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SOMMARIO. - Dato il reticolo di tutte le topologie definibili per un in-
sieme infinito X, quelle che sono minime rispetto alla proprietd Tra
possono essere identificate. L’argomento qui presentato offre un ap-
proccio teorico ricorrendo ad una relazione di pre-ordine indotta su X
dalla topologia data. Conseguentemente viene illustrata la tecnica per
stabilire il minimo in questione fornendo una descrizione alternativa
della struttura topologica minima. Piu precisamente, la struttura mi-
nima puo essere descritta in rapporto al comportamento della relazione
binaria venutasi a creare ed alla topologia intrinseca indotta su di un
insieme parzialmente ordinato.

SUMMARY. - Given the lattice of all topologies definable for an infinite
set X, those which are minimal with respect to the property Tra are
identified. The argument presented offers an approach which may read-
ily be interpreted order-theoretically, by invoking the specialization pre-
order induced on X by the given topology. Accordingly, the potential of
the technique developed to establish minimality is illustrated in provid-
ing an alternative description of the topologically established minimal
structure. Specifically, the minimal structure may be described in terms
of the behaviour of the naturally occurring specialization order and the
intrinsic topology on the resulting partially ordered set.
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Introduction.

Given an arbitrary infinite set X, we identify those topologies on
X which minimally satisfy the property Tr4. A topological space
(X,T) is said to be

e Ts, if and only if for each = € X, either {z} is T-closed or {z}
is T-open or {z}\{z} = {y} where {y} is T-closed

e Tsp if and only if for each z € X, either {z} is T-closed or
{z}\{z} = {y} where {y} is T-closed

e Ty if and only if for all z € X, either {z} is T-closed or {z} is
T-open or {z}\{z} is a point-closure ([7])

e T if and only if for each z € X, either {z} is T-kernelled, as
defined below, or T-closed (see [1], [2] and [3])

e Ty if and only if 7 is Tr and Ty (equivalently, if and only if
T is TF and TSA)

e Tp if and only if for each z € X, {z}\ {z} is T-closed (see [1],
[2], [5] and [11])

e Tgg if and only if for each z € X, either {z} is T-open or {z}
is T-closed (see [6] and [10]).

The property TF 4 occupies a special position in the logical hierarchy
of topological invariants. In a sense, it bridges the ‘gap’ between
Tss and Tsp (where Tsp implies Tr4 which in turn implies Tis4)
in that it is both implied by Trs and implies Tr. This special
nature of T4 is particularly apparent in our investigations into its
minimal structure where we identify some special cases of minimal
Tr 4-topologies. It transpires that for such cases we may draw upon
some previously established minimality results concerning Trg and
Tsp-. Such structures however represent only a partial solution and
we develop some techniques with which to establish the complete
solution.

We proceed by a development of a purely topological approach
to the question of minimality, but indicate how a recognition of the
underlying order structure of any topological space affords us new
and valuable insight into the problem. By invoking the specialization
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pre-order induced on X by the given topology, we may adopt an
order-theoretic approach which lends a welcome visual aspect to the
discussion (see [7]). We reserve an order-theoretic interpretation of
the established results for the final section of this work.

We begin with some definitions. Note that throughout this work,
X shall denote an arbitrary infinite set and LT(X) the lattice of all
topologies for X.

DEFINITION 1. Given 7 € LT(X) and z € X, the intersection
of all T-open subsets of X which contain z is called the T-kernel of
{z} and is denoted by {z} (assuming no danger of ambiguity). We

often refer to {z} as a point-kernel and if {z} = {z}, we say that
{z} is T-kernelled.

As usual, {z} denotes the T-closure of {z} and we similarly refer
to it as a point-closure. Further, the T-derived set of {z} is {z}\ {z}
which we often refer to as a poini-derived set. .

Of course, given z, y € X, z € {y} if and only if y € {z}. We
adopt the notation of [2] by writing

Np(T) = {zeX:{z}={z}}

Ns(T) = {weX:{x}:{/x\}}

No(T) = {zeX:{z}eT}

Nu(T) = {Q:EX:{;}:{w,y} whereyEND(T),y#w}.

Given T1, T2 € LT(X), 71 is said to be stronger or finer than T3 (or
T2 to be weaker or coarser than 77) if and only if 7 C 77 in LT(X).

Finally, given subsets A and B of X, we denote by |A| the car-
dinality of A and write |A| < w if A is finite; we write A C B if and
only if AC B and A # B.

DEFINITION 2. Givenz € X and Y C X, we define the following
members of LT(X):
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D The discrete member of LT (X)
Y) {GCX:Y CG}U{0}
) P(X\Y)U{X)
Z(x) {GC X: zeG}u{h},
‘included point” member of LT'(X)
E(x)  PX\{z})U{X},
‘excluded point’ member of LT'(X)
D(Y) {GCX:GCY and Y\G is finite
or Y C G and X\G is finite } U {0}
C The cofinite (or minimum 77)
member of LT'(X)

DEFINITION 3. Given a subset K of X and a non-empty family
P of subsets of X, P is said to be

(i) associated with K if and only if for each P € P, PN K # ()

(ii) simply associated with K if and only if for each P € P, PN K
is a singleton.

DEFINITION 4. Given non-empty disjoint subsets () and K of X
and a partition P of Q U K such that P is simply associated with
@ and associated with K, we define S(P) to be the topology whose
closed sets are generated by the family

{Hy,z} : {y,2} C P,y #z; {} = PNQ for some P € P}U {0, X}.

LEMMA 5. Let T e LT(X), ACX, 24y in X and T* =T N
(Z(y) UE(x)). Then the T*-closure of A is described by

I — A Jifyg A
T Au{z} ,ifye A
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Proof. Clearly A C A*. Now either y ¢ A so that A is T*-
closed whence é* CA ory€Ain which case y € A" and hence
x € A*. Thus {z} C A" and since AU {z} is T*-closed, the result is
immediate. &

LEMMA 6. Let T € LT(X), let x, y € X with y € Ng(T),
z€Np(T),y#xandlet T* =T N(Z(y) UE(x)). If T is Tr, then
T* 18 TF.

Proof. By Lemma, 5, given z € X, we have
{y}u{z} ,z=uy.
Further, y € Ng(7) implies that y € Ng(7*), and for any z # y
with z € Np(T), z € Np(T*). Finally, if 2 # y and z & Np(T),

then z € Ng(T) (since T is Tr), z # z and {2z} = N{G\{z}: G €T
and z € G} so that z € Ng(7*). Hence T* is Tr. O

LEMMA 7. If (X,T) is Tra, * € Np(T) and y € No(T) where
x #y, then T* =T N(Z(y) U&(x)) is Tra.

Proof. By Lemma 6, 7* is Tr. Further, again by Lemma 5,
we observe that {y} is 7*-open, {z} is T*-closed and for any z €
X\ {z,y}, either {z} is T-closed and therefore 7*-closed, or {z} is
T-open and hence 7*-open, or {z}\{z} = {t} where t # y so that
{z}"\{z} = {t} . That is, T* is T4 and hence Tf 4. o

LEMMA 8. If (X, T) is minimal T4, then
(i) y € No(T) implies {y} = {y} U Np(T)
(ii) No(T) N Np(T) =0
(iii) No(T) N Ng(T) =10
(iv) Ns(T) = Nu(T)U No(T) (equivalently, Ns(T) N Np(T) =0)

(v) No(T) # 0 implies Np(T) is T -closed.
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Proof. (i) Since T is Tr, {y} C {y} UNp(T) for any y € X.
Conversely, let € Np(7) and suppose that z & {y} where y €
No(T). U T*=TnN(Z(y) UE(z)) then, since z & {y}, T* is strictly
weaker than 7 and by Lemma 7, 7™ is T4 — clearly a contradiction.
We conclude that = € {y} so that {y} = {y} U Np(T).

(i) If t € No(T) N Np(T), then {t} = {t} = {t} U Np(T)
by (i) above so that Np(7T) = {t}, whence Ng(7) = X. But this
implies that X = Np(7) — an obvious contradiction. Thus No(7)N
Np(T) = 0. B

(i1i) If t € No(T) N Ny (T) then, again by (i) above, {t} = {t} U
Np(T) = {t,z} for some =z € Np(T). Hence Np(T) = {z} so that,
by (i), {z} = {z,z} forallz€ X and CNE(z) C T in LT(X). Thus
T =Cné&(x), since CNE(x) is Tra, and No(T) = O — clearly a
contradiction. Hence No(7) N Ng(T) = 0.

(i) Ift € Ng(T)NNp(T), then No(T) = 0 (otherwise, by Lemma
7, we may construct a strictly weaker T 4-topology!) so that T is
Tsp and therefore minimally Tsp (since Tsp implies Tr4). Then,
Ns(T) = Ng(T) so that Ng(7T)NNp(T) = 0! Hence, we must have
Ns(T)NNp(T) =0. o

(v) If y € No(T) then, by (i) and (i), {y}\{y} = Np(T) and
since T is Tp, the result follows. o

We quote without proof the following results from [6] and [9]:

THEOREM 9. (X, T) is minimal Tggs if and only if either T =C
or T =E(X\Y)U(CNZI(Y)) for some non-empty proper subset Y
of X ([6])-

THEOREM 10. (X, T) is minimal Tsp if and only if T = S(P)U
(CNI(K)) for some non-empty proper subset K of X and partition
P of X such that P is simply associated with X\K and associated
with K ([9]).

Observe that 7 C C in LT(X) (so that No(7) = () and that
K = Ng(T) = Ns(T).

THEOREM 11. Given T € LT(X),

(i) T is minimal Tra and Ng(T) = 0 if and only if T = E(X\Y)U
(CNZ(Y)) for some non-empty proper subsetY of X such that
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X\Y is non-singleton
(equivalently, if and only if T is minimal Tgs, No(T) # 0
and |[Np(T)| > 1).

(1) T is minimal Tra and No(T) = 0 if and only if T = S(P) U
(CNI(K)) for some non-empty proper subset K of X and par-
tition P of X such that P is simply associated with X\K and
associated with K

(equivalently, if and only if T is minimal Tsp).

Proof. (i) =: By hypothesis, T is Tgs and therefore mini-
mal Tgg (since Tgs implies Tp4) so that T = E(X\Y) U (CNZI(Y))
(see [6]) where Y is a non-empty proper subset of X. (Observe that
T # C since CNE(x) is Tra for all z € X). Further, X\Y is non-
singleton (otherwise X\Y = {z} implies that y € Ny (T) for each
y €Y = Nyo(T), contradicting Lemma 8 (iii)), whence result.

<: Conversely, with 7 as described, T is minimal Tgg
(again, see [6]) and Ny(T) = 0. Let 7* C T in LT(X) where
T*is Tpa. Then No(T*) C No(T) =Y, Np(T*) C Np(T) = X\Y
and Ng(T*) C Np(T)UNg(T) =X\Y. Ifz € Nyg(T*), thenz ¢ Y
and z € {y} foreachy € Y (since {y} = {y}UX\Y C {y}" for each
y €Y ) so that z € Np(T*) U Ng(T*) = X!

Hence Ny (T*) = 0 so that T* is Tgg, implying 7 = 7*. That
is, 7 is minimal T 4.

(i) =: By hypothesis, T is Tsp and therefore minimal Tsp.

<«: Conversely, since 7 is minimal Tsp, then No(7T) = 0
and one can eagily show that 7 is minimally T 4. &

LEmMMA 12. If (X,T) is minimal Tpa with No(T) # 0 and
Ny (T) #0, then

(i) Nu(T)UNy(T) is infinite
(i) [Np(T)| > 1.
Proof. (i) Suppose that 2 < |Ng(7) U No(T)| < w; then,

by Lemma 8 (iii), y € Ny (T) implies X\ {y} = No_(T) U Np(T) U
(Nu(T)\ {y}) so that by Lemma 8 (i), X\ {y} = U{{s} : = € No(T)}
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uu {{?} :z€ Nyu(T), z # y} That is, X\ {y} is T-closed, being a
finite union of 7-closed sets, so that y € Ny(7) contradicting Lemma
8 (iii). It follows therefore that Ny (7) = 0, thus contradicting the
given hypothesis. Hence Ny (7) U No(7) must be infinite.

(i1) If Np(T) = {z}, then No(T) = @ (otherwise by Lemma 8
(1), No(T) N Ng(T) # 0 contradicting Lemma 8 (iii)), contradicting
the hypothesis.

Thus |[Np(T)| > 1. &

LEMMA 13. Let (X,T) be Tra with
(1) No(T) N Np(T)
(ii) No(T) N Nu(T)

(iii) Ns(T)NNp(T) =

If T C T in LT(X) where T* is Tra, then No(T*) = No(T),
Np(T*) = Np(T) and Nyg(T*) = Nu(T).

0
0
0.

Proof. Since T* C T in LT(X), immediately No(7*) C No(T),
Ng(T*) € Ns(T) and Np(T*) C Np(7T). Further, Ny(T*) C
NH(T) U ND(T) so that NH(T*) U ND(T*) - NH(T) U ND(T)

By hypothesis, therefore, y € No(7) implies y ¢ Ng(7T*) U
Np(T*) so that y € No(T*). That is, No(7T) = No(T*).

It follows immediately that Ny (7T*)UNp(T*) = Ng(T)UNp(T).
Now y € Ny(T) implies that y ¢ Np(T) so that y & Np(T*),
whence y € Ny(T*). That is, Ng(T) C Nu(T*).

On the other hand, suppose there exists y € Ny (7T*) with y ¢
Ny (T); theny € Np(T) and y & Np(T*) so that y € Ng(T™) (since
T* is Tr). But Ng(T*) C Ng(T) so that y € Np(T) N Ng(T),
contradicting (7ii) of the hypothesis. We conclude that Ny (7*) =
Ny (T), from which it follows that Np(7T*) = Np(T). O

THEOREM 14. (X,T) is minimal Tra with No(T) # O and
Ny (T) #0 if and only if T = E(X\B)VS(P)VD(BUK) for some
non-empty, disjoint subsets B, K and @ of X such that B U K is
infinite but has at least two elements in its complement, and partition
P of QU K such that P is simply associated with Q) and associated
with K.
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(Moreover, the representation is canonical: B = No(T), K =

Nu(T), X\(BUK) = Np(T) and Q = {{y}\{y} : y € Nu(T)},
while P is the family of kernels of singletons in Q.)

Proof. <: Given z € Q U K, let P, be the element of P which
contains z; then observe that

- {z}UX\(BUK)), ifz€B
{z} =< {z,%} ,if z € K, where {2,} = P, N (X\K)
{z} ,if z¢ BUK.

It is readily verified that B = No(T), K = Ng(T), K UB = Ns(T)
and X\(BUK) = Np(T) so that T is Ts4. Moreover, T is Tr since
D(BUK) is Tr and TF is preserved under strengthening of topology,
whence 7 is Tra.

Let 7* C T in LT(X) where T7* is Tr4. Then appealing to
Lemma 13, No(7*) = B, Np(T*) = X\(BUK) and Ny(T*) = K.
Moreover, {z} = {z} for all z € X (since z ¢ BUK clearly implies
{z} = {2} = {z}", =z € B implies {z} C {z} C {z} UNp(T*) = {2}
and z € K implies {2} = {z,2,} C {z}" where {#} = P, N (X\K)
(and z, € Np(T*)) so that {z} = {z}"). Hence, £&(X\B) C T*,
CNI(KUB) CT*and S(P) C T* in LT(X).

Finally, given F' = F1 U[X\(B U K)] where F} is a finite subset of
BUK, either F; = () in which case F is T*-closed (since B # ) and

T*is Tp) or Fy # () so that F = U{{?} ‘x € Fl} U[X\(BUK)] =
U {{;}* 1z € Fl} U[X\(B U K)] which is T*-closed. That is, D(BU
K) CT*in LT(X) so that 7 = 7* and the result follows.

=: Let K = Nu(T), B = No(T) and Q = {= € Np(T) : z €
{y} for some y € K} Then by Lemma 8, Np(7) = X\(BUK) and

B and K are disjoint while, by Lemma 12, B U K is infinite with
|X\(B UK)| > 1. Further, since K # 0, @ # 0 and so for each
z €Q, writePzz{yEK:ze{g}}U{z}. Then P ={P,: z € Q}
defines a partition of Q U K and it is readily verified that P has the
stipulated associations with @) and K.

It follows routinely that £(X\B) V S(P) VDB UK) C T in

LT(X) and, since the former is Tr 4 by the proof of sufficiency, 7 =
E(X\B)VS(P)VD(BUK). O
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Thus, the minimal T’r 4-structure is completely identified by The-
orems 11 and 14. We conclude the given approach with the following
which is essentially a corollary to several previous results.

COROLLARY 15. Given T € LT(X), the following statements
are equivalent:

(i) T is minimal Tra and 2 < |[No(7T) U Nu(T)| < w.

(11) T is minimal Tra and Ng(T) =0 and 2 < |[No(T)| < w.
(iii) T is minimal Tp 4, minimal Tgs and minimal Tp.

(i) T is minimal Tr, and Tgg.

(v) T =D(Y) where Y C X is such that 2 < |Y| < w.

Proof. (i) implies (7). By Lemma 12, either No(7) = 0 or
Ny (T) = 0. Now if No(T) = 0, then Ny (T) is finite so that by
Lemma 11 (ii), X is finite! Hence Ng(7) = 0 and so 2 < |[No(T)| <
w.

The converse (7i) implies (i) is immediate.

(ii) implies (773). By Lemma 11 (i), 7 is minimal Tgg with
T =D(Y) where Y C X is such that 2 < |Y| < w so that 7 is
minimal Tr (see [3]).

(#4i) implies (iv). This is immediate.

(iv) implies (v). This is immediate (again, see [3]).

(v) implies (ii). Since D(A) = E(X\A) U (CNZ(A)) for any
non-empty finite subset A of X, then in particular 7 =D(Y) =
E(X\Y)U(CNZ(Y)). By Lemma 11 (i) then, 7 is minimal T4,
Ny (T) =0 and since Y = Ny(7), the result is immediate. O

Order.

DEFINITION 16. A binary relation < on X is said to be a pre-
order (and (X, <) is referred to as a pre-ordered set) if and only if <
is both reflexive and transitive. If, in addition, < is anti-symmetric,
then < is said to be a partial order on X and (X, <) is called a
partially ordered set (or poset). Given z, y € X, we write z < y if
and only if (z,y) € <. If z <y in X with z # y, we write z < y.
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Given a poset (X, <) with ) C Y C X, then Y is said to be
diverse if and only if z, y € Y and # < y implies z = y. Y is said
to be linear, or a chain, or totally ordered if and only if z, y € Y
implies that either x <y or y < x.

z is a predecessor for y if and only if £ < y and whenever z < y,
z € X, then z < z.

z is said to be mazimal (minimal) if and only if z < z (2 < z),
z € X implies that z = z.

z is said to be ultramazimal if and only if x is maximal and for
any non-maximal element z € X, z < z.

DEFINITION 17. Given a poset (X, <) with z € X, we define
e} ={yeX:z <y}

Hat={yeX:y <z}

DEFINITION 18. Given a poset (X, <) with z, y € X, we define
the dual partial order <* of < by z <* y if and only y < x. Then z
is said to be connected to y if and only if there is a finite sequence
Ty = T, T1,%T2,...,Ln =y of elements of X such that (z;,z;11) € <
U <*, each i € n.

(X, <) is said to be connected if and only if = is connected to y
for all z, y € X.

The components of (X, <) are the equivalence classes with respect
to the relation: x = y if and only if = is connected to y.

DEFINITION 19. Let (X,<) be a poset with ¥ C X, and let
n € w. If C is a chain in X with |C| = n, then C is said to have
length n — 1. If the least upper bound, [/, of the lengths of all finite
chains in Y exists, then we say that Y has length [.

Y is said to be a semi-tree if and only if foreachy € Y, {z €Y :
z <y} is achain. Y is said to be a tree if and only if Y is a semi-tree
with minimum element.

DEFINITION 20. Given a poset (X, <), we define the following
intrinsic topologies for X:
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e The weak topology, W, whose closed sets are generated by the
family {0, X, {z} : z € X}.

Thus, W is the smallest topology on X in which all sets of the
form | {z} are closed. Note further that {z} =] {z} for all
rzeX.

e The topology, denoted by M, whose closed sets are generated
by the family {0, X, |{z},|{z}\{z} : 2z € X}.

e The topology, £, which has as (open) base, the family M U
{{z} : z is ultramaximal }.

e The Alexandroff topology, A, whose open sets are generated by
sets of the form 1{z}. (It is easily seen that A is ‘principal’ in
that arbitrary intersections of open sets are open.)

Note that W C M C L C A, and that for each of these topologies,
{z} =l {z}. Given a topological space (X,T), its specialization
order is defined by z < y < z € {y}. In fact, given a pre-order <
and a topology T for X, it is well-known that 7 will have < as its
specialization order if and only if W C T C A. (See [7] or [1].) That
is, W is the smallest and A is the largest of the topologies with a

given specialization order and all such topologies have {z} =] {z}
and {z} =1{z} for all z € X.

Order-theoretic minimality characterizations.

We now present an order-theoretic description of the previously
established minimality results. For the sake of completeness, we
include also the order-theoretic characterizations for minimal Tgg
and minimal Tsp.

Let T € LT(X) with induced order <.

THEOREM 21. (X,7) is minimal Tgg if and only if (X,<) is a
poset such that either

(i) X is diverse and T =W  or
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(ii) all mazimal chains in X have unit length, every mazimal ele-
ment is ultramazimal and T = L.

THEOREM 22. (X,7) is minimal Tsp if and only if (X,<) is
a poset such that all components of (X, <) are trees of length 1 and
T=W.

THEOREM 23. (X,7) is minimal Tr4 if and only if (X,<) is a
poset such that all mazimal chains in X have unit length and either

(i) every component is a tree and T =W  or

(ii) there are at least two minimal elements, each mazimal but non-
ultramazximal element has a predecessor and T = L.
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