) be the group of cover transformations of 7. We have
#G = 1 or #G = m and the last case occurs if and only if k(X)) | k(X))
is a Galois extension. Let 7 € Aut(X). By the uniqueness of 7 the
pushdown 7 of 7 to X is an automorphism of X. By means of the
data (m,7) and by using (1), we will set up upper bounds on the
order of 7 € Aut(X)\ G. If v = 1 we assume v(7) > 1. (Since
7Tom = o, this implies v(7) > 1.)

We have that ord(7) | ord(7), and ord(7) is the smallest positive
integer 7 such that 7 € G. Thus,

ord(r)
ord(7)

| #G.

We consider two cases.

2.1. ord(7) = ord(7).
(This is the case if #G =1 or m { ord(7).) Here by (1) we have

2y+1  if ord(7) is prime
<
ord(7) < { 2(2y+1) otherwise.

2.2. ord(7) # ord(7).

Here we have ord(r) = ord(7)m, and hence G' = (7°"4(7)). Thus
(1) implies
ord(r) < 2y+1)m if %(T). is prime
2(2y +1)m otherwise.

Once we know that X admits an m-sheeted covering over a curve
of genus v, we have the following criterion for the uniqueness of this
covering;:
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2.3. Claim.

Let X be a curve of genus g, m a prime and v a natural. If
g > 2my+ (m—1)?,

then X admits at most one m-sheeted covering over a curve of genus
.

Proof. Direct application of Castelnuovo’s genus bound (1.1).

3. Consequences of H,.

Let X be a curve of genus g. Throughout this section we fix
oo in the center of Aut(X) with a prime order m := ord(og). Let
X := X/(oo) and 7 € Aut(X). Then the pushdown 7 of 7 to X

defines an automorphism of X and thus we can apply §2 to mg,.
(We assume v(7) > 1 if g,, = 1.) However, if

p 1 ord(og)ord(T),

we can obtain more precise information on ord (7).

The hypothesis on the center implies that X /{0, 7) is isomorphic
to X /(7). Then by means of the following particular equations for
the number of fixed points, we can pushdown the data (ord(7),v(7))
on X to the data (ord(7),v(7)) on X.

3.1. Let 7 € Aut(X) and set n := ord(r). For d | n let
fa := #Fix(og) N Fix(r%).

For P € Fix(r%), Hy implies {o¢(P),...,00™ (P)} C Fix(r?).
Since m is prime we have m points in the above set, unless P €
Fix(cg). Consequently, there exists a non-negative integer ug =

ug (o9, 7) such that
(%) = mug + fa. (3)
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3.2. Bounding the order I.

Suppose

{00) Z (7)-

Here ord(7) = ord(r). Thus if g5, > 2 or v(7) > 1 for g,, =1, 2.1
implies

2050 + 1 if ord(r) is prime
= < 0
n = ord(r) < { 2(2¢5, + 1) otherwise.

Moreover, for any g,, we have the following

3.2.1. Lemma.

2
Moy + 2m
n—1

v(1) <

Proof. From 1.3 we have n(2g; —2) + (n — 1)v(1) < 29 — 2 (%)
(here we used v(7%) > v() and Ydn,a>1#(n/d) =n—1). Now since
m is prime we have k(X) = ky,k, and thus the lemma follows from
() and Castelnuovo’s genus bound (1.1). O

REMARK. The proof above only uses an inequality from the
Riemann-Hurwitz formula for 7,. Hence the lemma is also valid
when

p | ord(op)ord(r).

Next we will improve the upper bound on n. We consider two
cases according as m {n or m | n. We always assume p { n.
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3.2.2. m{n.

Here we have v(7%) = ug + fq ford | n,d < n. Let 7 := og o 7.
Then (09, ) = (1), and by applying the Riemann-Hurwitz formula
to kqy | koo /(T) we find

2050 —2+ur+ fi = n(29y —2+w + fi)+
+ Y p/d)(ug+ fo—u — fr). 4

d|n,d<n
In particular this implies
o(r) = FE 4 2met
2mngr +ArHm=1) 3 o(n/d)fa (5)
o d|n,d<n
n—1

(A, was defined in 1.3.) Equation (5) yields to the following consid-
erations.

3.2.2.1. A; = 0.

Here (5) becomes
2050 — 2+ u1 + f1 =n(29, — 2+ u1 + f1). (6)
(i) Suppose

2050 —2+u1 + f1 =0.

Thus either g,, =1, u1 + f1i =0,0r gop, =0and u+ f; = 2. In
the first case we have g — 1 = n(g, — 1), and in the second case

(1) g—14+m=n(g- +m—1),v(r) =2m, f1 =0,
(2) 2g+m—-1=n2¢,+m—1),v(r)=m+1, fi=1, or
(3) g =ngr, v(r)=fi=2.

From (5) we notice that if g,, = 0, then u; + f1 =2 & A, =0.
Consequently the above three statements generalizes a result on

automorphisms of prime order on hyperelliptic curves stated in
[F-K, V.2.13].
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(ii) Now suppose

2900_2+u1+f17é0.

Here we have g5, > 1 and ¢g,, = 1 = v(r) > 1. Hence n <
2gy, + 1 for n prime. This upper bound fulfils for any n:

CLAIM.
(1) n<2g,, + 1.
(2) n=2g,, +1 < gr, =0 and u; + f1 = 3. Consequently

(v(1), f1) € {(3m,0),(2m + 1,1),(m + 2,2),(3,3)}.

Proof. From (6) we have n < 2¢,, — 2+ u; + f1, and we can also

write
2950 — 2ngr

up + f1 = —

v (7)

Then n(n—1) < 2ng,,—2ng-, , which implies statement (1). To prove
(2) we notice that n = 2g,, + 1 implies g;, = 0 except for ¢g,, = 1,
u1 + f1 = 0 (eliminated by our assumption). In fact if g, > 1, by
(7) we have u; + f1 < (n—3)/(n — 1), and hence u; + f; = 0. Thus
once again by (8) we have n = 3 and so g,, = 1. O

REMARKS.

(i) Equation (7) implies

n<2,+1 = n<gy+1,

unless the case g, =1, u1 + fi = 1 where n could be 2¢,, — 1.

(ii)
n=gsp,+1 & wu +f =4andg, =0.

Consequently
(ii.1) (v(7), f1) € {(4m,0), (3m+1,1), (2m+2,2),(m+3,3), (4,4)}.
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(ii.2) (9o + 1)m € H(P) for P € Fix(og) N Fix(7).
Let n = g5, + 1. Then (7) gives

2ngr,
(n—1)

If g, > 1, then u; + f1 < 1. If ug + f1 =1 (resp. 0), Equation (x)
above gives gy, = 2 (resp. 1). The first case leads to a contradiction
because an automorphism of prime order cannot have just one fixed
point ([Gue], [F-K, Thm. V.2.11]), and the second one is eliminated
by hypothesis.

up + f1 =4-— (%)

3.2.2.2. Az > 0.

By 1.3, A7 = X gin,1<d<n(n — d)z4 > n/2. Hence by (4) and 2.1,

we obtain

CLAIM.
(1) Let g, > 1. Then

2(2g00 + 1)/7 if ug +f1 >3
495, /5 if uy + f1 =2
- 2(2900 — 1)/3 if uq +f1 =1

4(900 - 1) if uy +f1 = 0.

(2) Let g, = 0 (recall that g,, =1 = ug+ f4 > 1). Then

4(gao+1)/5 ifu1+f124
2295, +1)/3 ifur+f1=3
4900 if ug + f1 =2
2(2g5, + 1) if gop > 1 and u; + f; < 1.
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3.2.3. m | n.

Unlike the above case here {og, 7) is not cyclic. However, we can
use 3.2.1 and 2.1 to bound n. We find

goo +1 if v(r) >4
n << 2¢s+1 if v(r) =3
2295, +1) if gy > 1, v(r) < 2.

3.2.3.1. Remarks.

(i) Suppose g > 2mgy, + (m —1)%, let d | n, d < n. If f3 =
#Fix(o¢) NFix(r?) > 1, then m 1 2.

Indeed, if d | 7, then 7™ = 19 for certain r € N. If fy > 1,
by 1.2 (ii) the genus of 7%/™ = g, and hence by Hj(m,gs,)
(the hypothesis on g implies this; see 2.3) we have (o¢) C (7), a
contradiction.

(ii) By the Riemann-Hurwitz formula applied to k_n/m |k, we find
n(2g, —2) + (n —m)v(r) + A = m(2g_/m —2),

where AV = D din,d<n,dsn/m ©(n/d)(v(7%)—v(7)). In particular
for n > m we obtain

= 2"ng'r"/ﬂ"b - 2ng‘r B A‘(fl)

v(T) + 2.

n—m

(iii) Let n = m®q with m { ¢. From the Riemann-Hurwitz formula
for k.m |k, we get

mq(2g9- —2) + (m —1)>_o(q/d)v(r?) = q(2g;m — 2).  (x)
dlg

Thus
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_ 2g;m —2mg, — ASQ)

v(T) + 2,

m—1
where A?) .= (m—1) 34, v(a/d) (v(1%) —v(7)). In particular if
n = m” we have

_ 2grm — 2mgr

v(T) +2.

m—1

Now if we compute v(79) by using the above formula and replac-
ing it in (*), we get

(m—1) . Zd< o(g/d)o(r?) = 2(m—1)(g—1) + 2qg,m+

— 2grma +2mgra — 2mqgr.

(iv) Finally we consider the extension ko | k. Let n = m®q with
mtq. We find

Y w(n/dyu(r?) = 2m?(q — 1) + 2m"g;a — 2ng,.
d|n,gtd

Thus if ¢ > 1 we have

o

2 -2 —A
'U(T): gra qq_g;-

where A == 50, i 0(n/d)(v(r?) — v(7)).

+ 2,

3.3. Bounding the order II.
Now suppose

{00) € (7).
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Here we have ord(7) = n/m, g.n/m = goo, v(7) = f1 and hence by
the Riemann-Hurwitz formula for k(X)) |k(X)/(7) (or by 3.2.3.1 (ii))
we find

(29 —2)+(n—m)v(r)+ p(n/d)(v(r?)~v(r)) = m(295,~2)-

In particular we have:

2mge, 4o
n—m

Then by (8) and 2.2 (recall our assumption: g,, = 1 = v(7) > 1)
we obtain

3.3.1. Claim.

(1) If g > 2, then

m(2gs, — 2 + v(7))
ns v(T) + 2 '

(2) If g =1 and v(7) > 1, then

m(2gs, — 2 + v(T))
n < o(7) .

(3) If g =0 and v(7) > 3, then

m(2gs, — 2 + v(7))
ST oz

(4) Suppose that g,, > 1. If g =1 and v(r) = 0, or g = 0 and
v(1) <2, then

n < 2(2¢5, + 1)m.
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3.3.2. Remarks.

(1)

(ii)

Let 7 € Aut(X) and set n := ord(7).

Let g > 2mgy, + (m—1)2. From 3.2.3.1 (i) we have the following
criterion for the hypothesis of this section. If m | n and f; > 1,
then (og) C (7).

Now suppose n = m®q, with m t q. For any g,, and v(7) € {1,2}
we can use 1.2 (i), (iii) and 3.2.3.1 to obtain more information
on n:

Let v(r) = 2. Then either g;« # 0, or all the powers of 7,
different from 7/™, whose order is prime also have two fixed
points.

Suppose that g,« = 0. Then by 3.2.3.1 (iv) we have

> p(n/d)v(r?) = 2m®(q — 1),

dln,qtd

which proves the remark.

(iii) Let Fix(r) = {P} (hence ¢ > 1 by [Gue] or [F-K, V.2.11]).

4.

Suppose that £ > 2 and let ¢ be the smallest proper divisor
of ¢, with ¢ = 1 if ¢ is prime. If m®*~'q > 2g../m + 1, then
m®*~! € G(P).

By the formula for v(7) in 3.2.3.1 (ii) and the hypothesis on g
we have v(7%) < 2. Then by using the last equation in 3.2.3.1
(iii) we get

(m — 1)p(q) < —2qgrm + 2grma — 2mgra + 2mqg;.

Consequently g,mq # 0 and hence by 1.2 (i), m® ! = ord(7™) €
G(P).

Additional remarks.

Throughout this section X is a curve of genus g and o¢ € Aut(X)

with m := ord(op) being a prime.
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4.1. Suppose that X satisfies H(m,gy,), and let 7 € Aut(X) with
ord(t) = m. Assume that p t{ m. Then either 7 € (0y), f1 =
#Fix(00) NFix(r) = 0, or v(7) = muy < 2% 4 om,

This is an immediate consequence of 1.2 (ii) and 3.2.1.

4.2. Suppose that oy belongs to the center of Aut(X). Let 7 €

Aut(X)\(o9) and set n := ord(r). Assume that p { mn. This remark

is concerned with the maximum value for v(7) in the following cases
L. mitn, and II. (og) C (7).

I. From (5) we have v(1) < 2M9o0 4 9 — (m — 1)f;. From this

n—1
equation we also have
(1)
2mge,
= 2
v(T) o +
=

A; =0, Fix(og) NFix(r) =0, g, =0.
(2) If f1 > 1, then v(7) < 2:%‘;0 +m + 1 and

2mge,
= ]_
v(T) 1 +m+

=

A =0, fg=1ford|n,d<n, g, =0.

IT. By 3.3 we have v(7) < 27?;0 + 2, and

2
v(r) = 72990 4 9

n—m
=

gr =0, v(r) =v(r? for d|n, d<n, d#%.

The equivalence follows from 3.2.3.1 (ii) (recall that goy = g n/m)-
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4.3. A theorem of Farkas.
This remark is concerned with Farkas’ [F, Thm. 1].

(1) Let 7 € Aut(X) such that v(r) > m(2g,, + 1). Then 7 € (oy).

In particular, Fix(og) C Fix(7r) and if 7 # 1, then ord(r) =
ord(oyg).

(2) If g > 2mgy, + (m — 1), then (0p) is normal in Aut(X). In
particular if m = 2, o( belongs to the center of Aut(X).

Proof. If T & (09), then either by 3.2.1 we have v(7) < 2m(g,,+2)
or by 3.3, v(7) < 2g4, + 2. This proves (1).

Now we prove (2). By 2.3, k;, is the only subfield of k(X)) having
index m and genus g,,. Let 7 € Aut(X). Then since 7 tooggorT
also has order m and genus g, we must have 7=l oogoT € (0g) and

we are done. O

NOTE.

Let 7 € Aut(X) \ (00). The proof of (1) above shows that if
v(1) = m(2¢gy, + 2), then (0p) € (7). If in addition g,, > 1, then
ord(7) = 2.

5. Double coverings.

In this section we specialize our results to the case m = 2. In
what follows 7 : X — X is a double covering of curves of genus g and
v respectively. We assume

g>4y+1.

Hence there exists a unique involution J, belonging to the center
of Aut(X) and such that X = X/(J,) (see 2.3 and 4.3 (2)). This
involution will take the place of o in §3. For 7 € Aut(X) we write
n = ord(7r). We recall that v(7) = 2u; + f; where u; € N and
f1 = #Fix(Jy) N Fix(7).

Moreover
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4y .
—+4 if(J,)Z (T
’U(T) < OI‘d(T) —1 < /Y> < >
B 477 + 2 otherwise
ord(7) — 2

(see 4.2).
To begin with we can reprove well known results on automor-
phisms of hyperelliptic curves ([Hur], [F-K, Thm. V.2.13]).

5.1. Proposition.

Let X be a hyperelliptic curve of genus g > 1. Let 7 € Aut(X) \
(Jo), set n := ord(r) and suppose p { 2n.

(i) If n is odd then v(7%¢) = w(r) for d | n, and there are three
possibilities:

(1) g+1 :n(gT+1)7 'U(T) :45 fl :05
(2) 29 +1=n(29; +1),v(T) =3, fi =1, 0or
3) 9=ngr, v(T) =2, fr=2.

In cases (2) and (3), X/(r) is hyperelliptic.
(ii) If n be even, then f; <2 and we have

(1) fi=wv(r) =2 = v(rd) =2ford|n,d<n,d#n/2
(2) fi=v(r) =1 = n =2q with g being an odd.
(3) fl =0 = U(T) 6{07254}7

In cases (1) and (2), X/(r) has genus 0.
Proof. (i) n odd. Equation (4) becomes

2n—1)=(m+fi)in—-1)+A: (),
where 7 is the pushdown of 7 to X. Thus u; + f1 < 2.

CLAIM. u1 + f1 = 2.
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Now (i) is a particular case of 3.2.2.1 (i). The statement on
hyperellipticity follows from 1.2 (i).

Proof of the claim. Suppose u+ f; = 1. Then (x) and 1.3 implies
n—1=34n1<icn(n — d)zq for certain z4 € N. Since n —d > 2n/3
then d = 1, a contradiction.

A similar argument also shows that u; + f; = 0 is impossible.

(ii) n even. If (Jy) € (7), then f; = 0 and v(7) = 2u; < 4 (see
4.3). Let (Jo) C (7). Then by 3.3 v(r) < 2. Now equation (8)
becomes

AY

n—2

This implies (1). Now let v(7) = f; = 1 and set n = 2%q with ¢ odd.

If z > 2 by 3.3.2 (iii) we would have 2°! € G(P), a contradiction.
¢

v(T) =2 —

REMARK. The examples in [Hur], [Ho| and [F-K] show that all
the cases of the proposition occur.

From now on we assume 7y > 0.

5.2. Proposition.

Let 7 : X — X be a 2-sheeted covering of curves of genus ¢ and
7y respectively. Suppose v > 0 and g > 4y+1. Let 7 € Aut(X)\ (J,)
such that v(7) > 1if v = 1. Set n := ord(7) and assume p { 2n.

(i) Let n be odd.

(1) Ifv(r%) = v(7) for all d | n, then n < 2y + 1.
(2) Set 7 := Jyo1. If v(r?) # v(r) for some d | n, then

3(2y+1)/11 if uy + f1 >3
n < 3’)’/4 ifug+f1 =2
=) 32y-1)/5 ifur+fr=1
3(y—1) if ur + f1 =0.
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provided g, > 1, and

3(y+1)/4  ifu+fr>4
32y+1)/5  ifu +fi=3
-] 3y if ug + f1 =2

22y+1) -1 fu+ f1 <1

otherwise.

(ii) Let n be even.

(1) If (J,) € (7), then f; =0 and

v+l ifu(r)>8
n<q 2y ifo(r) =6
22y+1) ifo(r) <4

22y —2+wv(r))/(v(r) +2) if g, >2
2(2y =2+ wv(r))/v(r) if g =1andv(r) >1
n<< 2(2y—2+uv(r))/(v(r) —2) if g =0and v(r) >3
4(2y + 1) if g =1 and v(7) = 0,0
gr =0 and v(7) < 2.

Proof. If n is odd (1) follows from 3.2.2.1 while (2) follows from
(4) and 2.1 (notice that here Az > 2n/3, where 7 is the pushdown
of 7 to X). If n is even the bounds follow from 3.2.3 and 3.3. &

REMARK. Let 7 be as in 5.2 and suppose f; > 1. If n > 2v,
then X/(r) is hyperelliptic. If n is even and n > 4, then X/(7) has
genus zero.

This remark follows from 1.2 (i), (iii).

5.3. Let 7 € Aut(X) whose order n is odd and assume v(7) > 1
if v = 1. Assume further that A; = 0 and p t 2n. We state some
remarks on v(7) in the case where n is large enough. By §3.2.2.1 this
means n =2y+1lorn=+vy+1. Thus g, =0 (71 = Jyo7).
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(i) m = 27y + 1. By the claim of 3.2.2.1 we have the following table.

Case | I |IT|IIT | IV
o(fr) |65 4| 3
f1 0111 2 3

We notice that in Case II from the Riemann-Hurwitz formula
for m, we have 2g — 4y + 1 = (2¢; + 1)(2y + 1) and hence for
P € Fix(J;) N Fix(7) we find

H(P) = (2m1,...2m,, 4y + 2,29 — 4y + 1),
where my,...,m, = 2v are the first y positive non-gaps at 7(P)
(see 1.2 (i) (iii)).

In Case III we have 2g — 2y + 1 = (2y 4+ 1)(2g, + 1) € H(P) for
P € Fix(J,) N Fix(7).

(ii) m = v + 1. By Remark (ii) of 3.2.2.1 we have 2(y + 1) € H(P)
for P € Fix(J,) NFix(7), and the following table.

Case | I |II |IIT | IV |V
o(r) |8 7| 6 | 5 |4
flol1l 234

Moreover in Case II, H(P) is as in Case II above; in Case III,
29—3v+1 € H(P); in Case IV, 29 —2vy+1 € H(P); and in Case
V,29—v+1e H(P).

5.4. Elliptic-hyperelliptic curves.

Let X be a 2-sheeted covering of an elliptic curve X. Let 7 €
Aut(X) \ (J1) with v(r) > 1, and set n := ord(r).

I. n odd. By 5.2 (i) we have n = 3 and hence the possibilities for
(v(7), f1) are those of the table in 5.3 (i). However, as we will see
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in the remark below, the cases (6,0) and (4,2) are not possible.
Hence the possibilities are listed below.

Case | 1|2
v(r) | 5|3
fi 11]3

II. n even. By 5.2 (ii) n < 12. Moreover n # 10 because X does not
admit automorphisms of order 5 fixing a point.

I1.1 (J1) € (7). Here f1 = 0, n < 6 and 2 < v(7) = 2u; <
4+4/(n—1). If n =2 then v(7) € {4,8}. The case n = 6 is
not possible. All these statements will be proved in the remark
below.

I1.2 (J1) C (7). Here f1 = v(7), n < 12 and we have g; = 0 and
<

1 <w(r)

4. Equation (8) becomes
(n—2)v(r) + AL = 2n.

Then

(1)
(2)

(3)

n=4&uv(r) =4

n =6 = v(1) € {1,3}. In fact, we have v(7)+v(72) = 6. By
the odd case v(72) € {5,3} and hence the result. Conversely
v(7) = 3 gives (n — 6) + A% = 0 and hence n = 6;
n=8&v(r)=2. If n =8, 2v(1) + v(r?) = 8. By 3.2.3.1
(iii), v(7%) = 4—4g,>. Since this number is positive then we
must have v(72?) = 4 and thus the result. The implication
“«<” follows from the other cases.

n =12 = v(7) = 1. Here we find 2v(7) + v(72) + v(73) +
v(1?) = 12 () and v(73) = 4—4g,s. If this number is 0 then
v(12) +v(7*) = 12. But since v(72) < 4, v(r*) <5 thisis a
contradiction. Hence (*) becomes 2v(7) +v(72) +v(7*) = 8.
By the case n = 6 we have v(72) + v(7*) = 6 and thus the
result.

We now summarize this discussion in a table.

Case 3 4 5 6 71 8
n 2 4 4 6 8 |12
o(r) | {4,8} | {2,4} |4 |{1,3} |2 ]| 1
f1 0 0 4 {13} 2] 1
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REMARKS.

Let 7 € Aut(X) \ (J1) with n = ord(7) = 3. We show that
(v(7), f1) € {(6,0), (4,2)}. Let Py € Fix(J;). Since 2 € H(n(F,))
we have 4 € H(P). Let z € k(X) such that dive(z) = 4F.
Then by Castelnuovo’s genus bound (Lemma 1.1) we have

k(z) C k(X).

Let r (resp. s) be the number of fixed points of J; which are
(resp. not) totally ramified for k(X)) |k(z). Let 2¢ be the number
of points P € X \ Fix(J;) such that w(P) is totally ramified for
k(X) | k(x)-

CLAIM. siseven, 7 +s=29g —2and r+t=4.

Proof. By [M-P, 7.5], k(X)|k(z) is a Galois extension and then
s is even and r + s is the number of fixed points of J; which is
2g — 2. Now by the Riemann-Hurwitz formula we have

29 — 2 = 4(—2) + 3r + s + 2t,

from where it follows that r + ¢ = 4.

Let B, := n(Fix(J1)). Since 7 commute with J; we have7(B;) =
B;. In particular, the claim above shows that at least f; >
1. This eliminates the case (v(7),f1) = (6,0). Now suppose
(v(7), f1) = (4,2). Thus g = 2 (mod 3) (*). Moreover, we can
assume that Py is fixed by 7 or the image under 7 of its two fixed
points not fixed by J; is a totally ramified for k(X)|k(z). In the
first case there exists Q € Fix(7), such that 7(Q) is a point of
ramification 2 for k(X)|k(z). Let z=}(z(Q)) = {Q,Q1}. Then
F(m(Q1)) = m(Q1) and, since ged(2,3) = 1, we have 7(Q1) = Q1.
This implies f; > 3. In the second case 2g—6 = 0 (mod 3). This
is impossible under (*) and we also eliminated (v(7), f1) = (4,2).

<

Here we illustrate Case 1 and Case 6: n =6, v(1) = f1 = 1.

Let g be a multiple of 3, ¢(z) a separable polynomial over k such
that ¢(0) # 0, deg(q(z)) = (g — 3)/3, and let p(z) := 43 — A,
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A € k*. Suppose that ged(p(x),q(z))) = 1. Now consider the
curve X whose plane model is given by

Clearly X is a double covering of the curve y? = P(z) which is
an elliptic curve. By Riemann-Hurwitz X has genus g and the
unique point Py, over x = oo is a fixed point of J;. Moreover,
the four points over z = 0 are not fixed by J;. Let € be a 3-root
of unity. The automorphism 7 given by

(z,2) — (ex, 2),

has five fixed points, namely P,, and the points over x = 0.
Considering J; o 7 we illustrate the case with n = 6.

(iii) Here we illustrate Case 2 and Case 6: n =6, v(7) = f1 = 3.

Let g =1 (mod 3), ¢(x) a separable polynomial over k such that
q(0) # 0, deg(q(z) = (9 —4)/3 and p(z) = 42® — A, A € k~.
Suppose that ged(p(x), g(z)) = 1. Let X be the curve given by

2t = p(z)(q(z?))*a’.

Then X is a double covering of 42 = p(z); the unique point Px
over £ = oo and the two points over z = 0 are fixed by J;. Let
€ be a 3-root of unity and 7 the automorphisms defined by

(z,2) — (x, €2).

Then the fixed points of 7 are P, and the two ones over z = 0.
By considering J; o 7 we illustrate the case where n = 6.

(iv) Let n even and suppose that (J1) Z (7). Thus n € {2,4,6}. We
prove that n = 2 = v(7) € {4,8} and n = 6 is not possible. Let
n = 2. Hence g = 2¢g; — 1+ v(7)/2. Since ord(7) = 2 from the
proof of the claim in (i), g — 3 must be an even number. This
eliminates v(7) € {2,6}. Now let n = 6. Riemann-Hurwitz gives
g—3=06g, —8+uv(r)+v(r?) +v(r3)/2. By the cases n = 2 and
n =3, g — 3 is odd. This eliminates n = 6.
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Next we show that our results are sharp. Let g € ZT such that
g =3 (mod 4). Let p(z) = z* — A irreducible in k[z], ¢(z) a sep-
arable polynomial of degree (¢—3)/4 such that ged(p(z),q(z)) =
1. Let X be the curve given by

2t = p(z)(q(z*))”.

Then X is a double covering of the curve y?> = p(z) and the
four points over x = oo are not fixed by J;. X admits the
automorphisms 7 : (z,z) — (ex, z) and 72, where € is a 4-root
of unity.

If ¢(0) # 0 then 72 has eight fixed points and 7 has two fixed
points. If ¢(0) = 0, v(72) = v(7) = 4.

Finally we consider (J;) C (7). We can assume n € {4,8,12}.
Case 5 is illustrated by the automorphism (z,z) — (z,€ez), € a
4-root of unity, defined on any of the above curves. Now we
illustrate Case 7. Let g € Z™ such that ¢ = 4 (mod 4). Let
p(z), g(x) be as in (iv) except that deg(q(z)) = (¢ — 4)/4 and
q(0) # 0. The curve

2 = p(z)(zq(a"))?,

is a double covering of y? = p(z) and admits the automorphism
(z,2) = (2z,€z), where € is a 8-root of unity. It fixs the two
points over x = oo.

Now we consider Case 8. The curve in (ii) admits of the auto-
morphism (z, z) — (e*z,€3z), where € is a 12-root of unity. Its

unique fixed point is the only one over z = oo.

(vi) Suppose that X admits of an automorphism as listed in Cases

1-8 and let z be as in (i). Then, since k(X)|k(z) is Galois [M-P,
7.5], X is defined by a model plane as in the examples above.
To see this one uses the well known group structure of automor-
phisms fixing a point on elliptic curves (see e.g. Silverman [Sil,
Thm. 10.1]) and Kato’s [K1, §6] or Garcia’s [G, Lemma 7).
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5.5. Certain double coverings of hyperelliptic curves.

Here we generalize the previous example. We consider curves X
such that there exists Py € X with 4 € H(P) and such that X is a
double covering of a curve X of genus v > 2. Let g be the genus of
X, J, an involution such that X/(J,) = X, and let z € k(X) such
that divee(z) = 4P). Then by Castelnuovo’s inequality (1.1) and 1.2
(i) we obtain

5.5.1. Claim.

If g > 2y + 3, then
(1) Py € Fix(J,).
(2) y={l € G(Ry) : £ even}.

In particular X is hyperelliptic. In what follows we assume g >
4y + 1. Let 7 : X — X, r (resp. s) the number of fixed points of
J, which are (resp. not) totally ramified in k(X) | k(z) and let 2t
be the number of points P € X \ Fix(J,) such that 7(P) is totally
ramified for k(X)|k(x). By [M-P, 7.5], k(X)|k(z) is Galois (here it
is enough to assume g > 3v). Hence as in the claim of 5.4 Remark
(i), we obtain

CLAIM. siseven,r+s=29g—4y+2andr+t=2y+2.
Next we only consider automorphisms 7 such that n = ord(7) is
prime and equals to either 2y + 1 or v + 1.

CASE n = 2y + 1.

As in Remark (i) of 5.1 here we also eliminate the cases I and III
of 5.3 (i). We illustrate the remaining cases.

Let ¢ € Z" such that ¢ = —2 (mod (2 + 1)). Let g(z) be
a separable polynomial over k such that ¢(0) # 0 and deg(q(z)) =
(9—37)/(2y+1). Let p(x) := 227" — A be an irreducible polynomial
over k[z] such that ged(p(z),q(z)) = 1. Consider the curve

2t =p()(g(z*7"))%.

Then the unique point Py over z = oo satisfies 4 € H(P); X is a
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double covering over the hyperelliptic curve 32 = p(z); the automor-
phism

(z,2) — (ex, 2),

where € is a (27 + 1)-root of unity, has five fixed points namely Py
and the four ones over z = 0. This illustrate case II of 5.3 (i).

Now take g € Z™ such that g =« (mod (2y + 1)), ¢(z), p(z) as
above but with deg(¢(z)) = (¢ — 3y —1)/(2y + 1). Then the curve
given by

2t = p(a)(q(a™)) %,

is a double covering of y? = p(x), 4 € H(P,) where P, is the unique
point over £ = co. The automorphism

(z,2) —> (62.’L‘, €z),

where € is a (27 + 1)-root of unity, has three fixed points: Py and the
two ones over z = 0. This illustrate Case IV of 5.3 (i).

CASEn=v+1.

As in the previous examples here one can show that Cases I, II
and IV of 5.3 (ii) are not possible. The remaining cases are illustrated
below.

Let = be a transcendental element over k, ¢ € Z* such that
g = —2 (mod (v + 1)). Let g(z), p(z) be separable polynomials
over k[z] such that deg(q(z)) = (¢ —3y—1)/(v+ 1), deg(p(z)) = 2,
q(0) # 0, p(0) # 0 and ged(p(z),q(z)) = 1. Consider the curve X
defined by

2t =p(a" ) (g(27)2)%.

Then X is a double covering of 42 = p(z7*!); the unique point P,
over z = a, for a € k a root of p(x), satisfies 4 € H(P,), and it has
two or four points over £ = oo according as g — 2y +1 is odd or even.
Let € be a (77 + 1)-root of unity and consider the automorphism of
X given by

(z,2) — (x, €2).
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Its fixed points are those over £ = 0 or x = oco. This illustrate cases
IIT and V of 5.3 (ii).

REMARK. Let X be a hyperelliptic curve admitting of an au-
tomorphism 7 of order n. Then Hurwitz [Hur] showed that X and
7 can be defined by 42 = f(z") and 7 : (z,y) — (ex,+y), or by
y?2 = zf(z") and 7 : (z,79) — (ez, €'/2y), where € is a n-root of unity.

Let = be as in the above examples. Using the fact that K(X) |
k(z) is Galois, the mentioned Hurwitz’s results and Komeda’s [Ko,
§4], one can show that the curves of this section admitting of an
automorphism satisfying Cases IIT and V of 5.3 (ii), can be defined
by a model plane as those of the examples stated above.

5.6. Certain double coverings of trigonal curves.

To finish this paper, let consider a curve X admitting of a point
Py such that 6 € H(P) and such that X is a double covering of a
curve X of genus 7. Let J, be an involution such that X/(J,) = X
and let x € k(X) such that divee(z) = 6F. As in 5.5.1 we have
that Py € Fix(J,) and v is the genus of X, provided g > 2y + 5. In
particular X is trigonal. We further assume

g > max(4y + 2,2y + p),

where p := {£ € G(F) : £ = 0 (mod 3)}. Under this condition it
follows from [M-P, Thm 7.1] that k(X) | k(z) is a Galois extension.
Then, it is not difficult to see that H(Py) = (6,29 — 4y + 1 + 249 +
dig + di5,4y +4 — 241 — 204,29 — 4y + 1 + 201 + 245,47 +4 — 219 —
215,29 — 4y + 1 + 441 + 4ig + 2i4), where the z';-s are non-negative
integers satisfying i1 + 4o + 44 +i5 =v+1, 41 +i3+i5 = 2r + 1 and
i1+ 2i9 + 14 + 2i5 Z 0 (mod 3). Moreover, X admits a model plane
of type

5 1ij
2 = [ II(= - ay)’,
j=li=1
where the a} ;8 are pairwise different elements of k.
From this fact one can prove results similar to 5.4 and 5.5. We
leave these to the reader.
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