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0. Preliminaries.

The main content of these lectures is a brief survey of basic ideas
in the general theory of Gaussian probability distributions in finite-
and, in particular, in infinite-dimensional vector spaces. In these lec-
tures we shall suppose the term “multi-dimensional” to mean “finite-
or infinite-dimensional”. The one-dimensional case is not excluded,
but we shall examine mainly the case of very high or infinite dimen-
sion. Vector spaces over the field R of real numbers will always be
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considered unless another field (C, if not R) is specified. A preference
will be given to coordinateless methods.

The term “probability measure”, or “probability distribution”,
always means a nonnegative countable additive function P (or v in
case the measure P is Gaussian) defined on a o-algebra 2 of subsets
of some set 2, P(Q) = 1. The triad (2,2, P) is called the fundamen-
tal probability space and often is provided with additional structures.
For instance, it is meaningful to discuss whether or not a measure
P is Gaussian only for vector spaces €2, usually denoted in this case
by E. The question of an agreement between both structures will be
considered later.

Although we shall avoid going deeply into the history of the sub-
ject, some historical remarks are needed. First of all, the very term
“Gaussian distribution”, though accepted now almost everywhere,
is not quite just since K. F. Gauss was not the first to introduce
and to study “Gaussian” (“normal”) distributions, at least in the
one-dimensional case (nevertheless we shall follow the customary us-
age). Arising a normal distribution is the point of what is called
“the central limit theorem”. A special case of the central limit the-
orem (known as “Moivre theorem” about the limit behavior of the
falling out coin heads number), though in “local” form, was first
established by A. Moivre (1667-1754). His results were later ex-
tended by P. S. Laplace to “Moivre-Laplace theorem” dealing with
a more general Bernoulli scheme (published in 1810). In addition,
Laplace formulated this historically important theorem in the “inte-
gral” form, so that the limit normal distribution was described by
him in a modern standard way by its density. At the same time Gauss
was developing his least squares method, essentially based on the
notion of joint distribution of a finite set of independent identically
distributed Gaussian random variables. Gauss was also not the first
to consider general joint distributions of independent, not necessary
identically distributed, Gaussian random variables. G. A. A. Plana,
a mathematician from Turin, probably was the first to do it. His
paper appeared in 1813 and contained his earlier results related to
the two-dimensional case. Another statistician who should be men-
tioned is R. Adrain. Still, Plana did not consider general multi-
dimensional (nor general two-dimensional) Gaussian distributions.
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General two-dimensional Gaussian distributions were for the first
time introduced and investigated in details including coefficient of
correlation by F. Galton (1889). Finally, Wiener stochastic pro-
cess (N. Wiener, 1923) generating Wiener Gaussian measure on the
space of continuous function of one variable was the first case of the
infinite-dimensional Gaussian distribution ever considered.

Though A. N. Kolmogorov had published no paper dealing di-
rectly with Gaussian multi-dimensional distributions, the impact of
his ideas can hardly be overestimated. His ideas permitted mathe-
maticians to select the very subject of these lectures. The notion of
metric entropy, important for our future discussions, also goes back
to Kolmogorov. Many important results concerning properties of
Gaussian multi-dimensional distributions were obtained during re-
cent years; these results will be the subject of the discussion below.

1. Where do Gaussian distributions come from?

Do Gaussian distributions deserve such an attention? What are
the reasons for the serious work of mathematicians in different coun-
tries during a few last decades which resulted in considerable new
achievements in this field of the mathematical activity and profound
changes in the very structure of the theory of Gaussian random vari-
ables and random functions? Is the continuing tendency to careful
study of Gaussian distributions based mainly upon a comparative
simplicity of their description? Or does the beauty of the subject
seem for many of us to be so attractive? Or do Gaussian measures
really constantly and independently arise from inside in serious phys-
ical and mathematical problems, and their study may indeed be con-
sidered as one of the fundamental topics of the theory since it inspires
many other parts of the theory both in the results themselves and in
the techniques of investigations? Surely, every of these reasons has
its influence. Now some physically meaningful mathematical situa-
tions will be described such that the property of Gaussness strikingly
arises even though no hint of such a property apparently can be found
in the hypotheses prescribed.
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The mentioned above one-dimensional case of the central limit
theorem seems to be the first profound and simultaneously specific
result in probability theory. Now it has been extended much fur-
ther to include many versions of the infinity-dimensional case. Well
known classical results as well as theorems of this kind obtained re-
cently show how the interaction of many small independent or almost
independent factors, having nothing in common with any Gaussness,
acting additively, startlingly produces Gaussian distributions. This
alone gives a good motivation for careful studying Gaussian measures
and related questions per se.

Let us take another reason for naturally arising Gaussian distri-
bution. This reason consists in the following characteristic property
of Gaussian finite-dimensional distributions. Let p stand for the
finite-dimensional probability density relative to a fixed Lebesgue
measure A of an absolutely continuous measure P on a finite-dimen-
sional vector space F. The value of the integral

- [ ple) log p() A ()

is called the entropy of the distribution P (with respect to the Lebesgue
measure A). In the case of discrete fundamental space Q taken in-
stead of vector space F, and the counting measure v taken instead of
the Lebesgue measure A, this formula gives the value of the standard
entropy of the (discrete) distribution P in the sense of Shannon in-
formation theory. Later (see part 2) we will see that every Gaussian
measure 7 is completely specified given its correlation characteristics:
mean value (barycenter) m. € F and covariance quadratic form ¢,
defined on the conjugate space F’.

THEOREM 1.1. Among all measures on a vector finite-dimensional
space (E, X) with given barycenter m and covariance quadratic form
q, the (uniquely defined by them) Gaussian measure and it alone has
the maximal value of entropy.

It seems to be reasonable to expect that measures with high
values of their entropy are “more typical” than measures with low
values of it.
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Finally, let us mention here another very interesting property of
probability distributions in finite-dimensional vector spaces of high
dimension, which also leads to Gaussian distributions. For the pur-
pose of simplicity of formulation, we will suppose that the vector
spaces are Euclidean. Consider such Euclidean space F and an
arbitrary measure P under the only restriction that its covariance
quadratic form gp (i.e., the trace of the L?(P)-norm on F') exists
and is bounded by a fixed quadratic form (say, by the square of the
Euclidean norm in E’). Suppose a linear functional f € E’ on the
space F is being chosen at random with respect to the uniform prob-
ability distribution m on the surface of the unit ball Vg in the space
E’. Then if the dimension of F is sufficiently high, there exists a one-
dimensional distribution P with a property to be an “almost typical”
distribution for such linear functionals f being chosen at random. In
other words, the distribution of f with the m-probability arbitrarily
close to the unit is arbitrarily close (in some appropriate sense) to
P. This typical distribution P can always be taken as a mizture of
centered (one-dimensional) Gaussian measures.

As an illustration one can take the unit cube in multi-dimensional
(say, in 3-dimensional) Euclidean coordinate space E with the uni-
formly distributed probability measure P on it, and a one-dimensional
subspace I C E/ which should be thought of as being chosen “at ran-
dom”. Consider the image Py, = P o71'i1 of the measure P along the
orthogonal projection m ¥ — L, i.e., really the distribution of the
linear functional

JrE>z— (z,e0)E,

where ey, is a unit vector from L. When L coincides with one of
the coordinate axes (that is, of course, not typical for L) or is close
to such an axis, the measure Py, is close to the measure uniformly
distributed on an interval and hardly can be considered as one close
to Gaussian measure. But according to the central limit theorem if
many of coordinates are essentially involved (what is typical), then
this distribution must be close to a Gaussian distribution. The clas-
sical central limit theorem is entirely based on the hypothesis of the
independence (of coordinate functionals). The essence of the phe-
nomenon under discussion consists in refusal of independence what-
ever. The price for this is evident: the typical distribution is a
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mizture of Gaussian one-dimensional centered distributions and not
necessary can be token the pure Gaussian distribution, though suit-
able conditions for it can be given.

A precise formulation as well as some necessary discussion will
be given later.

Theorem 1.1 not only establishes a characteristic property of
Gaussian distribution. Together with other mathematical phenom-
ena just mentioned, it helps understanding why Gaussian distribu-
tions are so wide-spread in the mathematical models of the reality.
Some other characteristic properties without such ambitious preten-
sions will be discussed later.

One more remarkable property of the Gaussian distributions was
used by J. Maxwell for establishing the distribution law for velocities
of molecules. This three-dimensional distribution must possess the
following properties:

1. The coordinate functionals are independent.

2. The space is isotropic, i.e., the distribution is rotation-invariant.

It can be proved that this distribution is centered Gaussian.

2. What are Gaussian measures? 1.

Of course, readers ought to be aware of the common notion of
Gaussian measure in a finite-dimensional vector space E or, at least,
in the coordinate space R” (otherwise they would not understand the
preceding discussion). Here we are going to gather definitions of some
notions closely connected with the theory of Gaussian measures. As
always, using different approaches to the object helps us to under-
stand more clearly the nature of things. In the finite-dimensional
case there may be different approaches to well known and evidently
well and uniquely defined mathematical object. It is not quite so in
the infinitely-dimensional case. Some efforts and a serious discussion
will be needed in order to avoid the possible emergence of some ex-
tremely pathological objects which can drastically distort desirable
important properties of measures from the considered class. In this
section only the finite-dimensional case is considered, though many
formulation may be and will be used in the very general case.
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DErFINITION 2.1. A Borel probability measure v on a finite-
dimensional vector space F is called nondegenerate Gaussian if it
has a density p, with respect to a Lebesgue measure A on F of the
form

pa(@) = Cexp(~3Q(x — m)),

where () = (), is a positive quadratic form on £, the mean value m €
E is an arbitrary vector, and C' = C  is the normalizing constant.
A space with Gaussian measure is called a Gaussian measure space.

The property of a probability measure to be Gaussian does not
depend on the choice of Lebesgue measure A, and a Gaussian measure
7 being fixed, the quadratic form ()., does not depend on the choice
of A as well.

We will call the quadratic form () the concentration form of the
Gaussian measure v, and call the subset

Ey={rel:Qy(z—m)<1}

the concentration ellipsoid of the measure . The case m = 0 cor-
responds to centered Gaussian measures. The transition from ~ to
a centered Gaussian measure with the same concentration form is
called centering. We shall restrict ourselves mainly dealing with
centered measures. The general case would involve only additional
technical difficulties, at least in the finite-dimensional case. A mea-
sure P on a vector space F is called centered if every linear functional
has zero-mean distribution with respect to P.

It is easy to verify that in the case the Lebesgue measure A on
F is in agreement with the Euclidean metric defined on E by the
quadratic form ) (i.e., the A-measure of the unit cube is equal to
the unit), the value of C' is given by the following formula:

C = (2r) 2 dmE,

In the case the concentration form (), coincides with the square
of Euclidean norm on F and, in addition, m, = 0, the Gaussian
measure ¥ = 7% is called the standard Gaussian measure in/on/of
the Fuclidean space E. In the general case if the Lebesgue measure
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A is in agreement with the Euclidean norm on F, and Q,(z) =
(Ryz, )R, where R, is some linear operator, then

C, = (27)"29mE (det R.)3.

Given a nondegenerate Gaussian measure v on a vector space F
with the concentration form )., the corresponding quadratic form
¢ can be considered on the conjugate space E’. Namely, the form
()~ considered as a metric on £ defines a Euclidean space structure
on F, the concentration ellipse £, being the unit ball. This, in turn,
permits to identify the spaces F and E’, and hence, to consider the
function . as a function ¢, on E’.

Let us name the quadratic form ¢, defined on E’ the covariance
form of the Gaussian measure 7. Note that the covariance form
does not depend on the mean value m of the measure 7. In case
E = R" E' = R" the matrix of the covariance form coincides with
the covariance matriz V. of the Gaussian measure vy. Hence, the
covariance form can be defined without any assumption of nonde-
generation for any probability measure P on a vector space F if
E' C L*(P): for f € E' and the measure P supposed to be centered,
the value ¢(f) = qp(f) coincides by the definition with the value of
J(f(2))?*P(dz). In other words, ¢ is the restriction of the square of
the L2-norm generated by P to the subspace F’ C L?(E,P). All this
gives us a possibility to define an arbitrary (not necessary nondegen-
erate) centered Gaussian measure on a Euclidean space F proceeding
from an arbitrary positive (not necessary strong positive) quadratic
form ¢ = gp defined on the conjugate space E’. Such a construction
can be carried out as follows.

DEFINITION 2.2. Given a measure P on a vector space F, its

characteristic functional x = yp E’' — C is the function defined on
every linear measurable functional f on F as follows:

\e (N [expife, £))P(do)

(In fact, the property of linearity of f is not essential).
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Characteristic functional of a measure P can be considered as
its Fourier-transform and restores this measure completely. For a
nondegenerating Gaussian measure v on a finite-dimensional vector
space its characteristic functional has the form

Xal) = exp(ilm, 1) = 50,(1))

where the quadratic form ¢, is strictly positive, i.e., it has the max-
imal rank: its extremal values do not vanish.

It is known that the function x(f) = exp(i(m, f) — $q¢(f)) is
positively definite for every positive (not necessary strictly positive)
quadratic form ¢ on vector space F' 5 f. According to the well known
Bochner theorem it means that y is the characteristic functional of a
measure v (Gaussian by definition) on the conjugate space I/ which
can be canonically identified with such a space F that £’ = F.

In what follows the notation F will be used for a vector space of
random variables.

DEFINITION 2.3. A Borel probability measure v on a finite-
dimensional vector space F is called Gaussian if there exist an ele-
ment m. € E and a quadratic form ¢, on E’ such that its charac-
teristic functional y, has the form

Xlf) = expl(may ) = 501 (2).

The quadratic form ¢, is called covariance form of 7, and the element
m., is called its mean value.

Sometimes instead of the correlation quadratic form ¢, one con-
siders the correlation operator K, E' — FE such that ¢, (f) = (K, f, f).
In the case E = R? the matrix of the correlation operator coincides
with the covariance matrix of the Gaussian measure vy (and also with
the matrix of its covariance form).

The notions of Gaussian random variable, Gaussian random vec-
tor etc. are defined in the usual way.

The mean value is the barycenter of v. It means that for every
f € E' we have

[t D) = (mo, )
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Suppose some finite parameterized set f = fi,..., f, of elements
of B = F is fixed. (This does not exclude coincidence of some
elements for different indices.) Consider the map

fE—=R", E>3ze ((z,fi),...,(z, fn)) € R".

The image 'yi_l of the measure v under the map f is a Gaussian
measure (“the joint distribution of the random variables f1,..., f,”).
Its mean value is the image of m.,, and its covariance form q p-1 is

defined with a help of the conjugate map f*R"™ = F, (¢1,...,¢,) —
> ck Sk

R™3 (C1y...,0p) — q,yi—l(617 cey Cp) = %(Eckfk)-

Since f is a linear map of the general form, a very important
property of Gaussian measures is established:

The image of a Gaussian measure under a linear map is always
Gaussian.

Note that a coordinate system on the vector space F with a
Gaussian measure vy being fixed, the matrix of a covariance form ¢, is
the covariance matrix of the set of coordinate functionals (considered
as random variables). In the case of centered measure it is the Gram
matrix (in L?-norm) for the set of coordinate functionals.

The condition of Gaussness is not essential here.

Note also that defining what the Gaussian measure is we tried to
use no extra assumptions relative to the space F. The only structure
used for our purpose was the structure of a vector space which itself
generates the Borel structure on F. We avoid using any Euclidean
structure on the vector space E as well as on its conjugate space till
it is necessary.

At first sight it seems that the vector space structure is the min-
imal structure needed for reasonable definition of a Gaussian mea-
sure. Still a more careful consideration shows that in fact only the
structure of an affine space is needed. (Remind that it just is the
structure defined in the natural way on a shifted vector subspace: lin-
ear combinations of elements of an affine space are defined for linear
combinations with zero sums of its coefficients only). A Borel prob-
ability measure on a finite-dimensional affine space A is Gaussian or
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not depending on form of its characteristic functional on the vector
space A} of all polynomials on A of degree one, dimension of which
exceeds the dimension of the affine space A by one. Or one can turn
the affine space A into a vector space by fixing a zero-point. The
most convenient way is to declare the mean value of the considered
Gaussian measure as the zero-point, so we at once come to a centered
Gaussian measure. Readers can consider details themselves. As in
vector case, a Gaussian measure v on an affine space is completely
defined by its mean-value (barycenter) m., and covariance quadratic
form ¢,. In the case of affine space no meaning has the notion of
centered Gaussian measure.

These remarks are especially meaningful when the conditional
Gaussian distributions are being considered on elements of an affine
measurable partition of a Gaussian measure space (all the definitions
will be given later).

At the end of this section let us gather a few other important
properties of finite-dimensional Gaussian measures.

1. Let Xq,..., X, be independent random variables and let their
two linear combinations

L1:O{1X1+...+Oéan and LQIﬁ1X1—|—+ﬁan

are independent. In this case for every k such that apfr # 0 the
random variables X} are Gaussian. (In particular, if for independent
X and Y the sum X +Y and the difference X — Y are independent,
then X and Y are Gaussian and have equal variances.)

This theorem can be extended to the vector-valued case, too.

2. If X and Y are two independent Gaussian random vectors
Q — F, where (2,2, P) is a fundamental probability space, then,
by definition, their joint distribution is a (Gaussian measure on F X
FE. Hence, their sum is Gaussian, i.e., the convolution of Gaussian
(multi-dimensional) distributions is also Gaussian. Given two Gaus-
sian measures 1 and ~3 on the vector space F with covariation forms
q1 and ¢o, their convolution ~ * 2 has the covariance form ¢y + ¢o.

3. Given a nondegenerating Gaussian measure in a d-dimensional
vector space, the distribution of its concentration form with respect
to this measure is well known y?2-distribution (chi-square distribution
with d degrees of freedom). The density of this distribution has the
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form:

palt) = cd(%)g-l exp(—%t).

Here Cy = QF(%) is the normalizing constant. As it is easy to calcu-
late, the mean value of this distribution is equal to d and its variance
is equal to 2d. It is easy to verify that if d is large, the dis‘gribution of
the covariance f?rm is concentrated relatively close to d2. The dis-
tributions of d~2¢, weakly converge to §; (the probability measure
concentrated at 1)

4. If fy, fo € I are orthogonal in sense of Euclidean structure
defined by ¢,, then these random variables are independent.

5. Suppose several Gaussian random variables (i.e., elements of
I") are fixed, L C F'is a linear subspace spanned on these variables,
and f € F. Given values of the fixed random variables (and hence
values of all the elements of L), consider the problem of the best
prediction (in sense of L? distance) of the value of f. It means that
we consider the vector space of all random variables such that their
values are defined as soon as the values of elements of L are known. In
other words, we consider the vector space of all measurable functions
of the given random variables and look for the closest one in LZ2-
sense to f among them. Such a vector space can be described as
the space of all functions on F measurable with respect to the o-
algebra o(L) generated by L. It is sufficient for our purpose to take
only the subspace L?(E, o(L),v) of L*(E,,v). This o-algebra o (L)
consists of all measurable unions of shifts of the subspace L° C E
where L0 is the polar of L C F in E. In other words we consider
the problem of finding the ¢,-orthogonal projection of f € F C
L?(E,,v)on L*(E,o(L),7). It is remarkable that in the Gaussian
case this projection belongs to the very space L which is always only
a special proper subspace of L?(E,o(L),v)! It also means that given
values of several Gaussian random variables, the best prediction for
another Gaussian random variable (in the sense of minimal variance)
can be always expressed as a linear combination (and not as a more
complicated function) of these variables.

In fact, this apparently unexpected property can be easily ex-
plained. We will do it after introduction of notion of conditional
distributions.
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3. Category properties. Gaussian measure structure.

When dealing with measure theory it is very usual and useful not
to distinguish between objects of the theory (sets, functions, maps,
partitions etc) the difference of which can be described in terms
of zero measure sets. Sets A, B C €2 are told to be equivalent if
P(A A B) = 0. Functions (or random variables) X and Y defined
on € are told to be equivalent if they differ only on a zero measure
set (coincide “almost everywhere”, or “almost surely”). In similar
cases we will use the notation “mod0” and write A = Bmod0, X =
Y mod0. Going on, two probability measure spaces (21,2, P1) and
(92,3, Py) are called isomorphic mod0 if there exist null sets Ny €
A; and Ny € 2y such that the measure subspaces defined by €27
Ny C €4 and by Q5 ~ Ny C €2y are isomorphic in the standard
sense of measure theory. It means existing a bijection (one-to-one
correspondence) between the sets ©; <~ Ny and €3 ~ N3 such that
for every measurable subset of any of these sets its image under
the bijection is also measurable and has the same value of measure.
For instance, if P; is a discrete measure concentrated on the set
O ={n7!, n=1,...} such that P;({n~'}) = 27", and Q, = R,
P5 being a purely atomic measure concentrated on the same points
as Py and with the same values at the corresponding one-element
subsets, or Py and P are two centered Gaussian measures possessing
covariation forms with the same signature and defined on vector
spaces of different dimensions, then we say that these measure spaces
are isomorphic mod0, or isomorphic up to the equivalence.

In measure theory the notion of a measure-preserving transforma-
tion is of great importance. Often one does not distinguishes between
mod0-equivalent transformations. Classes of mod0 equivalence of
measure spaces as objects together with classes of mod0 equivalence
of measure-preserving transformations as morphisms form a category
of measure spaces considered up to the equivalence.

The notion of Gaussian measure is based on the structures of the
measure theory as well as of the theory of vector spaces. Hence, in
the theory of Gaussian measure spaces instead of measure-preserving
transformations of the general form we should consider mod0 linear
measure-preserving transformations. Factorization mod0 of linear
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maps will be described if we describe factorization mod0 of linear
functionals on a Gaussian measure space (F,%, ). Evidently, for
fi,fo € E' fi = famodO if and only if we have ¢,(fi — f2) = 0.
In other words, the space E; of all (mod0-equivalence classes of ) v-
measurable linear functionals coincides with Euclidean (hence, sep-
arable) space generated by the metric ¢,:

El = E'/{f e B q,(f) = 0}.

(Here Kergy = { f € E' : ¢,(f) = 0} is a vector subspace because
of positiveness of ¢,). In the case ¢,(f) = 0 only for f = 0 or, in
other words, for nondegenerate v we have I/ = E'. Since the only
invariant of ¢, and, hence, of EI with respect to the vector space
structure is the dimension (in other words, the signature) of ¢,, we
come to the conclusion that for every natural number d there exists a
unique to within the mod0 measure preserving transformation Gaus-
sian measure of dimension d. The standard Gaussian measure in
the d-dimensional Euclidean vector space is a representative of this
d-dimensional measure. This statement seems to be almost evident
for considered case of finite-dimensional F. We will see that it is
also true in the general case if a definition of Gaussian measure is
selected in a proper way.

We can say that the space E; depends only on + and does not de-
pend on the space F.. We shall use the notation F’/v for this Euclidean
space.

If two Gaussian measures y; and vy, are considered on the same
finite-dimensional vector space F, they are mutually absolutely con-
tinuous if and only if their covariance quadratic forms ¢; and ¢9 are
equivalent, i.e., Euclidean spaces generated by them coincide as vec-
tor spaces (these forms generate Euclidean structure on the same
vector space F'/Kerq; = E'/Kergz). It means that null-subspaces of
these two positive quadratic forms coincide.

Any two nondegenerate to ¢ finite-dimensional Gaussian mea-
sures are isomorphic mod0 in the sense of the isomorphism of mea-
sure spaces (not linear measure spaces, if their dimensions differ).

In the case of a linear (and hence measurable in the finite-dimen-
sional case) map [/ of general form (F, 2, v) to another vector space
the image yI~! of v can be described as follows.
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THEOREM 3.1. Consider a vector space with a centered Gaussian
measure (F,2,v) and a linear measurable map | from E to another
vector space F1. Then the image of v is a centered Gaussian measure
on By defined by the correlation quadratic form q,—1 on E} which
can be described as follows:

qwl_l(fl) = q’y(l*fl)a

where [* is the conjugate map [* E} — F'. The concentration ellip-
soid &1 of the image of Gaussian measure 7 is the image [(E) of the
concentration ellipsoid of ~.

The concentration form ¢.;-1 is canonically isomorphic to the
restriction of the form ¢, to the polar N° C E’ of the kernel N =
Kerl C F.

Reader can notice that there exist two kinds of “Gaussian” ob-
jects: those connected immediately with the space F' (Gaussian mea-
sures ~ itself; their concentration quadratic forms @); o-algebras of
events; measurable partitions of Gaussian measure spaces etc.); and
those connected immediately with Gaussian Euclidean spaces I, like
correlation quadratic forms and corresponding Euclidean structures;
random variables as elements of Gaussian spaces F,; optimal predic-
tors and so on.

Given a finite-dimensional Gaussian measure space (E,2,7), we
can consider Hilbert space L%(E,%,~) of all quadratic integrable
random variables, taking into account no vector space structure. The
space E; = F, of all classes of equivalent Gaussian random variables
is a proper finite-dimensional subspace of this Hilbert space L?. The
joint distribution of elements of any finite subset of £ is Gaussian
by Theorem 3.1.

DEFINITION 3.2. Suppose (£2,2,P) is a nonatomic probability
measure space. A subspace G C L?(Q,2, P) is called Gaussian if
the joint distribution of any its finite subset is Gaussian. Gaussian
subspace is called mazimal if it is a proper subspace of no other
Gaussian subspace.

Given two Gaussian subspaces, their linear span is not necessarily
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a GGaussian subspace.

TuEOREM 3.3. The subspace E! C L*(E,2,7) is a mazimal
Gaussian subspace.

Consider two maximal finite dimensional Gaussian subspaces (G
and G5 of L?(Q, 2, P) where P is a nonatomic probability measure.
An orthogonal operator U L? — L? is called an automorphism of
the L2-structure if the joint distribution of any its finite subset co-
incides with the joint distribution of the U-image of this subset. In
particular, for any automorphism 7T of the probability measure space
(92,2, P) the conjugate orthogonal operator Ur,

def

(Urf)(w) = f(T(w)),

is an authomorphism of the Lo-structure. Can these subspaces G
and G5 be coincided by an automorphism of the L2-structure? Of
course, the necessary condition for it is the equality of their dimen-
sions. Further, in the case (2,2, P) = (£,2,7) we have o(F,) =«
(here o(L) denotes the o-algebra generated by ).

THEOREM 3.4. For any two Gaussian subspaces G1,Go C
L2(2, 9, P) of the same dimension and such that o(G1) = o(G3) = 2
there exists an automorphism U of the L*-structure such that G =

UGh.

The very interesting question whether or not every automor-
phism of the L?-structure is conjugate to an automorphism 7 of
the measure space (2,2, P), must be answered, generally speaking,
negatively. Nevertheless, the answer becomes positive if the defini-
tion of the probability measure space is slightly modified in order to
avoid pathologies. The proper class of probability measure spaces is
formed by so called Lebesgue-Rokhlin measure spaces. They will be
discussed later.



GAUSSIAN MEASURES. A BRIEF SURVEY 305

4. Multidimensional Hermite—Ité polynomials and orthog-
onal expansions.

Hermite polynomials He,(z), n = 0,... form the system of or-
thonormal in the Hilbert space L?(R,%B,v) polynomials for which
the sequence of spanned subspaces coincides with the sequence of
subspaces spanned on first monoms z® (notations are not quite stan-

dardized). So,

Heg(z) = 1L,

Hey(z) =T

Hey(z) = 273(2% - 1),

Hown () = (n-+1)7H (e, (2)  Hew (2),
He'(z) = n2He,_ 1(:U),

He,(z) = (—1)"n"zexp(32?) L exp(—1a?).

The sequence of the Hermite polynomials is obtained from the se-
quence {z"} by the usual procedure of sequential orthogonalization.

Consider now one-dimensional Gaussian measure space (F,2,~)
and fix a unit vector f € E! C L?(y). For every n € N the func-
tion f™ is an element of L?(7y) as well as the unit function 1L. The
subspace I' = span{lL, f, f2,..., f*} of L? is the subspace of all
polynomials on £ of degree not exceeding n. (The notion of a poly-
nomial on a vector space is well defined.) Now we come to orthogonal
expansion

P =FRho R ok e FHoR)d.. ..

Evidently, for every n € N we have He, (f) € I}, © F,,—1. The con-
struction of this expansion is valid for arbitrary multi-dimensional
Gaussian measure <. In multi-dimensional case elements of the sub-
space F,, & F,_1 C L%(v) are called by definition Hermite-It6 poly-
nomials of degree n. Hence, every element of L?(y) admits a unique
expansion in orthogonal Hermite polynomials. Of course, one can
choose an orthonormal basis in every such a subspace consisting of
Hermite polynomials of a fixed degree.

Let g be an arbitrary polynomial of degree ». The projection
TF,oF,_, 9 is called the Hermite—It6 polynomial of the random vari-
able g and is denoted by :g:. Sometimes such polynomials are called



306 VLADIMIR SUDAKOV

Wick polynomials, and : - : is called the Wick symbol. In the case
g= fife...f., where fi, fo,..., [, are elements of E’/v and hence are
Gaussian, the Hermite-It6 polynomial for g is called the Hermite—
1t6 polynomial of the random variables fi,..., f,. If these random
variables are orthogonal (and hence independent), their Hermite-Ito
polynomial is merely the product of these variables.

While in the one-dimensional case of standard Hermitean poly-
nomials the dimension of the space of all Hermite—It6 polynomials
of given degree is equal to the unit, in case 1 < dim [, < oo di-
mensions of such Hermite-Ité6 polynomials spaces are larger than the
unit, though finite. In the case of infinite-dimensional Gaussian mea-
sure, to be considered later, all Hermite—It6 subspaces are infinite-
dimensional. In any case these subspaces are invariant with respect
to the orthogonal transformations of L?(y) conjugate to measure-
preserving transformations of the measure space, generated by ro-
tations. Every such transformation is conjugate to an orthogonal
transformation of Euclidean (Hilbert in the infinite-dimensional case)
space E!, and every orthogonal transformation of E! generates a
measure-preserving transformation (“rotation”) of the space (£, %, )
and, hence, has a uniquely defined extension on every Hermite-Ito
subspace as well as on the whole Ly(7).

5. General measure theory: some nontraditional aspects.

Axiomatics of spaces with measure (of probability spaces) is very
simple, and it helps us to grasp fundamental concepts of probability
theory and to penetrate its deeper fields. Still the further we move,
the more often we meet difficulties that arise mainly because such
a simple and clear axiomatics turns out to be not quite adequate
to the nature of things. It does not exclude some unpleasant, even
disgusting pathologies, which must be eliminated by a more care-
ful selection of the objects mathematicians deal with. Of course,
such situations are by no means distinctive features of the theory of
Gaussian measures.

A. N. Kolmogorov considered as the main achievement of his fa-
mous monograph “Grundbegriffe der Wahrscheinlichkeitsrechnung”,
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1933, the elaboration of the notion of conditional mathematical ex-
pectation of a random variable with respect to a given o-subalgebra
of events. His approach was based on Radon—Nikodym theorem
about absolutely continuous measures. Kolmogorov’s conditional
expectations, however, cannot be considered as a quite adequate
extension of notion of conditional distribution well known in clas-
sical probability theory, i.e., given an event of positive probability.
It is known that Kolmogorov understood impossibility to define in
the general case a system of conditional probability distributions on
elements of a measurable (in whatever acceptable sense) continual
partition generating o-subalgebra as it can be easily done using the
classical definition of conditional distribution for elements of finite
or countable measurable partitions.

It turned out that such impossibility can manifest itself only in
connection with pathological situations. In the precise sense the
nonexistence of the system of conditional distributions on elements
of a measurable partition means that a nonmeasurable with respect
to the Lebesgue measure subset is involved in the very nature of the
considered measure space with countable generated initial o-algebra.

Kolmogorov’s pupil V. A. Rokhlin selected (1940, 1946) a very
important class of measure spaces with countable generated o-al-
gebras such that its members were saved from any pathology and
therefore possessed important properties not valid in the general
case. Rokhlin called his measure spaces Lebesgue spaces. Now, after
Rokhlin’s death, the term “Lebesgue—Rokhlin spaces” has been more
convenient.

We have no possibility to give here a full exposition of Rokhlin’s
theory. Rokhlin gave an axiomatic description of what he called
Lebesgue spaces. Another description refers us to Lebesgue measure:
the Lebesgue-Rokhlin nonatomical space is a probability measure
space isomorphic mod0 to the unit interval with Lebesgue measure.

DEFINITION 5.1. The probability measure space (2,2, P) with
complete o-algebra is called Lebesgue—Rokhlin space, or L R-space, if
1. o-algebra 2 is countably generated with respect to P, i.e., it
is the completion with respect to P of a o-algebra spanned on a
countable subset B = {By} of 2 (a basis), and B separates points
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of Q. In other words, (2,2, P) is a separable probability measure
space.

2. For some (and then for every) basis B the image of © under
the canonical imbedding mod0:

i Q= {0,1}", jp(w)={llp,(w): k€ N}
is a measurable subset of the measure space
({0,1}", complB, Pjz", Pjz")

(compl means “completion”). In other words, the canonical imbed-
ding jp is an isomorphism mod0. (In this case the basis B is called
complete mod0). The measure P of the L R-space is called Lebesgue—-
Rokhlin measure.

We now see the precise meaning of the assertion that every sep-
arable probability measure space which has no Lebesgue—Rokhlin
property is isomorphic to a nonmeasurable with respect to the
Lebesgue measure subset of external measure equal to the unit. In
fact, every nonatomic Borel probability measure on the compact set
{0,1}" is isomorphic mod0 to the Lebesgue measure on an interval.
Note that it follows that the property of a subset to be measurable
is its intrinsic property and does not depend on how this subset is
situated in a L R-space.

THEOREM 5.2. Fvery complete separable metric space with prob-
ability measure P defined on the completed with respect to P Borel
o-algebra is a Lebesgue—Rokhlin space. Every Borel space (B, B) with
a probability measure P on its o-algebra B completed with respect to
P is a Lebesque—Rokhlin space. Fvery discrete probability measure
space (2,2, P) on o-algebra 2% of all subsets is a Lebesque—Rokhlin
space.

In particular, polish space with a probability measure on the
completed o-algebra has the Lebesgue—Rokhlin property.

The class of Lebesgue-Rokhlin spaces is stable with respect to
all usual operations. No wonder: it includes all nonpathological
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probability measure spaces. In particular, the quotient space rela-
tive to nonpathological equivalence relation (relative to measurable
partition) and homomorphic image of a Lebesgue—Rokhlin space are
Lebesgue-Rokhlin spaces, too. The projective limit of any family of
L R-spaces exists, and has LR-property for countable families. For
a Lebesgue—Rokhlin space it is impossible neither enrich nor narrow
its o-algebra conserving the L R-property.

The central point of the theory of L R-spaces is the theory of mea-
surable partitions and, in particular, the theorem about existence of
a family of conditional distributions on elements of a measurable
partition.

DEFINITION 5.3. A partition & of a probability measure space
is called measurable in case it is generated by a finite or countable
family B of measurable subsets. (Two points belong to the same ele-
ment of partition generated by B if no subset of this family separates
them. The map jg does not distinguish them.)

A partition £ of a probability measure space is measurable if
and only if its elements are the sets of constancy for some measur-
able function f. If so, we write & = {(f). Similarly, the notation
C(f1y..., fn) will be used. Always ¢ denotes the partition into sep-
arate points, and v denotes the trivial partition. Often we will not
distinguish between partitions coinciding mod0 using the term mea-
surable mod0 partitions.

Every measurable mod0 partition { defines a o-subalgebra 2.
Moreover, there is a bijection between the set M P of all measurable
mod0 partitions of a Lebesgue—Rokhlin space, and the set of all its
o-subalgebras of subsets.

The space M P of all measurable mod0 partitions is a lattice with
respect to the natural relation of order:

E<n &= A C U,

Any subset of the lattice M P has its supremum and infimum. We
will use the notations V for the supremum and A for infimum. Always

Wenn = Ae N A,
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Given a LR-space (2,2, P) and its measurable partition &, the
quotient space

(Q7Q{7P)/5: (9/572[/571)71-5_1)

is defined, where 7¢ stands for the canonical projection m¢ Q — Q/&
and A/¢ stands for o-algebra of all 2-measurable ¢-sets. Usually
we will write P/ instead of Pﬂgl. The quotient space /¢ is also
defined mod0 for the class € of mod0 equivalent partitions.

DEFINITION 5.4. Suppose (2,2, P) is a separable probability
measure space and £ is a measurable partition of it. Suppose a o-
algebra - C 2N C is defined on every element C' € Q/€ as well as
a probability measure Pg such that

1. For every mod0 (with respect to the measure P/£) element C'
the space (C,2¢, ch) is a Lebesgue—Rokhlin space.

2. For every measurable A € 2

a. for every mod0 element C' € Q/¢ the set AN C is Ap-
measurable;

b. the function C' P'EO(A N ) is measurable on (2,2, P)/¢;

¢. P(4) = Jo/e PL(ANC)(P/E)(dC).

Then the family of measures {Pg7 C € Q/E} is called the system
of conditional probability measures on elements C' of the measurable
partition &.

Here is the main theorem of the theory of conditional distribu-
tions.

THEOREM 5.5. For a partition & of a Lebesgue—Rokhlin space
(2,2, P) to have a system of conditional distributions it is necessary
and sufficient for this partition to be measurable.

DEFINITION 5.6. Measurable mod0 partitions £ and 7 are inde-
pendent if o-subalgebras 2¢ and 2, are independent. If, in addition,
£V n =g, we say that £ and 5 are independent complementations
for each other.

Note that for independent measurable mod0 partitions £ and n we
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always have £ A p = v. Besides, the space (2,2, P)/£ is canonically
isomorphic to every “conditional subspace” formed by a P /5-typical
element of n provided with its conditional measure.

Every measurable partition of a Lebesgue-Rokhlin space consid-
ered to within mod0 equivalency can be generated by a measurable
function considered to within mod0 equivalence.

ExaMPLE 5.7. Consider at first the case of Gaussian measure vy
in a finite-dimensional vector space F and a partition £ into parallel
shifts of a vector subspace L (let us call a measurable partition of this
kind an affine partitions). Suppose the measure v is not degenerate.
In this case we can describe conditional distributions by their den-
sities with respect to corresponding Lebesgue measure normalizing
the restrictions of the density of the very measure v to every shifted
subspace L. But a better way consists in representation of the Eu-
clidean space (E,Q%) as a direct sum of two Euclidean subspaces
with inherited Euclidean structure:

E=LalL".
Now « can be represented as a product-measure

Y=L XYL

of the standard Gaussian measures on these two orthogonal sub-
spaces. Their covariance forms can be considered on the spaces

L =F'/L°, (LY, =FE/(LY)°

which are canonically isomorphic to the subspaces (L°)+ and L° with
inherited structures of Euclidean spaces. Now in order to define the
conditional Gaussian distribution on a shifted copy of L one can take
the pullback of vy, along the canonical projection of shifted L to L.
So, we come to conclusion that all conditional measures coincide (i.e.,
are canonically isomorphic) with vz, and the quotient measure coin-
cide with v7,1. Note that beginning with an affine partition we have
got a quite symmetric picture for the quotient and the conditional
measures.
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ExaMPLE 5.8. Consider again a d-dimensional Gaussian mea-
sure v and consider a measurable partition ¢ into the rays going
out from the zero-point. This partition is by no means affine, and
its conditional measures are not Gaussian. By definition, the con-
ditional distribution on every ray is the distribution of the random
variable (X?l)% where the random variable inside the brackets has
x2-distribution with d degrees of freedom. It is easy to verify that
the densities of the considered conditional measure are

1 d
pa(z) = Cgz?™? exp(—§x2), where Cy= Q_gF(§).

Evidently, the quotient space can be considered as the surface of the
unit sphere, and the quotient distribution is the uniform distribution
on this surface of the unit sphere.

ExampLE 5.9. Multi-dimensional Cauchy distribution . This
is the distribution of the ratio Y X ! where Y is a finite-dimensional
Gaussian random variable and X is an independent one-dimensional
Gaussian random variable. In other terms, d-dimensional Cauchy
distribution on a vector space F is the image of a multidimensional
Gaussian measure under central projection to a shifted hyperplane
of dimension d (so that dimension of the Gaussian measure is equal
to d 4+ 1). The characteristic functional of the Cauchy measure is
defined on the space F of all linear functionals on F and has the
form .

X(f) = exp(=q2(f)),
q being a positive quadratic form on F. The Cauchy measure is
rotation invariant (like Gaussian one) with respect to rotations pre-
serving q.

Consider now the measurable partition ¢ of F into rays described
in the previous example. The Cauchy distribution turns out to be
a mixture of Gaussian distributions. The mixing one-dimensional
distribution has the density

o) = |22 exp(— ).

Therefore all the conditional measures of the d-dimensional Cauchy
distribution are mixtures of (-conditional Gaussian distributions with
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densities

1 1
pg7d(r) = W exp(—§’r2).

The mixing distribution p does not depend on dimension. (Soon we
will see why every rotation invariant infinite-dimensional probability
measure is a mixture (a convolution) of rotation invariant Gaussian
measures.)

ExaMmpPLE 5.10. For Gaussian random variables the optimal pre-
diction by quadratic loss function is linear. We began considering
this property of Gaussian vector spaces in the part 2. Now we can
explain it quite clearly.

Given a random variable Y € L?(Q,2, P), the best prediction of
its value by quadratic loss function z — 22 is

arg min /(Y —a)?dP = /Y(w)P(dw) EEpy.

Suppose that values of random variables Xy,..., X,, € L*(Q,%, P)
are known, and we look for the best prediction of a random variable
Y € L?. The correct formulation is: to find the orthogonal projection
of Y to the subspace

L*(Q,0(Xy,..., Xn), Plox,,x0)

For the purpose of simplicity we suppose that the mean values of
all these random variables are equal to zero. Without loss of gener-
ality, we can also suppose that the measurable partition (x,,. x, v
generated of all these functions is €. Hence, we can linearize the mea-
sure space so that we get a Gaussian probability space (E,2l,7), and
our random variables turn into elements of E!. Consider now the
affine partition ¢ defined by Xy,...,X,,. Elements of this partition
are one-dimensional affine subspaces, and conditional distributions
are one-dimensional Gaussian. Restrictions of Y on every such one-
dimensional subspace of F is an affine function, and its (conditional)
mean value is equal to the value of Y in the barycenter of consid-
ered one-dimensional conditional distribution. All these barycenters
form a hyperplane (a vector subspace), hence its position, i.e., the
conditional expectation under consideration, is a linear function on
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the quotient space such that its elements are defined by fixing values
Ole,...7Xn.

6. Gaussian measures: what they are? II.

Here we are going to detail the most sophisticated subject of
the Gaussian distributions theory: the infinite-dimensional Gaussian
distribution. First of all we should discuss a proper definition, then
we shall consider some its properties. Some of this properties demand
no particular attention since there is no great difference between the
finite- and the infinite-dimensional cases. The property of linearity of
the best prediction (see Example 5.9) gives a good illustration. Some
other properties are almost evident in the finite-dimensional situation
but become less trivial in the general case like the criterion for two
Gaussian measures to be mutually absolutely continuous. Finally,
there are properties like possible existence of a nonzero oscillation
that the Gaussian measures manifest only in the infinite-dimensional
case.

We have seen that for every d € N there exists precisely one mod0
d-dimensional Gaussian measure. Such measure has the Lebesgue—
Rokhlin property since the structure of a finite-dimensional space
generates the structure of the Polish space. In the infinite-dimensional
case we include the demand for the Gaussian measure space to be
Lebesgue—Rokhlin probability measure space separately.

Let (22,2, P) be a Lebesgue-Rokhlin probability measure space
and let G C L*(Q,%,P) be a closed Gaussian space generating o-
algebra, i.e., such that

compl(o(G); P) =2

(or, the same, the measurable mod0 partition of the probability mea-
sure space generated by G is €). The characteristic functional

£ [expite, () = exp(~ 5 71P)

is defined on the Hilbert space G.
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THEOREM 6.1. Suppose for every of two Lebesque—Rokhlin proba-
bility measure spaces some vector space of measurable functions gen-
erating o-algebra is fizred. Suppose that a linear bijection between
these two wvector spaces conserves the values of the characteristic
functionals (and, hence, of all distributions). Then this bijection
is conjugate to a uniquely defined isomorphism modQ between the
given Lebesgue—Rokhlin spaces.

In particular, in the Gaussian case every automorphism of the
Hilbert space G (every orthogonal transform of (G) generates a (con-
jugate) automorphism of the Lebesgue-Rokhlin space (2,2, P). Mea-
sure space automorphisms of this kind are called Gaussian.

In the case ((G) # ¢ one should consider the quotient space
(2,2, P)/¢(G) instead of (2,2, P).

The Gaussian random variables space GG not only canonically gen-
erates a uniquely mod0 defined Lebesgue—Rokhlin probability space.
This probability space can be provided with a uniquely mod0 de-
fined probability vector space structure. 1t is quite clear in the finite-
dimensional case. Indeed, d-dimensional quadratic covariance form
q on a d-dimensional vector space F defines uniquely a Euclidean
space I (conjugate with F’) with the standard Gaussian measure 7,
so that F' is the space of all linear (hence, measurable) functionals
on (E,v). The two Lebesgue—Rokhlin spaces (2, P) and (F,7) are
canonically isomorphic mod0 since a basis fi, ..., fgin I being fixed,
the map

Q3w (z,fr) = filw) fork=1,...,d

is mod0 isomorphism. Hence, the Gaussian space GG induces a struc-
ture of a linear (d-dimensional) Gaussian vector probability space
on the Lebesgue-Rokhlin space (w, %, P) considered mod0. We say
(22,2, P) admits a linearization corresponding to G.

In the infinite-dimensional case (G is a countable-dimensional
Hilbert space) no standard Gaussian measure can be defined on the
conjugate Hilbert space G’ (nor nontrivial rotation-invariant proba-
bility measures whatsoever). Nevertheless, an orthonormal measures
{fr:k € N} C G being fixed, the joint distribution of this family of
random variables can be described as a Borel probability distribu-
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tion v,y on RN, namely, the countable product of one-dimensional
standard Gaussian measures.

We shall call it the standard Gaussian infinite-dimensional dis-
tribution.

DEFINITION 6.2. Given a vector space F/ with a probability mea-
sure P, a function f on F is called mod0 linear measurable functional
if there exists a vector subspace I C F of the full measure such that
the restriction of f to L is a linear measurable functional. If two
mod0 linear measurable functionals coincide on a full measure sub-
space L C F, they are said to be mod0 linear equivalent. A class of
equivalence under such relation is called defined up to the equivalence
mod0 linear measurable functional.

ExAMPLE 6.3. Consider the standard Gaussian measure v on RY
which corresponds to the Gaussian subspace of L%(R", ~) spanned on
the family {ex} of coordinate functionals on R™ and canonically iso-
morphic to [2. Now G = 1%, ¢(f) = ||f||;2 and every element f € [?
can be considered as a defined up to the equivalence mod0 linear
measurable functional. Now in the infinite-dimensional case we can-
not select a universal linear measurable subspace L C RY, gH%N(L) =1
so that every functional f € [? would be defined everywhere on L
and all the linear operations in /2, which would be isomorphic to
L?(L,~), would be carried pointwise, though for every f € (? there
is its own vector subspace of probability one where f is linear.

DEFINITION 6.4. Suppose (F, 2, ) is a vector space with a prob-
ability measure v on a completed o-algebra generated by a set F
(which always can be taken as linear and closed in measure) of de-
fined up to the equivalence mod0 linear measurable functionals. Sup-
pose also that (F,2, ) is a Lebesgue-Rokhlin space. Suppose that
the characteristic functional on the space F' has the form

X ) = exp(— 50, (1),

where ¢, is a quadratic form.
Then the triple (F,%,~) is called a Gaussian vector probability
space, the quadratic form ¢, is called the covariance quadratic form
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of v, and the closure in measure spanF of the linear hull of F is called
the Gaussian random variables space compatible with the structure
of the Gaussian vector probability space. It is denoted E!.

THEOREM 6.5. Given a Gaussian vector probability space
(E,,7), the Gaussian random variables space is uniquely defined
by it and consists of all defined up to the equivalence mod0 linear
measurable functionals on (E,2,7).

The property of the space F., C L%(2,9, P) of all mod0 linear
measurable functionals to coincide with spanF’ for every generating
set I, i.e., such that (/) = € is not valid in the general case for
non-Gaussian subspaces F. Note that in the Gaussian case the L2-
topology and the convergence-in-measure topology coincide on E;

The fundamental specificity of the finite-dimensional case (not
only for Gaussian distributions) is that every element of the vector
probability space defines a linear functional on the random variables
space. In its turn, in the finite-dimensional case every mod0 element
of a vector probability space (F,2,P) can be described in terms
of random variables space F. In the infinite-dimensional case al-
most every element of the Gaussian vector probability space can be
eliminated by choosing an appropriate measurable vector subspace
of measure one not including given element. Those exceptional el-
ements of the Gaussian vector probability space that belong to the
intersection of the set of all measurable full measure vector subspaces
form an important subspace which can be considered as a “skeleton”
of the Gaussian vector probability space.

THEOREM 6.6. There exists a vector subspace H., of the Gaussian
vector probability space (E,2,~) which is canonically isomorphic to
the space (E'/v)/ conjugate with the corresponding Gaussian random
variables space provided with its standard Hilbert space structure.
For every x € H., and every defined up to the equivalence linear
mod0 measurable functional f € E! the value of f(z) = (z, f) is
well defined (i.e., does not depend on a selected version). This bi-
linear functional defines on H. a Hilbert space structure. The ele-
ments x of H, and only they have the property: the Gaussian shifted
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measure y(- + x) is absolutely continuous with respect to v(-). In
the infinite-dimensional case v(H,) = 0, otherwise H, = Emod0.
The restriction of every mod0 linear measurable functional to H., is
completely defined linear functional on Hilbert space H., and every
linear functional on Hilbert space H. is the restriction of a mod0
linear measurable functional.

DerFINITION 6.7. The Hilbert space H, C FE described by the
previous theorem is called kernel, or skeleton, or concentration sub-
space of the Gaussian vector probability space (F,2, ). The qua-
dratic form Q) (z) = HQUH%I7 defined on H., is called the concentration
form of ~.

EXAMPLE 6.8. The Gaussian white noise. Let FF = L?([0,1])
and let ¢(f) = ||f||3.. Now we can put H, = L*([0,1]), consider
a pre-Hilbert norm n(-) on H., such that the imbedding operator is
Hilbert—Schmidt, and take the completion of H. with respect to the
norm 7 as F. The elements of this completion can be considered as
distributions in sense of Schwartz. Obviously, Q) (z) = ||z|| 2.

EXAMPLE 6.9. The Wiener measure. Consider F = C'([0, 1]),

ﬁﬁ://mMmﬁ@ﬁo@w

Here the kernel space consist of all functions f € F such that

%Mﬁ:/W@fﬂ<m

The standard d-dimensional Gaussian measure in Euclidean space
is concentrated near the Euclidean sphere of radius d%, so that for
large values of d the standard Gaussian measure is very like the
uniform distribution concentrated on the surface of such sphere.
Consider now the infinite-dimensional case. The problem is: what
is the limit case for the property just mentioned? Is the infinity-
dimensional Gaussian measure really concentrated precisely on what-
ever sphere? This idea seems to be in a bad agreement with the idea
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of very rapid decreasing of Gaussian densities as the distance from
the origin increases.

Consider the measurable partition ¢ of the infinite-dimensional
Gaussian vector probability space (£, 2L, ) into rays going out from
the origin as it was done in Example 5.8.

THEOREM 6.10. In the case of the infinite-dimensional Gaussian
distribution { = € mod0.

So, we come to the conclusion that the typical conditional dis-
tribution is a é-measure at a point of the ray. For instance, for the
standard Gaussian measure on RY for almost all elements z of this
space

1 i3
lim 526%(33) =1.
1
This equality can be valid only at a single point on every ray. This
point just shows the place where such conditional d-measure is con-
centrated.
As a consequence we obtain

THEOREM 6.11. Fvery infinite-dimensional rotation-invariant
probability measure (i.e., a measure with rotation-invariant charac-
teristic functional) is a mizture of centered rotation-invariant Gaus-
stan measures.

It is not so for the finite-dimensional case.

Now consider a condition for absolute continuity of two Gaussian
measures. As in the finite-dimensional case, either two given Gaus-
sian measures are mutually absolutely continuous, or they are sin-
gular. It follows from Theorem 6.10 that for the infinite-dimensional
Gaussian measure its image under nontrivial homothety is singular
with respect to the original measure. The following theorem deals
with the general case.

THEOREM 6.12. Suppose v, and v, are two Gaussian infinite-
dimensional measures. Let their covariation forms q; and g, be de-
fined on the same vector space, i.e., Hilbert norms generated by these
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quadratic forms are equivalent. Necessary and sufficient condition
for the Gaussian measures 1 and v, to be equivalent is that the spec-
trum of gy with respect to 1 be discrete and Y (o} — 1)? < oo, where
{02} denotes the sequence of the extremal values of the quadratic
form ratio.

Theory of Gaussian measures uses many geometric notions. No
wonder that some extensions of purely geometric theorems play im-
portant role in this theory. Consider here a very useful extension of
the well-known isoperimetric property for Gaussian vector probabil-
ity spaces.

THEOREM 6.13. (Isoperimetric inequality for Gaussian mea-
sures) Consider a Gaussian vector probability space (E,2,7), and
let &, C H, C F stand for the concentration ellipse. Then for any
measurable A C F and for any € > 0 the following inequality holds:

ST (A +2£,)) — 97 (7(4)) > .

In particular, in the finite-dimensional case if T is a half-space such
that v(T) = v(A), then for their e-neighborhoods T, and A. we have

7(Te) < 7(Ae).
(“Given a value of volume, the minimal surface measure has the
half-space”.)

Sometimes it is important to have an information about proper-
ties of the distributions of functions on F from a given class. Classes
of convex functions and of norm are often considered. Another im-
portant class of functions is the class of all Lipschitz functions. Evi-
dently, in the one-dimensional case the class of distributions of Lip-
schitz functions (with Lipschitz constant equal to 1) coincides with
the class GMC of all images of one-dimensional Gaussian measure
under every possible contractions.

THEOREM 6.14. For any Gaussian vector probability space the
class of distributions of all Lipschitz functions with the constant equal
to 1 coincides with GMC.
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Finally, we mention the “0-1 law” for Gaussian probability spaces.

THEOREM 6.15. Fvery measurable vector subspace L of the Gaus-

stan vector probability space has measure equal to zero or to one. If
L does not include H.,, then v(L) = 0.

The partition of the infinite-dimensional Gaussian vector prob-
ability space into shifts of Hj is “absolutely nonmeasurable”: its
measurable envelope is the trivial measurable partition v.

7. Gaussian random processes and fields. Sample properties
and large deviations.

This is a large subject. We shall touch only a few topics.

The standard definition of a random process or a random field as
a family of random variables includes consideration of a parameter
set. Often it is convenient to deal with sets of Gaussian random
variables considering them as self-parameterized families (Gaussian
families). We shell follow such idea.

Let K C F, be a Gaussian family, (£,2,~) be the corresponding
Gaussian vector probability space. One of the very important ques-
tions is the question of sample boundness of the Gaussian process K.
The property of sample boundness means the existence of the ran-
dom variable sup K € L°(E,2,v) where, of course, sup means the
lattice supremum in L%. For Gaussian families either such supremum
exists, or it is equal to 1 almost everywhere.

THEOREM 7.1. For every K € F, either sup K € L?(E,,v) or
sup K = oo almost everywhere.

DEFINITION 7.2. For K C FE the property of sample boundness
of K is called G B-property.

The subset K will always be provided with structures induced
from the Gaussian random variables space F. First of all, K is a
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separable metric space, so we can speak about continuity of sample
functions and consider their modulo of continuity. So, the question of
sample continuity of the Gaussian process K is the question whether
or not the space C'(K) of continuous functions on K with a Borel
Gaussian measure can be identified mod0 with the Gaussian vector
probability space (F,2, 7).

DEerINITION 7.3. For K C F the property of sample continuity
of K is called GC-property.

G B-property means that there exists a version of K with contin-
uous sample functions.

To give a simple characterization of GB- and GC-sets is yet un-
solved problem. We shall now describe a purely geometric charac-
terization of GB- and GC-properties.

For convex bounded set K C R”™ consider the polynomial of de-
gree n

W(K,e) = vol, (K +eV) = w{)(K) + ew!™ (K) + ...+ cw(™ (K),

where V' stands for a ball in R™. Since V is not fixed, it is natu-
rally to consider coefficients of the polynomial (Minkowski’s “mixed
volumes”) to within a multiplication by a constant. It is possible to

choose these factors a,, so that the value of an'wgn_)l (K) = h1(K) does
not depend on an external space and is completely defined by proper
geometry of K. We can also take that for the unit interval I we
have hy(I) = 1 and call hy(K) one-dimensional half-perimeter of K.
Thus, for arbitrary finite-dimensional K the value hy(K) is defined
and for infinite-dimensional subsets K of a Hilbert space we define
the value of hy(K') as the supremum of values of one-dimensional

half-perimeters of finite-dimensional subsets of K.

THEOREM 7.4. For every K C F., we have

h(K) = (27r)2l /sup Kv(dz).

In particular, K € GB <= hi(K) < .
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Geometric origin of the functional h; enables to demonstrate the
following monotonicity property of h;.

THEOREM 7.5. Suppose x1,...,2, € H, y1,...,y, € H and for
every i, j we have ||z; — z;|| < ||lyi — y;||. Then hy({z1,...,2,}) <
hl({yh e 7yn})

The Cauchy measure also possesses a monotonicity property.

THEOREM 7.6. Under conditions of Theorem 7.5

({1, 20)°) <y, -, ynt®).

Two-sided inequalities connecting values of v(K°), s»(K°) and
h1(K) can be given.

As for GC-property, the existence of GC- but not G B-sets is
closely connected with a phenomenon of oscillation.

DEFINITION 7.7. Suppose K is a Gaussian family and f € K.
The limit

5(fiK) = lign(supK NVe(f) —inf KN V.(f))

is called oscillation of the Gaussian family K at the point f € K.

THEOREM 7.8. In the case K € G B the oscillation is well defined
and for every f € K is constant mod0.

Oscillation also can be described purely geometrically. Consider
a special case.

THEOREM 7.9. Let K € G'B be a convex symmetric subset of H..
Necessary and sufficient condition for K to possess GC'-property is
that for some (then for every) decreasing sequence of vector sub-
spaces L C H. with finite co-dimensions and zero-intersection

hy(K N L) — 0.
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This condition can be replaced by hy(7r, K) — 0.

The value 6(0; K) is called the oscillation of K (for symmetric
K).

The property of monotonicity of one-dimensional half-perimeter
enables to prove rather satisfactory conditions for K to have G'B- or
GC-property in terms of metric entropy.

THEOREM 7.10. For the convexr symmetric precompact subset K
of the Hilbert space H to belong to the class G'B it is necessary that

lim sup £? log, N (5 K) < oo.
Moreover, if M (g;convK) > 10, then
hi(K) > 0.65¢(log M (e; K))2, §(K) > 0.31 limsupe(log M(e; K))2
and, in particular, if K € GC, then
limsupe?log N (g; K) = 0.

Moreover,

h(K) <223 27 (logy N(27F K))?

— 00

and, in particular, if 327" (logy N (27F; K))% < oo, then K € GC.

Here N and M are the cardinality of the minimal e-net and the
cardinality of the largest subset of K with pairwise distances not less
than e.

Let K C I, be a convex symmetric G'B-set. The function sup K
is a measurable semi-norm. Let us take the case sup K is a norm.
Consider distribution of this function. We know that sup K € LZ2.
Moreover, since it is a Lipschitz function, Theorem 6.14 gives an im-
portant information about the behavior of this distribution near the
infinity. Generally speaking, it is similar to the behavior of a norm
in the finite-dimensional situation. But near the origin we meet new
phenomenon arising due to nonzero oscillation. There are such norms
on the Gaussian vector probability space (with centered measure)
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that for some positive constant a for every £ < a the y-measure of
the e-neighborhood of any point is zero. The nearest example gives
K = {crer} where e are orthonormal and ¢, = (2log(k +—1))%,
a =1, §(K) = 1. It can be proven that for arbitrary convex func-
tional on the Gaussian vector probability space the discrete part of
its distribution contain no more then one atom. The continuous part
of this distribution is concentrated to the right side of the atom (if
it exists) and is absolutely continuous there.
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