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Foreword

This is a working-out of the material on wavelets, presented at the
Second and Third Conference on Measure Theory and Real Analysis,
held at Grado, May 10-22, 1992, and September 10 - October 1, 1993,
respectively.

The author would like to thank the organizer of these meetings,
professor Aljosa Volci¢, for the invitation to deliver a tutorial on
wavelets. The author also expresses his gratitude to his student, Elke
Wilczok, for her work on the final form of these notes, for putting
together the bibliography, and for type-writing the whole treatise.
Many thanks also to Dr. Peter Singer for preparing the preceding
seminars.

Erlangen, May 1994 DieTRICH KOLZOW

A Historical Once-Over - First Papers

A list of authors in wavelet theory and related topics, with date
and title of their first paper on this subject.

1910 A. Haar [Hal0]:
Uber eine Klasse von orthogonalen Funktionensystemen.
1928 P. Franklin [Frank28]:
A set of continuous orthogonal functions.
1931 J. Littlewood, R. Paley [LiP31]:
Theorems on Fourier series and power series.
1946 D. Gabor [Gabo46]:
Theory of communication.
1952 R.J. Duffin, A.C. Schaeffer [DufS52]:
A class of nonharmonic Fourier series.
1961 V. Bargmann [Barg61]:
On a Hilbert space of analytic functions and an associated
integral transform.
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7. Ciesielski [Ci63]:

Properties of the orthonormal Franklin system.

A.P. Calderén [Cal64]:

Intermediate spaces and interpolation, the complex method.
E.W. Aslaksen, J.R. Klauder [AsIK68]:

Unitary representations of the affine group.

D. Esteban, C. Galand [EstG77]:

Applications of quadrature mirror filters to split band
voice coding schemes.

R. Balian [Bal81]:

Un principe d’incertitude fort en théorie du signal

ou en mécanique quantique.

J.0O. Stromberg [Strom82]:

A modified Franklin system and higher order spline
systems on R™ as unconditional bases for Hardy spaces.
P.J. Burt, E.H. Adelson [BurA83a]:

The Laplacian pyramid as a compact image code.

J. Bertrand, P. Bertrand [BertB84]:

Répresentations temps fréquences des signaux.

P. Goupillaud, A. Grossmann, J. Morlet [GouG84]:
Cycle octave and related transforms in seismic signal
analysis.

T. Paul [Paul84]:

Functions analytic on the half plane as quantum mechanical
states.

H.G. Feichtinger, P. Grébner [FeiGb85]:

Banach spaces of distributions defined by decomposition
methods.

F. Low [Low85]:

Complete sets of wave packets.

Y. Meyer [Mey86al:

Principe d’incertitude, bases Hilbertiennes et algebres
d’operateurs.

G. Battle [Bat87]:

A block spin construction of ondelettes. Part I: Lemarié
functions.

1. Daubechies [Dau89]:

Orthonormal bases of wavelets with finite support -
connection with discrete filters.
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1988
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1992
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S. Mallat [Mal87]:

Multiresolution approximation and wavelets.

M. Farge, G. Rabreau [FarR88]:

Transformée en ondelettes pour detecter et analyser les
structures cohérentes dans les écoulements turbulents
bidimensionnels.

M. Holschneider [Hol88]:

On the wavelet transform of fractal objects.

P.G. Lemarié [Lem88]:

Ondelettes a localisation exponentielle.

F. Argoul, A. Arnéodo, J. Elezgaray, G. Grasseau,

R. Murenzi [ArgAES89]:

Wavelet transforms of fractal aggregates.

J.J. Benedetto [Ben89al:

Uncertainty principle inequalities and spectrum estimation.
S. Jaffard [Jaf89a]:

Exposants de Hélder en des points donnés et coefficients
d’ondelettes.

A. Cohen [Co90a:

Ondelettes, analyses multiresolutions et filtres miroirs en
quadrature.

W. Dahmen, C. Micchelli [DahmM?90a]:

On stationary subdivision and the construction of compactly
supported wavelets.

W. Lawton [Law90]:

Tight frames of compactly supported wavelets.

J.-P. Antoine, R: Murenzi, B. Piette, M. Duval-Destin
[AntMP91]:

Image analysis with 2D continuous wavelet transform:
Detection of position, orientation and visual contrast of simple
objects.

Y. Maday, V. Perrier, J.-C. Ravel [MadP91]:

Adaptivité dynamique sur bases d’ondelettes pour
I’approximation d’équations aux dérivées partielles.

B.K. Alpert [Alp92a):

Wavelets and other bases for fast numerical linear algebra.

C.K. Chui [Chui92a]:
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Wavelets and spline interpolation.
K. Gréchenig, W. Madych [GroM92]:
Multiresolution analysis, Haar bases and self-similiar tilings
of R™.
Ph. Tchamitchian, B. Torrésani [TcT92]:
Ridge and skeleton extraction from the wavelet transform.
M.V. Wickerhauser [Wi92]:
Acoustic signal compression with wavelet packets.
1993 L. Cohen [Coh93]:
The scale representation.
J. Lewalle [Lew93]:
Energy dissipation in the wavelet transformed Navier-Stokes
equation.
R.S. Strichartz [Stri93]:
Wavelets and self-affine tilings.
1994 C. Houdré [Hou94]:
Wavelets, probabilities and statistics: some bridges.
M. Mitrea [Mitr94]:
Clifford wavelets, singular integrals, and Hardy spaces.

General Literature on Wavelets

Introductions.

[AkH92], [Berg91a], [Chui92b], [Dau92], [FrK91], [Grosk89], [Heil W89],
[JafM89], [K0oo93], [Lem90a], [Mal87], [Mey88], [Mey89a], [Mey89b],
[MeyJ87],

[Stra89], [Stri94]

Surveys.

[Chui91], [Chui92b], [C0i90], [Dau89], [Dau92], [DeVLI2], [Far92],

[Fei90], [JawS93],
[Mey86¢], [Mey90b], [Mey93], [MeyJ87], [RioV91], [Stra89 |, [Yo93]

Monographs.

[AkH92], [Chui92b], [Dau92], [Dav91], [Fo89], [Mey90c], [Mey90d],
[Mey91a], [Mey93],
[Mitr94], [Va92]
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Special Issues.

[DauMW92], [DeVM93], [DuhF'N93]

Proceedings.

[Ask['90], [Benl'94], [BeyCD92], [Chui92c], [ComGT89], [FarHV92],
[KaiR90], [Lem90],
[Lig92], [SCW93]

The literature, listed in the last two sections, can be found, in
detail, in the bibliography, at the end of the article.
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List of Symbols and Abbreviations

Symbol Meaning

& end of proof

N positive integers, without zero

Nog positive integers, including zero

Z integers

Q rational numbers

R real numbers

R* real numbers, without zero

Rt strictly positive real numbers

C complex numbers

T complex numbers z such that |z| =1

AB set of mappings from B to A

RgA range of the operator A

A* Hilbert adjoint of the operator A

M closure of M

spanM linear span of M

A® B tensor product of A and B

) 1l scalar product,
resp. norm, of the Hilbert space H

(o) -] scalar product,
resp. norm, of the Hilbert space L%(R)

fLyg f orthogonal to ¢

Vi orthogonal complement of the Hilbert
subspace V C H

VoW orthogonal sum of the Hilbert subspaces
VW CH

A" d 'z n-dimensional Lebesgue measure

Lp()(“u)7 1< p <

”f”LP(X,M)

equivalence classes [f],

modulo Lebesgue zero sets, of functions f such

that z — | f|? (z € X) is p-integrable on X;
convention: [f] = f

= (fy |F(@)Pdp)7 ¥f € LP(X, p)

L>*(R) equivalence classes [f], modulo Lebesgue zero sets,
of functions f, bounded a.e.; convention: [f] = f
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(1 fllz

C"(R)
suppf

14

flw)

Abbreviation
a.e.
CWEFT
CWT
DWEFT
DWT
iff

LCG
MRA
ONB
QMF
WONB

O(g), as z — xg  :limuy (4

f
f=o0(g9), as x — zo :limg_yy (]

DIETRICH KOLZOW

=inf{ce R:FJACR:|f|<¢c

on R\ A, A(A) =0}

n-times continuously differentiable functions
support of a function f: closure of the set of
points in which f does not vanish
characteristic function of A: 14(z) =1, if

z € A, 0 otherwise ¢;; Kronecker delta: 4;; =1,
if 2 = 7, 0 otherwise

L*-Fourier transform of f, defined by

flw) = \/%ffooo flz)e ™ dx.

e < o
o)) = 0-

Meaning

almost everywhere (i.e., up to a Lebesgue zero set)
continuous windowed Fourier transform
continuous wavelet transform

discrete windowed Fourier transform
discrete wavelet transform

if and only if

locally compact group

multiresolution analysis

orthonormal basis

quadrature mirror filter

wavelet orthonormal basis
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I. The Continuous Wavelet Transform (CWT)

1.0. Definition and Basic Properties

i)

i)

i)

DEFINITION.

An analyzing wavelet, or mother wavelet, is a function ¢ € L*(R)

with [|]] > 0.
For an analyzing wavelet ¢ and (a,b) € R* x R, define:

1 Qb(ac—b

o] " a

Pap() ==

). (I.1)

The functions ¥, (a,b) € R* x R, are called the daughter
wavelets of 1.

The continuous wavelet transform (CWT) of a function f €
L?(R) with respect to the analyzing wavelet ¢ is defined as the
following function:

Tyf: R"xR—=C

o0 .

(a,b) = Ty f(a,b) ::/ F(2)bus(@)da. (1.2)

— 00
For a fixed value (a,b) € R* x R, the complex number T f(a, b)
is called the wavelet coefficient of f with respect to the analyzing
wavelet ¥ at the point (a,b). The continuous wavelet transform
operator with respect to the analyzing wavelet % is given by the
following integral operator:

T,: L*R)— CR*R

f — T¢f.

If there is no danger of confusion the attribute “with respect to
the analyzing wavelet ¥” will be dropped in the following.
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i)

i)
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LEMMA 1. (Norm conservation and continuity)
V(a,b) € R* xR
[Pasll = [191]; (1.3)

V(ao, bo) ceR*x R
lim qubflb - waobo” =0.
bo)

(a,b)—(ao,

Proof.

r—

Substituting y := Tb results in:

o 1 —b 00
Wl = [~ == e = [ i)y = [0l

ol a

First, assume % to be continuous with compact support. Then,
Pap () = Pagr, (2) uniformly in z as (a,b) — (ag, bo), so

o0 1 x—0b
lim ‘/a — Yq 2 :/ lim —
(a,b)—(a0,bo) a5 = Waohol —co (a,b)=(aobo) |\/Ev( a

)_

1 T — bo 2
Tt =0

Next, consider ¢ € L?(R) arbitrary. Since the continuous func-
tions with compact support are dense in L?(R), for given ¢ > 0,
there exists a continuous function ¥ with compact support, such
that ||t — ¢|| < £. By i), this implies that [[¢s — Pas|| < &.
By the first part of the proof, we can choose (a,b) such that
H'lr/)ab - ¢a0b0H < % 807

|’¢ab - l¢a0b0H = ||¢ab - L’/;flb + lLab - ¢aobo + l&aobo - l&aobo” S

< ”¢ab - 'lrgflb” + ”‘lz’flb - '&aobon + ”¢6050 - 'J)floboH < €.

Since € was arbitrary, the assertion follows. &
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COROLLARY. Ty f is continuous as a function in (a,b).

Proof. By Cauchy-Schwarz’s inequality,

Ty f(a,0)=Tyf (a0, bo)| < |[$ab=2agts Il FI| ¥(@,b); (a0,b0) € R*XR.

The assertion now follows by ii) in the previous lemma. &

LEMMA 2. (Fourier representation of Ty)

Tyf(ab)= [ flo)—

oo Tl

P(aw)e™ dw. (1.4)

Proof. By Plancharel’s identity, one has:

Tyf(a,) = (1, ur) = (Fr ) = [ °; f@)ﬁ

since ¥gp(w) = maz@(aw)e_ib“ by the trans- and dilation rule for

arh(aw)e=wdw,

Fourier transform. &

THEOREM. (Elementary properties of Ty).
Ty is an injective, bounded, linear operator from L?(R) to
L*(R* x R) possessing the following invariance properties:

i) [Tyf(-—z0)l(-,")=Tyf(, -—z0) (translation invariance);

i) [Tyfle-))= @T¢f(c -,c-) (dilation invariance).

Proof. Injectivity:
It will be shown indirectly: Ty f(a,b) = 0 implies || f|] = 0.
Assume: 3 f € L?(R) such that || f|| > 0 and Ty f(a,b) =0 Y(a,b) €
R* x R.
Integrating the assumption with respect to the measure % and
applying (7.4) yields:

oo foo dadb
0= /_oo /_oo 1Ty f(a, b’ 2

a
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_/ / / zbwd |2dadb
o |al a?

Since the existence of the integral is ensured, one can apply Fubini’s
theorem twice, which gives, together with Plancharel’s identity:

0= [ Cpor [ ) plam)ae) e =

o0 |a| -0 a?

= [Tiieres [ e P

Now ey i= 27 [, [(aw) 28 = 27 [, [(w) P4 > 0, for ana-
lyzing wavelets 1.
L ()|
N

Otherwise would vanish a.e., and hence ||?|| = 0. Using

u
Plancharel’s identity again results therefore in cy|| f||* = 0, i.e || f] =
0, in contradiction to the assumption.

Boundedness:
The Cauchy-Schwarz-inequality gives:

Ty fa; 0)] < [ FII[[%aell = LA

by (I1.3), hence, ||Tyflloo < C||f||, where C' = ||3]].
Linearity:

(o + n9)l(a,b) = [ O;(Af + 10)an(@de =

]

_/\/ z)Pap( dac—l—,u/ Pap(z)d

— ATy f(a,b) + uTyg(a,b).

Translation invariance:

o0

Tuf(—2oll@b) = [ f(z — o) pus(e)de =

— 00

= [ )y = T b o).

|a]
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Dilation invariance:

[Ty f(c)](a,b) = /Oo F(ez) 1 z—b

oo |al a

I 1

oo 1
= [T )y =

C ac C

I.1. Time and Frequency Localization

General remarks.

In this paragraph, the CWT is restricted to values (a,b) € R* x
R.

The variable z is interpreted as a time-, the variable w as a

frequency-parameter.
I.1.1. Time Localization
General assumption.

Y analyzing wavelet, z(z) € L*(R). (1.5)

(In particular, this is satisfied by compactly supported analyzing
wavelets.)

The function

¥ ()
(Kl

can be considered as density of a (Borel) probability measure y,, on
R, the function

p¢:R—>R+,

X:R—R, z—z
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as a random variable for p,, with mean (center)

00 1 oo
My 1= /_OOX($)p¢(m)dx: EE /_Oo$|¢(m)|2d$7

and standard deviation (radius)

Byi= ([ (X(2) = my)Ppy(a)dn)t =
— 2y (o) o).
= (o [ = ma o @) )

By the general assumption, ¢, and A exist.
For c € [1,00[ let I(3,¢) :=[my — cAy, my + cAy).

LEMMA 1. (Center and radius of 1)
i) tap fulfills the general assumption.
i) my,, =amy +b.
i) Ay, = aAy.

V) (g, €) = [amy + b — caly, amy + b+ caly).
Proof.

D) tw € L2(R) by (1.3).

(1.6)

(1.7)

22 22 |Ygs(2)[Pdz = [*7_(ay+b)?|¢¥(y)|*dy < oo by assumption.

The next two points make use of identity (1.3).

) gy = e oo 2an(@)Pde = me 25 (ay + D)0 () Pdy =

amy + b.

iii) A?l)ab = m ffooo(x - m¢ab)2|¢ab(m)|2dm = ||¢}||2 ffooo(ay +b—

amy, — b)*|d(y)Pdy = a* A},

iv) Follows from ii) and iii), by definition of I(t,s, c).

To prove the next lemma, we need

%
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Tchebychev’s inequality.

Let p be a probability measure on R, Y an arbitrary random
variable for p such that the mean FY and the standard deviation oy
exist. Then holds

oy?
2

Ve>0: up(lY —EY|>¢ <

LEMMA 2. (Tchebychev estimation)

6= ¥ Lol < 12

Proof. |l = Lyl = fryiu,e 19 (@)Pde = [Py (z € R :
|z — my| > cAy) < “%2“3, where the last estimation follows from
Tchebychev’s inequality with p = py, Y =X, EY =my, oy =
Ay, €=cAy. &

COROLLARY.

19 Ligoll 2 [191(1 - —)

THEOREM 1. (Time localization). Let ¢ € |1,00[. Assume

LA
o

Ty f(a, b)| > (1.8)

Then, f does not vanish on some set of positive measure in I (1, c).

Proof. (indirectly). Assume, f =0 a.e. on I (%4, c). Then:

Tuft@b)l =1 [ fe)ule)ds] = | s Pz =

= | [ F@F(e) = P @) - L0 (@),
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what is by Cauchy-Schwarz’s inequality less or equal to

1 F11%ab = Pab * Lrgpop,e)ll-
By lemma 2 and (/.3), this is smaller or equal to
IS [apll _ [ (9]
c c

in contradiction to (1.8). &

Note that, for ¢ = 1, the above theorem makes no sense, since
[Ty f(a,b)] < [[®|[If]| V (a,6) € Rt x R, by Cauchy-Schwarz’s in-
equality.

CoroLLARY 1. If Tyf(a,b) # 0, then there exists a number
¢ > 1 such that f does not vanish on some set of positive measure in

I(¢ab7 C)'

Proof. Choose ¢ > %, in theorem 1. &

Note that Ty f(a,b) = 0 does not imply that f(z) = 0, for z in
a neighbourhood of amy + b. Choose, for example, f =r-1_,4,
where r > 0, s > 1 arbitrary,

_$_17 xe[_%:%[
_) % z € [-7:3l
vE) =9, z e [11]
0, otherwise

Then, my =0, 0.36 < Ay < 0.37, Ty f(1,0) = [*7_¢(z)dz = 0, but,
f(z)=r>0on I(¢0, As_w) The essential property of ¥, responsible
for the described phenomenon, is that ¥ fulfills the vanishing moment
condition

/OO ¥(z)dz = 0. (1.9)

— 00

COROLLARY 2. (Time zooming). Let b € R. If there exists a
constant ¢ €]1,00[ such that (1.8) holds, for a > 0 arbitrarily small,
then b € suppf.
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Proof. Lemma 1 iv) implies: Ve > 1, Ye > 0 dag > 0 such
that I(¥as,¢) Clb — ¢,b+ €[ Va < ag. The assertion now follows by
theorem 1. &

QUESTION. Do stronger assumptions on 7 f(a,b) allow more
precise information about the behaviour of f on (¢4, ¢), ¢ €]1, 00|,

than just non-vanishing?

THEOREM 2. (Time modulus estimation). Let ¢ €]1,00[, v > 0.

ku

If
Ty fa;0)] > =—=(lFl + ), (1.10)

then, on some set of positive measure in I (g, ),

1f(2)] > W (I.11)

Proof (indirectly): Assume,

f(z)] < ﬁ a.e. on I(tap,c). (1.12)

Ty f(a, b)) = |/ ) Pu(@)dz] <

< |/ Mtban(2) — Pap() - L1(y,,,0)ldz|+

¥ / 2)Bur(2) Ly (@) o]

The Cauchy-Schwarz-inequality, together with lemma 2, yields
that the first term is smaller or equal to WH A1l The second term
can be estimated by (/.12) as less or equal to —— f_ |Van(2)]-

2

1 (%w)( z)dz. By the Cauchy- ?ChW&lZ 1nequahty7 tlhe integral is less
or equal to ||| - AL (®ap,€))2 = ||| - (2caAy)? (lemma 1 iv)).

Hence, the second term is majorized by ﬂLﬂl Altogether we get:

[Ty f(a,b)] < M(Hf“ + 7), in contradiction to (/.10). &
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CoROLLARY 1. (Time modulus estimation by the norm). Let
€1, 00]. If

2||¢[lIlf
7, ()] > 2L (113)
then, on some set of positive measure in I (g, ),
1/
[f(z)] > ———.
(=) c%(QaAdj)%
Proof. Choose v = || f|| in theorem 2. &

COROLLARY 2. (Localization of singularities in time, by zoom-
ing). If there exists a constant ¢ €]1,00[ such that (1.8) holds, for
a > 0 arbitrarily small, then

limsup |f(z)| = o0, uniformly in b.
z—b

Proof. Choose § > 0 arbitrary. Define ¢ := ¢(1+46) > 1, v :=
[|fl|6 > 0. By assumption,

A +0) 1]
c(1+446) ¢

Ty f(a; b)) > 1T+ 7)-

Since [ (g, €) shrinks to b, as a tends to zero, theorem 2 yields the
assertion. &

Note that the last corollary is a strengthening of corollary 2 to
theorem 1.
1.1.2 Frequency Localization

General assumption.

¥ analyzing wavelet, wi(w) € L*(R). (1.14)
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(In particular, this is satisfied by analyzing wavelets with com-
pactly supported Fourier transform.)

The general assumption guarantees that my, Ad} and I('J), c) ex-
ist (cf. [.1.1).

LEMMA. (Center and radius of @)

i) tap fulfills the general assumption.

11 m-—~ = —.
) "pab @
A -

i) A~ = =%,
) "pab @

— m - A- m; A -
iv) I(Yap, ¢) = [—2 — c%,—d’——l—c%].

a a

Proof.

) g€ LA(R) by (13). A
122 w2 thap 2o = [, (2214 () [2du = L5 [, u?|4h(w)[*du, which

is finite by assumption.

The next two points make use of identity (1.3).

.. 1 00 T2 _ 1 00w (N2,
i) mg = g e @lVwl e = S Sl ()P = =5
i) A = L 1% (0 — D)2 dw
) "Z)ab ||'¢}ab||2 f—(’)n.;(h ) a ) |¢ab|
= ||1Z}||2 ffooo(% - Tw)Zlftz/)(u)Pdu = QL?A?Z,
iv) Follows from ii) and iii) by definition of 1(7,7)[;, c). &

Note that the lemma implies:

Mo
Q(a,b) ::A—“b: A =const. VY (a,b) e R* x R.
Yab ¥

This is called Constant-Q-property, in signal analysis.
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From iv) follows: The interval I(@, ¢) increases, as « tends to 0,
and is independent of b. In contrary, I (., ¢) contracts to the single
point b, in the same limit. Hence, if there exist frequency-analogues
of the time-zooming-statements in 1.1.1, they must have a different
form.

THEOREM 1. (Frequency localization). If (I1.8) holds, then f
does not vanish on some set of positive measure in I (1, c).

Proof (indirectly). Assume, f = 0 a.e. on I(zZa\b,c). By Plan-
charel’s theorem follows:

o) =1 [ fe)tatdel =1 [ fe)imdsl =
R\I("Z)abvc)
=17 ) Tale) — o) 1y el

what is, by Cauchy-Schwarz’s inequality, smaller or equal than
LA = o Ly

for which w is a majorante, by the Tchebychev estimation, Plan-
charel’s theorem and (/.3). But, this contradicts (1.8). &

CoroLLARY 1. If Tyf(a,b) # 0, then there exists a number
c > 1 such that f does not vanish, on some set of positive measure

n I(@,c).

Proof. Choose ¢ > |7|ij|,|(|Lf|b|)| in theorem 1. &

Note that, analogously to time localization, T f(a,b) = 0 does
not imply that f( ) =0, for w in a neighbourhood of —% 24 To show
this, it suffices to consider functions, ¥ and f havmg as Fourier

transforms the functions, defined in the corresponding example in
I.1.1.
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COROLLARY 2. (Frequency zooming). If there exist constants
b€ R, ce]l,o0] such that (I.8) holds, for a arbitrarily large, then

0 € suppf.

_Proof. Lemma 1 iv) implies: V¢ > 1V e >0 3 ag > 0such that
I(ap, ¢) C] — €, €[ Ya > ag. The assertion now follows by theorem 1.

%

Frequency zooming is less important, for applications, than time
zooming. The reason is that the only point in frequency-space, one
can zoom in, is zero, while, in time-space, one can zoom in arbitrary
points b € R, in time-space.

THEOREM 2. (Frequency modulus estimation). If (1.10) holds,
then

on some set of posilive measure in I(@,, c).

Proof (indirectly): Assume,

i T g I(ap, ©). I.15
ILb(w)ISC(%A@) a.e. on I(tap, ) (1.15)

B[

By the triangle inequality: [Ty f(a,b)| <

abC

+ / ) Banl) 1y (@)de.
The Tchebychev estimation, together with the Cauchy-Schwarz-ine-
quality and (/.15), yields:

)
G
C

[ @) Bae) - balw) 1y, el

Ty (a,b)] < IAT (Pap, €))7,

T
C(% ¢)2
where /\(I(@,c)) = %Ad by lemma 1 iv), hence |7y f(a,b)| <
M(HfH + 7), in contradiction to assumption (7.10). o
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COROLLARY 1. (Frequency modulus estimation by the norm)
If (1.13) holds, then, on some set of positive measure in I (g, c),

ol > UL
C(?AJJ)Q
Proof. Choose v = || f||, in theorem 2. &

COROLLARY 2. (Localization of singularities in frequency, by
zooming). If there exist constants b € R, ¢ €]1, 00[ such that (1.8)
holds, for a arbitrarily large, then

lim sup | f(w)| = oo.
w—0

Proof. Analogously to the corresponding corollary in [.1.1.

This corollary is a strengthening of corollary 2 to theorem 1.

1.1.3 Time-frequency Localization

General assumption.

¥ analyzing wavelet, zi(z) € L*(R), wi(w) e L*(R). (1.16)

One may ask, whether there exist functions satisfying the gen-
eral assumption. Previously it was mentioned that the condition
z(z) € L?*(R) is in particular satisfied by compactly supported
w, the condition w't;)(w) € L?(R) by % with compactly supported
Fourier transform . So, the most simple function, satisfying the
general assumption, would be one that is compactly supported in
time as well as in frequency space. However, by an immediate con-
sequence of the Paley- Wiener-Theorem®, the only function with this

1 See e.g. Y. Katznelson, An introduction in harmonic analysis, New York
(1969), p. 173.
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property is ¢» = 0, which is no analyzing wavelet, by definition. But,
there are functions satisfying the general assumption, e.g. the

1 22

st (>0, (117)

as well as their derivatives and linear combinations of these functions.

Gaussian  functions : g,(z) =

The general assumption being valid, one can combine the re-
sults of sections I.1.1 and [.1.2 and extract simultaneously time- and
frequency-information about f, from the single wavelet coefficient
Ty f(a,b). This will become more transparent by using the following
notation:

For f € L2(R), let
F:RxR—>CxC (z,0) = (f(z), f(w)).

R x R is interpreted as time-frequency-plane. Accordingly, for ¢ €
[1,00[, the rectangle R(¢,c) := I(3,c) X (), ) is called the time-
frequency-window of ¥ and c.

THEOREM 1. (Time-frequency localization)
Under assumption (1.8) holds

Pz, w) # (0,0)

on some set of positive (2-dim.) measure in R(1,p,c).

Proof. Combination of theorems 1 in I.1.1 and 1.1.2 (time local-
ization and frequency localization). &

Strictly speaking, the theorems on time localization and fre-
quency localization contain more than the last theorem tells.

CoroLLARY. IfTyf(a,b) # 0, then there exists a number ¢ > 1
such that F does not vanish on some set of positive measure in

R(‘lzbah C)'
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Proof. Combination of corollaries 1 to theorems 1 in 1.1.1 and

[.1.2. &

THEOREM 2.

N (R(Yaps €)) = 42Dy A ;. (1.18)

Proof. A (R (b, €)) = 2caly - 20%. &

Using the area of R(t,c), for ¢ fixed, as a measure for the
uncertainty of time-frequency localization by Ty at (amy + b, %),
one gets:

COROLLARY. (Area invariance of the time-frequency window).
The uncertainty of time-frequency localization by T, at (am,+b, n;—w)
is independent of a and b, bounded below by 2¢2, uniformly in 1, and

minimal (equal to 2c?) iff 1 is a Gaussian function.

Proof. Follows from the last theorem, in combination with

Heisenberg’s Uncertainty Principle.

AyAy >

b

N | —

where equality holds iff 1 is a Gaussian function. &

[llustration of the (a,b)-dependence of time-frequency-windows,
for ¢ = 1:
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[Chui92b]

1.2. Orthogonality Relation and Applications
1.2.1. The Admissibility Condition

DEFINITION. An analyzing wavelet v is called admissible, if it
satisfies the following

admissibility condition:
|[$(w)]

o 2
cy = 271'/_00 wa < 00, (1.19)

w

what means that the function z — %—r’—% is an element of L?(R).

REMARKS.

i) TFor ¢ € L2(R)N L'(R), the Fourier transform ¢ is continuous.
If for such a % (/.19) holds, this implies the vanishing moment

condition
o0

b0 = [ laydr=0
(cf. (1.9)). So a real-valued 1 changes its sign at least once, i.e.
b oscillates. On the other hand, due to ¥ € L?(R), ¥ decays at
infinity. Both observations together explain the naming wave-let
(resp. onde-lette in French).
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iv)

i)

i)

iv)
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For all analyzing wavelets 7, ¢y > 0 holds, since ||¢|| > 0, by
definition.

By restricting to admissible analyzing wavelets, one can prove
explicit inversion formulas for CWT. This will be done in the
following sections. But, the admissibility condition will also be
important in the discrete wavelet transform theory (cf.I1.2). A
deeper insight into the meaning of ¢, one can get from the group
theoretical analysis of wavelet transform, treated in chapter III.

Since the Gaussian functions are elements of L2(R)NL!(R), and
their Fourier transforms are again Gaussian functions (therefore
possess no zeros), by remark i), no Gaussian function is an ad-
missible analyzing wavelet. However, from a Gaussian wavelet,
one can construct admissible, analyzing wavelets, which approx-
imate a time-frequency-localization of minimal uncertainty. (See
the following examples i), iii) and iv).)

EXAMPLES.

Morlet wavelets (complex-valued):

) 2 22
Y(z) =77(e — e T)e” T (yER).
This corresponds to a modulated Gaussian.

Paul wavelets (complex-valued):

$(2) = g (6 € RT\{0}).

Derivations of the Gaussian (real-valued):
.7:2
P(z) = (-1)" e T (me N\{1}).
Especially for m=2 the function % is called Marr wavelet or
Mezican hat.

Difference of Gaussians (DOG wavelet, real-valued):

22

1’/)(33) —e 2 —

(M)

x

e 8,

D=
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v) Top hat. (real-valued)

1 lz] < 1
P(z) =4 —3 1< |z[<3
0 |z| > 3.

This yields an approximation for the Mexican hat.

ILLUSTRATIONS.

Morlet wavelet [FFar92]

Paul wavelet [FFar92]

75
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Mexican hat [Far92]

DOG wavelet [Far92]

Top hat
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THEOREM 1. (Abundance of admissible wavelets)

The set of admissible analyzing wavelets, together with the zero-
element of L?(R), constitutes a dense vector subspace of L*(R).

Proof. Step 1. Subspace property. Let i, 19 be admissible
analyzing wavelets, A, ¢ € C. Define: 3 := Ay + piby. Then
3 € L%(R) and

Cys = 2n/00 () + e,

oo ] -
00 2 00 2
< 27r|/\|2/ de—l—2ﬁ|u|2/ de:
: ] e o]
= |’\|26¢21 + |:u|26¢22 < 0o,
i.e. 13 is an admissible analyzing wavelet, too.

Step 2. Density. Even more will be shown:

a) If 7 is an admissible wavelet, then, 1,5 is an admissible wavelet

V (a,b) € R* x R.
b) If ¢ is analyzing wavelet, then, span{ts, (a,b) € R* x R} is

dense in L%(R).
a) and b), together with step 1, prove the assertion.

Proof.
a) Let ¢ be an admissible wavelet. ¢,, € L%(R) by (1.3).

%] 7 aw 2
Copyy = 271'/ |Q|de = |laley < o0,
o0 @l
i.e. ¥4 is an admissible wavelet,too.

b) (indirectly). Assume span{¢.s, (a,b) € R* x R} # L?*(R). Then
there exists a function f € L?(R) such that ||f|| > 0, and

f L span{ta, (a,b) € R* x R}.
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In particular, 0 = (f, ¥ap) = Ty f(a,b) V (a,b) € R* x R. Since T}, is
injective, by the theorem in 1.0, this leads to the desired contradic-
tion. &

THEOREM 2. (Square integrability). Let 1) be an admissible ana-
lyzing wavelet. Then,

dadb
T,f € I*(R* x R, 3—2) Vf € I2(R) (1.20).

Proof. One has to show: [*° [% [T} f(a,b)|?%42 < oco. Since
the considered integrand is positive, one can change the order of in-
tegration, by Tonelli’s theorem. So one gets, by the same calculation
as in the injectivity proof in 1.0,

eo oo dadb
N e

a2

using the assumption ¢, < oo.

1.2.2. Orthogonality Relation.
General assumption. @ admissible analyzing wavelet.

THEOREM. (Orthogonality)

Vf gel*(R):

[ mse T e = e [ faatmas. (121

a? oo

Proof. [Dau92,p.24], [HeilW89,p.640]. The existence of the
integral is ensured, by theorem 2 of the last section. So, in the sequel,
the order of integration can be interchanged, by Fubini’s theorem.
The following calculations are an extension of those, used in the
injectivity proof in 1.0.
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Define F,(w) := f(w)d(aw), Ga(w) = §(w)d(aw). Applying
(7.4) results in:

7dadb

/O:o /_OO Tyf(a,b)Tyg(a, b)
=L L
: /_“{/‘“[/‘“— e~ e / ‘”’“’dw]db}| I’

which is by Plancharel’s formula equal to

[ ol @@ e

. al =
3(E) 1 (at) de] 2

—/OOQW/OOA §)i(a la] =

= [ i [ e e = e [ j@gtes

o0

dadb

|a]

et do / Go(&)eibodi)

by Plancharel’s formula. &

(1.21) is often called resolution of unity, in accordance with the
language, used in the theory of coherent states (see Appendix B).
Wavelets constitute a special example for those.

COROLLARY. (Isometry). The map \/%_le/, : L*(R) — L*(R* x

R, dng) is an isometry.
Proof. Choose f = g, in above theorem. &
The next two sections are dedicated to further consequences of

(1.21).

1.2.3. Inversion Formulas.

General assumption. ¥ admissible analyzing wavelet, f € L%(R)
arbitrary.
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An alternative interpretation of (/.21) is that the following in-
version formula holds, in the weak sense

1 [ foo dadb
_ ' T, f(a, b) by 2. 1.22
01/;/—00/—00 wf(f%)vbaQ (1.22)

This is the starting point to prove some stronger inversion formulas

for CWT.

L?-inversion.
For0 < A} < Ay < 00, 0 < B < oo define fa,4,B by

dadb
(fa,4,B:9) Cw/ /A1<| <h Ty f(a,b)(Yan, )—2

Then,

Vg € L*(R).

A1—>0,11/I12,B—>oo ”f - fAlAQBH -0

Proof. [Dau92,p.25]. fa, 4,8 is a uniquely defined element of
L?(R), by Riesz’ representation theorem, since

111
|(fa,4,B,9)| < §4B(A_1 - A—Q)HfHH'LﬁHZHgH Vg € L*(R),

by Cauchy-Schwarz’s inequality. l.e. ¢ — (fa,4,B,9) defines a
bounded, linear functional on L%(R).

||f_ fA1A2B|| = Hsﬁp |(f_ fA1A2B7g)| <
gl|=1

< sup / / Tyfla,b)Tyg(a, b)
[lg]|=1 Cll/ [b|>B J]a|> A2 or |a|<4

and the last term is, by the Cauchy-Schwarz inequality, smaller or

equal to
||g|| 1 % /b|>B/|>A2 or |al<A;

dadb; e oo dadb. 1
1t PR [ [ gt P

dadb

3
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By the orthogonality relation, the second factor is equal to 1, while
the first one converges to zero, since the integral exists. &

LEMMA. (Gaussian functions as approzimate identity). Define
Jo asin (I.17). Let w € L' (R). Then, in every point x € R, in which
u is continuous, holds.

algg+ U * go(z) — u(z). (1.23)

Proof. [Chui92b,p.29]

Gaussian functions [Chui92b]

Note first that Vo > 0 [72 go(2z)dz =1, lim|z e galz) = 0.
Let u be continuous at z,i.e. Ve >0 36 > 0: |u(z —h) —u(z)| < ¢
V|h| < 6.

From these remarks follows:

0t ga@) = ula) =1 [ ula = Wga (b)dh — u(z) 1] =

=1 [ tule~ h) - u(e))ga(b)dh] <

— 00

< [ 1o~ 1) —u@lga (Bt [ (Jute )]+ ln(e)])gu8)dn <
— |h|>6

)
< e/éga(h)dh—l- lulimazpyssga (k) + |u(z)] /|h|>5ga(h)dh <
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< oLt lulhga 0)+lu(e)l [ on (i
Now, g,(z) = 0, V z,as @ — 0+, and T—>oo,asoz—>0—|—,sothe
last two summands vanish, as « tends to 0+. Since € was arbitrary,
the assertion is proved. &

Pointwise inversion.

In addition to the general assumption, let f,v» € L*(R) and v be
continuous.

Then, in every point x in which f is continuous, holds.

1 oo poo dadb
x):a/_ /_ Ty f(a, D) dar(z) -

(I.24)

Proof. [Chui92b,p.62]. Assume f is continuous in z. Choose
g(y) = go(z — y), in the orthogonality relation (/.21). By this, one
gets:

dadb

| [ tura T - an

o [ F@ale -~ vy = ol + 9.)(0)

which goes to ¢y f(z) as a tends to 04 by the last lemma.
On the other hand:

Tygae =@ = [ gule — pusly)dy.

which goes to ¥4;(z), as @ — 04, by the same lemma. Therefore:

dadb

lim / / Ty fla,b)Tyga(z — ) (a, b)

a—0+
SR dadb
:/_ [ Tl/if(a?b)'l/)ab(‘r) a? &
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1.2.4. The Range of the CWT.

By theorem 2 in 1.2.1 and the corollary in [.2.2, one knows already
that the operator Ty is a multiple of an isometry of L?(R) into
L*(R* xR, %). But, the orthogonality relation shows even more:

THEOREM. (Characterization of the Range)

Let v be an admissible analyzing wavelet. Then, Rg Ty is a closed
subspace of L*(R* x R, dng), and additionally a reproducing kernel
Hilbert space with reproducing kernel

KM%%WWWI%M%M%W (1.25)

Proof. Rg T is closed:
Let (F,)nen be a sequence in Rg T, with limit FF € L?(R)* x
R, dg;”)). Define f, € L*(R) by F, = Tyf,. Since (F,)neN is a
Cauchy-sequence in Rg T}, one has:

Ve>0 INeN: ||F,-F,

Lo(R* xR, 4ot <e Vn,m>N.

So, € > ¢yl frn — fim|| by isometry of Ty, ie. (fo)nen is a Cauchy-

1
NG
sequence in L?(R). The completeness of L?(R) ensures the existence
of a limit f € L?(R) for this sequence. Since \/—%Tlp is an isometry,
Ty is in particular continuous, so, Ty f = F. Henze7 Rg Ty is closed.

Rg Ty reproducing kernel Hilbert space:
Let F € Rg Ty be arbitrary, f € L?*(R) such that F = Tyf.
Applying the orthogonality relation (1.21), yields:

Fab)= [ f@)iamds =

/ / Ty (!, 0) Ty (e, )
[ [ abﬁﬂ@@(wmﬁ?f

with Ky as given by (1.25). &

da’ db’
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1.2.5. Generalized Orthogonality Relation and Generalized
Inversion.

THEOREM. (Generalized Orthogonality)
Let b, W be two admissible analyzing wavelets, f, g € L*(R).
Then, the following formula holds.

| O; [ O:o wa(a,b)mdng = o [ Z (g de,  (126)

where

Cyp =27 /_O:O de. (1.27)

Proof. The existence of the left hand side is justified by theorem
1, in 1.2.1, the right hand side is finite, because of

ool < 2a) 20 2 - L oo,

Vel VIl 2

since ?, W are admissible. The assertion now follows by the same
calculation, as in the proof of (1.21). (Use G (w) = g(w)¢(aw).) &

If additionally
cyw # 0, (1.28)
(7.26) can be interpreted as an inversion formula, in the weak sense,

again. Analogously to section 1.2.3, one can prove the following
stronger versions:

Generalized L?-inversion.
For0 < A; < Ay < 00, 0 < B < 00, define fa, 4,8 by

(fa,4,B,9) ==

dadb
— / / (a,) (W, 0) "2 Yg € LX(R). (1.29)
CllJ‘I" Aqla |<A2 a

Then,

li — .
A1 —0, ljlgl,B—mo ”f fA1A2BH =0
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Generalized pointwise inversion.

Let ¥, W be two admissible analyzing wavelets such that (1.28)
holds, ¥ in L'(R) and continuous. Let f € L'(R) N L%(R). Then,

in every point x in which f is continuous, holds

@ = [ [ Tusa e

dadb
Cips a?

(1.30)

Note that the admissibility of both % and W is a sufficient, but
not a necessary condition for (/.26). Actually, the following assertion
already implies (/.26):

1) ffooo ffooo Td)f(av b)Tq;g((Z, b)% < 00 v f7 g € LZ(R)7
i) cyy < o0.

If, in addition to i) and ii), the condition (/.28) is satisfied, ¥
is called a reconstruction wavelet, for the analyzing wavelet 1, since
then, the above inversion formulas are still valid.

Another consequence of (/.26) is the following characterization
of the reproducing kernel Ky, defined in (/.25):

COROLLARY. (General description of K)

Let v be an admissible analyzing wavelet, Ky, the reproducing ker-
nel for the range of Ty,. Then, one has, for all admissible analyzing
wavelets W :

1

Krd’(((% b)7 (a/7 b/)) - Cow T\Dwa’b' (a7 b)

Proof. Analogously to the proof in 1.2.4, using the uniqueness of
reproducing kernels. &
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1.2.6. Restriction of the CWT to a > 0.

The orthogonality relations (/.21) and (/.26) and the resulting
inversion formulas require the full knowledge of all wavelet coeffi-
cients Ty f(a,b), (a,b) € R* x R. For analytic purposes (see 1.1 and
1.3), it often suffices to know the CW'T of f, for positive values of
the scale parameter «a, only.

QUESTION. Under which conditions on ¥, an arbitrary func-
tion f € L*(R) is determined, uniquely, by its wavelet coefficients
Ty f(a,b), for (a,b) € RT x R 7 Equivalently: For which analyzing
wavelets v is the operator TJ, defined on L*(R) via

TJ i [ Tyflrtxr,
injective 7
REMARK.
The admissiblity of the analyzing wavelet 1p does not imply the
injectivity of TJ.

Proof by counterexample. Choose 1) such that z/; is supported
in [r,o00[, where r > 0. This choice is clearly compatible with the
admissibility condition: On the other hand choose f with ||f|| > 0
such that f is supported in | — 0o, s], where s < 0. Then one gets by
(7.4):

Tyf(a,b) = / fw)Vad(aw)e®™dw =0 ¥ (a,b) € R x R,

-0
since the supports of both factors overlap for no scale parameter
a > 0. Hence TJ is not injective for such . &

To avoid such cases, one has to pose a harder admissibility con-
dition on .

DEFINITION. An analyzing wavelet 1 is called strongly admissi-
ble, if it satisfies the following strong admissibility condition:

00 4] 2 0 7 2
271'/ de = 271'/ 4 ()] dw =: ¢ < 0. (1.31)
o W —oo |l
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Note that the wavelet, used in the above counterexample, is ad-
missible, but not strongly admissible.

LEMMA. (Connection between “admissible” and “strongly admis-

sible”)

i) Fuvery strongly admissible analyzing wavelet is admissible, and
cy = 2¢5) holds.

ii) Fuvery real-valued admissible analyzing wavelet is strongly admis-

sible, and ¢}f = % holds.

Proof.
i): Follows by adding both integrals in (/.31).

ii) For 4 real-valued one has ¥ (w) = ¥(—w), i.e.

/_io"&(g”Zdw_/O“'V( dé — / |¢ [POF e _

[
0 €

since ¥ was assumed to be admissible. &

THEOREM. (Positive version of the orthogonality relation). Let

¥ be a strongly admissible analyzing wavelet, f, g € L*(R) arbitrary.
Then

R ——dadb ¢y
| e Tt = %

_Z f@)g@de.  (1.32)

Proof follows by repeating the calculations in the proof of (1.21)
with “[*_da” replaced by “[y* da”. %

COROLLARY. (Positive version of the inversion formulas). Let 1
be a strongly admissible analyzing wavelet. Then T+ is injective and

the inversion formulas in 1.2.3 hold with “c,”, replaced by « w” , and
“[% da”, replaced by “[;7 da”.
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Proof completely analogous to the proofs in 1.2.3. &

The symmetry of (1.31) allows to prove negative versions of the
orthogonality relation and the inversion formulas, under the same
conditions: The above theorem and its corollary still hold, if one
replaces “[° da” by “f°__ da”.

Analogously, one can prove positive/negative versions of the gen-
eralized orthogonality relation and the generalized inversion formulas,
posing similiar conditions on cyy.

SUPPLEMENTARY REMARK. The counterexample, given above, is
generic. Define the Hardy space

H?*R):={f e L*(R): f(w)=0 for w<0}.

Analogously as in 1.0, one can show: For arbitrary analyzing wavelets
Y € H*(R), the transform TJ is injective on H?(R). (See [GrosM84].)
Similiar results hold for functions with Fourier transforms vanishing
on R, and for the restriction of Ty to negative values.

This fact will find a natural explanation in the group theoretical
setting of ch.III.

1.2.7. Extension of the CWT to More than One Dimension.

The CWT has been extended from L*(R) to L*(R") (n € N
arbitrary) by R. Murenzi, see [AntMP91], [Mur89].

In the one dimensional setting, daughter wavelets 1,; were built
from the mother wavelet ¢ by using the following symmetry opera-
tions on the real line:

Dilation, marked by a parameter ¢ € R*, and translation marked
by b € R.

Trying to imitate this construction in » dimensions, Murenzi
[Mur89] studied the symmetries of the Euclidean space R”. This
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lead him to introduce an additional rotation parameter R (an ele-
ment of the orthogonal group SO(n)), while maintaining the dilation
and translation parameters a, b (where b € R" now). So the defini-
tions of 1.0 and 1.2.1 can be rewritten as follows.

DEFINITION.

i) A n-dimensional analyzing wavelet is a function ¢ € L?(R")
with "¢"L2(Rn) > 0.

ii) A n-dimensional analyzing wavelet v is called admissible, if it
satisfies the following admissibility condition.

Cy = (271')”/ Md”w < 00.

el

iii) For a n-dimensional analyzing wavelet ¥ and (a,b,R) € R* X
R” x SO(n), define daughter wavelets as follows:

—b
PRI

|a]? a

Yapr () 1= ))-

iv) The n-dimensional continuous wavelet transform of a function
f € L3(R"), with respect to the n-dimensional analyzing wavelet
1, is defined as follows.

Tpf: RxR"xSO(n)—C

(0,6, R) = TP S 0,6, R) = [ f(a)buim(e)d"a.

For this transform, the orthogonality relations (/.21) and (/.26)
and their corollaries can be generalized. In particular, (1.21)
now looks as follows.

THEOREM. (n-dimensional orthogonality)
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Let @ be an admissible n-dimensional analyzing wavelet, f, g €

L?*(R™). Then.
 __dad"bdR
/SO /H/T¢fabR Jola R =

=< [ fa)g@aa,

where fSO(n) dR denotes the integral over SO(n) with respect to its

left Haar measure®.

The case n = 2 is of special importance for applications of CWT
to image analysis, see [AntMP91], [ArnAF92]. In this case, the inte-
gral fSO(n) d’R possesses the simple form f027r df, where 6 is the angle
characterizing the 2-dimensional rotation matrix R = Ry.

For n =1, one gets Tl/lj =Ty.

1.3. Pointwise Wavelet Analysis of Differentiability.

Application to the Riemann Function.

Motivation. Until 1970, it was supposed that the so-called Rie-
mann function

1
E 35t (mn’z) (1.33)

is not differentiable, at any point z € R. But in 1970, J. Gerver
proved the differentiability of R in exactly the points zqg of the type

2p+1
2¢+ 1’

Tg = where p,q € Z. (1.34)
His proof was elementary, but complicated. So, in the sequel, several
mathematicians reproved Gerver’s result, more directly, using differ-
ent techniques®. One special method, discovered by M. Holschneider

2 See Chapter I11.1, for a definition of Haar measure.

3  E.g.: M. Queffelec, C.R. Séan, Acad. Sci. 273, Ser. A (1971) 291-293 or S.
Itatsu, Proc. Japan Acad., Ser. A, Math. Sci. 57 (1981) 492-495.
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and Ph. Tchamitchian in 1989, [HolT89], is founded on the CWT
and takes advantage of its localization properties. This will be stud-
ied in the following.

THEOREM. (Pointwise analysis of differentiability)
Assume G : ]0,1] x R — C is a measurable function satisfying
the following two conditions.

i) 3C1 >0, >0, such that
G (a,b)| < Cra®t2 ¥ a €]0,1]
uniformly in b.

i) 3Cy >0, p:RE — R monotone, continuous with [ p(z)% <

oo such that
|G (a, b+ 0)| < ChaZ (ap(a) + |blp(|b])

for some fized zo € R and ¥ (a,b) €]0,1] x R.
Let U € C*(R) be compactly supported. For z € R, define

g(a) = /_0; /Olc;(a,b)%q;(f;b)dzjb. (1.35)

Then, g is differentiable at x.

Sketch of Proof. [HolT89], [HolT91], [Mey93,p.115]. By a global

translation and dilation which does not affect the differentiability

properties of g, one can assume that zg = 0 and supp¥ C [—%, %]

Aim of the proof is to show the existence of

i 9 —9(0)
h—0 h k
or equivalently
lim {g(h) — 9(0) . g(h/) — g(O)} — 07 (1.36)

h,h!' =0 h h'
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where in the following 0 < A’ < h < oo is assumed. The case h < 0
can be treated analogously. Now

g(h) —g(0) g(h') —g(0)

h - h!
= [ [ ctangipu St - -
o ﬁwh ;b> TV -
<[ gt o
R R
[ eeniechi
v /h'wa’%wh’;%dzﬁb— ’
T [t
+/ /(JhG(a,b)l,\/Laq;(—g)debJr (6)

‘ﬁ[ﬁ by A Gl
Terms (1) and (4), as well as (3) and (6), can be estimated to be
of the order o(h), respectively o(h). In the first case, this follows
from condition i); in the second case, with help of condition ii),
together with the fact that ¥ is compactly supported and continuous,
therefore, it attains its maximum on the finite interval of integration.
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Similiary to the second case, one can show that (2), (5) and (7)
are o(1).

To estimate (8), one needs the differentiability properties of W:
the limit of the integrand of (8) can be interpreted as a second deriva-
tive of U, as h, b’ tend to zero. From this it follows that (8) is o(1),
too. This proves (/.36). &

The next corollary describes the connection between the last the-

orem and CWT.

COROLLARY. (CWT-reformulation of the theorem)
Let U € C*(R) be compactly supported. Assume 1 and f are
such that T¢f(a, b) is well-defined, and that

— //T¢fab—ql( b)d“db (1.37)
Cd,q;

is valid*, for all x in a neighbourhood Uy, of zo, where cyy is defined
as in (1.27). Assume further, conditions i) and ii) of the theorem
hold and that

._%q}/ /T¢fab\}_(

is bounded and differentiable in Uy, .
Then, f is differentiable at xq.

b) dadb

(1.38)

al

Proof. Choose G' = Ty flacjo,1y 9 = f — g, in the theorem, and
note that the sum of functions differentiable at z( is again differen-
tiable at zg. &

Application to the Riemann function. In the following,
Gerver’s results shall be reproved, using the last corollary. Instead
of R(z), consider the following complex-valued function

>, \- 1 imn?z
R(z) := Z 3¢ .
n=1

4 This is an extension, of the results in 1.2.5 and 1.2.6, beyond L>-theory.
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(R(z) is the imaginary part of R(z).) Choose

1
/ [P —
(Paul wavelet with 3 =1, cf. 1.2.1, expl. ii)).
The wavelet transform of R with respect to 1 is given by

TyR(a,b) = a2 (B(b+ia) —1) for a € RY, beR, (I.39)

N3

where 8 denotes the Jacobian 6-function

b—}—m — E e’mn b+m

n=—0oo

(This can be checked, using the Fourier representation (/.4) of CWT,
and noting that

{ we™ v, w >0

0, otherwise,

while the Fourier transform of R is a sum of §-functions.)
Assume, U € C?(R) is a compactly supported, admissible ana-
lyzing wavelet, satisfying °

00— d oo d
0 < cywy = 271'/ g/)(w)\ll(w)—w = 271'/ \Il(w)we_‘”—w < o0.
0 w 0 w
(1.40)
Then, one has V A > 0

/ / a2eMb+m 1‘Il(m—b)da;lb:
Cyu va a a

0o —b.d
_ 1 e—/\a/ szq,( )db—a _
CyT JO —0 a
= 1 e_Ma\il(aA)ei/\x@ =
Cwq,r 0 a

5  This corresponds to a generalized admissibility condition, cf. 1.2.5.
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2/\x 0 A ei)\x
a c¢q; du = A
hence,
1 [ d db
— [ Za3(0(b + ia) - H= ‘
v J oo 2

1 z—b dadb_

T s imn2 b+m
= —a22 —V
cwp/ / o Ze Va ( a ) a?

txmn?

:ie = R(z).

n2

n=1
Therefore, (1.37) holds. By (1.39) follows:
3C>0:  |TyR(a,b)| < Caze™ Ya> 1.

Consequently, the function g in (7.38) is bounded and has the same
regularity as ¥, so § € C*(R).

All this allows us to transfer the differentiability analysis of R to
a decay analysis of Ty, R(a,b) = —a2 (0(b+ ta) —1).

It is well known® that
16(b+ ia)| < Cilal 3,

for a suitable constant Cy. Therefore, the global condition i) of the

theorem is satisfied with & = 1. To check the local condition ii),

Holschneider and Tchamitchian referred to the modular group Gy 7
The #-function possesses the following invariance properties:

O(K2(b+ia)) = (b + ia),

(U(b+1ia)) =+/—i(b+1ia)d(b+ ia),
where K : b+ia—b+1+taand U : b+ia— —

generators of the modular group.

b-k% are just the

6 D. Mumford, Tata Lectures on Theta I, Boston (1983)
7  R.C. Gunning, Lectures on Modular Forms, Princeton (1962)
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The subgroup of Gy, generated by K? and U, is called the 6-
group Gy. For any G € Gy, one has:

GzxeR,ifzeR and GxeQ, if z€Q.

Furthermore, Q splits into two orbits under the action of GGg, namely

the orbit of 1, consisting of all rational numbers gf;—ii p,q € Z, and
the orbit of 0, containing the rest of Q. For zg € Gg1, Holschneider

and Tchamitchian [HolT89], [HolT91] showed:
16(b+ 20 + ia)| < Csa™" (a2 + |b]2).
Choosing Cy := (3, one gets:

[T R(a,b)] < Caa (a +b]7) =

= Cyaz (ap(a) + [blp(|b])),

where p(z) = /|| is a monotone, continuous function, satisfying

1 d. 1
/ p(m)—xz/ r73dr = 2 < 0.
0 0

x

So, condition ii) of the theorem is satisfied as well, and the corollary

establishes the differentiability of 2 (and therefore of R = L (R~ R))
in the points zg € Gyl, confirming Gerver’s result (/.34).

REMARKS. In addition, Holschneider and Tchamitchian proved a
theorem concerning the pointwise analysis of Holder-continuity, with
help of the CWT. (Its proof is quite similiar to that of the foregoing
theorem.) This allowed a more accurate description of the Riemann
function on Gy0.

Finally, the same authors showed the non-differentiability of R,
at the irrationals, using (for an indirect proof) an inverse statement
to the above corollary, i.e. a theorem of the following type.

If [ is differentiable at zq, then its CW'T with respect to an admis-
sible analyzing wavelet ¢ possesses certain decay properties [HolT89],

[HolT91].
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The proof of this fact rests on the wvanishing moment property
(1.9) of the admissible analyzing wavelet 1, which allows conclusions
like

o0 1 x—b

Tof(ab)= [~ 1) vl

— 00

Jdz =

oo 1 L z—-b
= [ (@) = o)z

Jdz.

a

All the foregoing theorems are consequences of the zooming prop-
erty of CWT (cf. [.1.1, [.1.2).

Note that an analogous pointwise analysis can be performed with
the discrete wavelet transform, which will be introduced in the next
chapter. See [Jaf89a], [Jaf92a-c].

The crucial point in the local analysis of a function f by CWT,
described above, is the validity of a generalized inversion formula
of type (1.37). More information on this can be found in [BerW93],
[Dau92], [Hol91], [Hol93b], [HolT89], [HolT91].

Since their publication in 1989, the ideas of Holschneider and
Tchamitchian have been picked up by several scientists who were

interested in the local analysis of other fractal objects than the Rie-
mann function [BacMA93], [FFar92], [MalH92].

II. The Discrete Wavelet Transform (DWT).

I1.0. Motivation.

In applications, Ty f(a, b) can only be computed for values (a,b)
in a discrete® set
S CR* x R. (I1.1)

8 l.e.: S possesses no accumulation point.
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In other words:

It is not the CWT-operator Ty, which is used in praxis, but the
discrete wavelet transform (DWT) operator Tyg, which is defined as
follows:

Tys: L*R)— C?

J= Tll)Sf = (T¢f(a7 b))(a,b)ES = ((fv Qb(a,b)))(a,b)ES' (112)

An interesting question to ask is the following:

Is it possible to reconstruct an arbitrary function f € L2(R) from
the discrete values Tys f, in a stable manner?

Or equivalently:

Under which conditions on ¢ and S is Tys a continuous, injective
operator with a continuous inverse?

This question leads to the concept of a frame, which shall be
treated in general Hilbert spaces, in the following section. For the
special case of wavelet frames, see I1.2. Among the wavelet frames,
the class of wavelet orthonormal bases (WONBs) is of particular
interest. It will be considered in the remainder of chapter II.

I1.1. Frames in Hilbert Spaces.

Most of the results in this section can be found in [Dau90],

[Dau92] and [Heil W89].

General assumption.

H separable Hilbert space with scalar product (-,-)y and norm
(RE7

N countable index set.

DEFINITION. A subset ® := (¢,)nen of H is called a frame for H,
if there exist some constants A, B € R, such that 0 < A < B < oo,
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andV feH

AllfIB < D0 1 en)ul® < Bl I (11.3)
neN

More specifically, ®, as above, is called an (A, B)-frame. A and B
are called the frame bounds. An (A, B)-frame & is called a tight
A-frame, if for the frame bounds holds A = B.

THEOREM 1. (Elementary properties of a frame)

a) Fvery frame for H is complete in H.

b) FEvery orthonormal basis of H is a frame for #H, with frame
bounds A = B =1.

c) If ® is a tight A-frame with frame bound A = 1 and ||¢,||y =
1 VneN, then ® is an orthonormal basis of H.

d) A Schauder basis of H is not necessarily a frame for H.

e) A tight frame for H is not necessarily a Schauder basis of H.

Proof.

a) Let ® be a frame for 7. Assume, there exists a function f € H
with f L ¢, VnéeN. Then

Yo enul* =0,

neN

and so A||f||3, = 0, which means that f = 0 since A # 0 by
definition. Hence, ® is complete in H.

b) If ® is an orthonormal basis of H, one has by Parseval’s relation

> U en)ul® = 1115

neN

ie. (I1.3) with A= B =1.
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Because of a), any frame & is complete in H. By definition, one
has ||gn|lg =1 ¥ n € N. It remains to show (¢, ¢n)x = 0, for
m # n. Since A= B =1, 0one hasVmeN

L= llemllic= D 1(em en)ul® =
neN

2 2 2
= llemllz + E |(@ms n)ul” =1+ E |(@ms on)w|”.
neN, n#m neN, n#m

Counterexample:

Let N = N be the set of natural numbers and ¢ := (@n)neN
be an orthonormal basis of H. Define ® := (¢, )nen by ¢, =
n@y,. Then, @ is linear independent and complete in H, hence a
Schauder basis. But for f = ¢,,, where m € N arbitrary, one
has

E |(S‘9m7§0n)7—l|2 =m? Z n2|(¢m7¢n)7{|2 =m,
neN neN

hence, there exists no upper bound in (/7.3), i.e. ® is not a
frame.

Counterexample:

Take H = C2, g1 = (1,0), @2 = (-3, =), @3 = (-
Then V z = (21, 7,) € C?

’ 1 V3 1 V3 2

Sl en)eal* = [orf + | = ga1 = el + | = a1+ 5w

3.

3

[

n=1

3
= SllellZ

By this, ® is a frame. But, three vectors in C? are linearly
dependent. Hence, @ is no basis. &

DEFINITION. Let ® be an (A, B)-frame for . The corresponding

coefficient operator Ty is defined by

T@Z%%IZ(N)
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J = ((fs n)#)nen (11.4)

THEOREM 2. (Elementary properties of Te). Te is a bounded
linear operator and has a bounded inverse on its range, which is a
closed subset of I(N'). More precisely,

VA < ||Ts| < VB, (I1.5)
1 1

NE 175 < T (11.6)

The adjoint of Te, Tj : [*(N) — H, is given by
¢i=(cp)nen = Toe =Y Caom, (11.7)
neN

where convergence holds in the norm of H.

Proof.

a) Linearity of Ty follows by the linearity of the scalar product in
the first component.

b) Boundedness of Tg:
1
IToll = sup [[Toflle = sup (D [(f,en)ul’)? < VB
Il ll2=1 IA1#=1 nen

by (I1.3). Analogously ||Ts|| > VA, i.e. (I1.5).
c) Rg Ty is closed:

Let (¢")men be a Cauchy sequence in Rg T, i.e.

Ve>0 IM e N: Vmy,mg>M | —c™|2<e and

V™ et " =Tyf™.

Then (f™)men is a Cauchy sequence in H, because
1
57 = Pl < e el omymy € N

by (/1.3).Since H is complete, (f™),en converges to an element
feH.
Since Tg is continuous by b), Te f™ = ¢™ converges to Te f in
I2(N), i.e. each Cauchy sequence in Rg Tg possesses a limit
therein.
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Ts is injective, because the equation Tef = 0 implies that
Shen| < fien >u |2 = 0, hence f = 0, by definition of a
frame.

e) c¢) and d) imply, by the bounded inverse theorem, that T¢ has a
bounded inverse on its range.
f) Inequality (/7.6):
qul : Rg TCI) — 7_[7 ((f7 ¢n)7—()n€/\f — f
fulfills because of (/1.3)
IT5'1=  swp ks o= (> resp).
I((fen)rdmenlz=1 VA VB
g) Forcel?(N), feH:
(T@f7 C)l2 = Z (f7 @n)?—la =
neN
= E (f7 Cn@n)?—l = (f7 Z Cngﬁn) = (f7 T$C)7
neN neN
so Ty is given by (11.7).
h) Norm convergence of (I1.7):
Let (NV)men denote a sequence of finite subsets of A" so that
Nm1 gN’mz 7’f m1§m27 U -/\'f :N
meN
Assertion 1: (3, cn.. €n¥n)meN is convergent in H.
Proof of assertion 1: If mqy < mgy < mg, then
| E CnPn— Z Cnpnlln = sup I( E Cn®ny Flul <
n€Nm nENom, FEHNANN=L ne Ny \Womy

< sup (Y eI g HHYE <

N fEH,HfH'H:l nEng\Nm2 neN

<Y leaPEBEen,

nEN\le



WAVELETS - A TUTORIAL AND A BIBLIOGRAPHY 103

by definition of a frame, and this tends to zero, for m; — oo, because
c € *(N). Hence (3 ,cn,. ¢nn)meN is a Cauchy sequence in 7, and
because of the completeness of H it possesses a limit g € H.

Assertion 2: g = Tje.

Proof of assertion 2: ¥V f € L*(R)

< f,9>u= 7r}1—r>noo(f7 Z Cn@n)?—l =

= lim Z En(f, Q«Qn)’}-{ = Z ﬁ(ﬁ @n)?—l = (f7 T$C)7

m—»00

nENm neN

by the continuity of the scalar product. &

DEFINITION. Let ® be a frame for H. The frame operator Sg,
corresponding to @, is defined by

Sep :=TgTe: H—H

[ Z(f7 n)HPn.- (11.8)

neN

THEOREM 3. (Elementary properties of Sg )
S is a positive, bounded, linear operator from H onto H, with
a bounded inverse. More precisely.

A-Tdy < Se < B - Idy, (11.9)

ddy < S5 < — - Idy. (I1.10)

o | =

1
B
Proof.

a) The linearity of Sg follows from the linearity of T and Tg.
b) VfeH

(S<I>f7 f)?-{ = E(fv @n)H(@nvf)’H = Z |(f7 @n)HPa

neN neN
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hence, by definition of a frame,

Allfll3 < (Sof, Flu < Bl fll,
which implies (77.9) and therefore boundedness and positivity
of Sg.

Rg Sg¢ is a closed subspace of H. This can be shown analogously
to theorem 2, ¢).

Rg S¢ = M, otherwise, there would exist a f € H with (f, Seg)n
=0 Vg € H. Then, in particular, (f,S¢f)x = 0, and so by
(11.9) Al|f|3, = 0, hence f = 0. So (Rg S¢)* = 0. Together
with c¢), it follows that Rg S¢ = H.

Sg is injective: Assume, there exists 0 # f € #H such that Sg f =
0. Then (Sof, f)u = 0, which leads to the same contradiction
as in d).

c),d) and e) together imply by the bounded inverse theorem that
Sq:l : H — H is well-defined and bounded.

Proof of inequality (77.10): qul is positive, since V f € H

(Sq:l.ﬁ f)?-l = (chlf7 S@(qulf))';'-{ > A”qulf”ﬂ > 07

because of (/1.9) and the positivity (and therefore self-adjoint-
ness) of Sg. So, multiplication of (11.9) by Sz' oS! gives

A-SztoSzt < Szt < B-Sz'oS;!,

ie A-Sg! <Idy, B-Si'> Idy, hence (I1.10). o

COROLLARY. (Frame description by Sg)
Fquivalent.

® = (©n)nen € HY is an (A, B)-frame for H.

Se 1 H — H, I = Ynen (s @n)uen, is a bounded linear
operator with
A-Tdy <S¢ < B-Idy.
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Proof.
i) implies ii), by theorem 3.

ii) implies i), since

VieH (Af, flu< (Sof, Hn < (Bf, fu

and this is equivalent to

AllfllF < D0 1 en)? < BIIFI-
neN

THEOREM 4. (Dual frame)
Let @ be a frame for H, Sg¢ the corresponding frame operator.

Define ® := (Zn)nen by.
Bn =Sz ¢n. (I7.11)
Then, ® is a (%, %)—fmme for H, d = d, and
c € 1o, (I1.12)

T3 =

qulc,
0, cE (T@’H)J‘.

® is called the dual frame of ®

Proof.
1. @ is (&, §)-frame:
For any f € H, one has
(£, &m0 = (1,85 ¢n)a = (3" F, ),

because S¢ and hence qul are self-adjoint, being positive operators.

Therefore,
Yo eul* = ITeSs flIf =

neN
— (T6S3" £, TeS5" )i = (S3' £, 3T S5 e = (S5 £, P, (11.13)

and L||f|| < (I7.13) < L/ £|| by (I1.10).
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2. Proof of (11.12):
VIEH Tif = ((f;&)mnen = (/55" ¢n)u)nen =

= ((S£1f7 Q‘Dn)H)nEJ\H
by the self-adjointness of Sq:l. Therefore,

T3 :T@qul D H = Te(H)

is surjective, because of the bijectivity of qul.

Case I: df e H: c=Tsf.
Tie= (TeSz")e=S;'"TsTsf = f.

Case 2: c € (ToH)*.
VieH: (Tie,flu=(c,T3 )= (c, TSz fiz = (¢, Tag) = 0,
because g = Sz' f € H. So Tl (ryryr = 0.
3.0=90:
Vn e N 55'F = (13T3) 7 = (TS5 (T6S51) "' =
= (53 15T055") ™' 8 = Safn = ¢n- o

COROLLARY 1. (Frame ezpansions)
Let @, ® as in above theorem. Then holds: ¥V fe H

F=3 (i en)u@n = (), @n)un. (I1.14)

nEN nE./\/

Proof. By theorem 4 and the definition of T4,

f=TsTof= > (f, on)u®n-

neN

The second assertion follows by <i> = o, &

COROLLARY 2. (Optimality of ® )
Let @ be a frame for H.
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a) Define
Ra ::{@::(@n)neNGHN: VfeH:
F= Y < fon>u pa)
neN
Then, ® = ® is the unique element of Re such that
Ve = (cu)nen € (Rg To)t : Z cndn = 0. (11.15)

neN

b) If f € H possesses an expansion f = ) -\ €y, where ¢ €
I*(N) arbitrary, then

Yo leal® = D 1 @)ul* + D2 1 Ga)u — eal?,

neN neN neN

i.e. the dual basis coefficients have minimal [*-norm.

Proof. Ad a): (I1.15) holds for o, by (I1.12). For ® € Rg
arbitrary, write
P = On + Uy
Then holds for all f € H

/= Z (fs en)upn + Z (fs en)ntn,

neN neN

and therefore 37 o\ (f, on)ntun =0 YV f € H, ie. 3 cnCnlln =
0 Vece RgTs.
If & would additionally satisfy (17.15)

Z cpu, =0 Ve € (Ryg T<1>)L,
neN
then
> cuun =0 Vee (V).
neN
Therefore u, =0 V n € A, i.e ® unique with (I1.15).
Ad b):

YN E)ul = (£,55" =D calen, S5 N =

neN neN
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= Z C’ﬂ(@7f)7-l
neN
Hence
SUEEIHP+ S 1 @) u — eal® =
neN neN
=N 1 Eul+ S (U Ea)ul-
neN neN
_(f7g‘—977‘)7{§_ (f,@z)cn + |Cn|2) = Z |Cn|2-

neN

&

The previous results allow the reconstruction of f € H from the
discrete values (f, vn)u (¢n € @), if the dual frame ¢ of & (and so
especially qul) is known. The following theorem gives an explicit

construction of qul.

THEOREM 5. (An explicit expression for qul)
Let & be an (A, B)-frame for H. Then

2 > 25(1) k
Sq) A—|—BZ(I(1H—A—|—B)7

where convergence holds in operator norm.

Proof.
2 25%
5! Id Idy — -1
So' = g glldw — Udw — ——5)
By theorem 3, S¢ > A - Idy, hence
Idy — 2S¢ 1d 2A B-A

<ldy — ——- =——>"1Id
A+B - M AxB M T By AT
Again from theorem 3 it follows that S < B - Idy, hence
25% 2B A-B

> ldy — . =—-1Id
A+B~= T axyB M axB

(11.17) and (/1.18) together imply

Idy —

25% H
A+ B" —

| 1dy —

| Q|

(11.16)

(I11.17)

(11.18)

(11.19)
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So (11.16) converges uniformly in operator sense. &

COROLLARY 1. (Approzimative reconstruction)

i) If® isan (A,B)-frame for H, then one hasV f € H

2
f= Z<f7§0n>7-{§0n+R<I>f7 (1120)
A+B neN
where
B_1
|Rs? < 5— (I1.21)
2t

ii) If® is a tight A-frame for H, then one hasV f € H

neN

where convergence holds in the norm of H.

Proof.
i) (/1.20) and (//.21) are immediate consequences of (//.19) and
the definition of Sg.
ii) (11.22) follows from i), because £ =1, in the tight case. &
COROLLARY 2. (Reconstruction algorithm by Duffin-Schaeffer)
[DufS52]
Let & be an (A, B)-frame for H, f € H. Assume, Tof =
((f, €n)H)nen is known. Define recursively

0. (1) .— )
f ; f A‘}'Bng/(f’ S‘Qn)';'-b
2
(k) .— 9 r(k-1) (k—2) (k=1) _ p(k=2)
S =2 4 fT 4 A+BS<1>(f FETEY (11.23)
Then,
B _1 k
1f = F®ls, < (g ) 17l (11.24)
atl
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Proof. (11.23) is equivalent to the following definition:

J® = " _|2_ BS@(r(O) + D By,
where (@) := f,
() = p(b=1) A_IQ_BSqﬂ‘(k_l) (ke N).
Assertion:
r) = 5 gk), (11.25)
Proof. Induction over k.
kE=1:
2 2
rt) =0 _ A—l—BS@r(O) =f- A—I—Bs@f’
where ) 5
(1 — _%  (f s
k—1—>k: 5
(by assumption)
2
== 1O = g Self = 1Y), (11.26)
2
=% o O+ e, =
neN
2
= fE-1 4 ST, ) uen =
A + B neN
= f(k=1) (k—1) _
/ + A—I—BS(DT
(by assumption)
2
= =14 T - FE=Y, (11.27)

Inserting (/1.27) into (11.26), yields (11.25).
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2 _
17 = 7Ol =117 = 20 g @+ Y ennllu =
neN
_ 2 _
= Hf_f(k U‘msw‘(k 1)HH:
k-1 k-1 g1 k=1
=[If = £ = Sa(f = fE) Iy < <§+1)\|f—f( Dl
A

by (11.19). Repeating these arguments (k — 2)-times, results in
(I11.24). %

The last corollary shows that the size of |% —1| is a good measure
for the speed of convergence of the reconstruction algorithm. The
less |8 — 1], the faster the convergence. Frames with |2 — 1| ~ 0 are
called snug frames. Tight frames are optimal in that respect, but
not always available in praxis.

THEOREM 6. (Behaviour of frames under reduction)
If one removes one element from a frame, there remains either a
frame or an uncomplete set in H.

Proof. Let ® be an (A, B)-frame for . Remove the element ¢,
from ® (ng € A arbitrary). By (I1.14) one has

Png — Z < Pngs Pn >H Pn-
neN

On the other hand ¢, = 3, cu dnon@n. Therefore application of
corollary 2 to theorem 4 results in

Z |5non|2 = Z |(99n07§971)7-l|2+ Z |(n0> Pn)H _5no71|2' (11.28)
neN neN neN

Case 1: (@ng, Png)n = 1.
Then, (/7.28) implies

1=1+2 E |(99n07§97z)7-l|27
neN
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and so (@nov@)?—( =0 Vn 7& ng, l.e. (9?7:079971)7-{ =0 Vn 7£ ng, by
the selfadjointness of Sz, but @, # 0, because (Pny, Pno)n = 1 by
assumption. So

span{pn : n# o}t # {0},

and ¢\ {¢,, } is not complete.

Case 2: (@ngs Png ) 7 1.
Here (/1.14) implies

1
_ S— (Son 7@)7{@”'
1 — (@ng, @no ) ne/\;n:;éno i

Pno

Therefore, V f € H

1 —
|(f799n0)7-£|2: |(f71—~ Z (f799n)7-£)|2 <
- (3‘9710730710) neEN n#ng
1 —
< |1_( N) |2 E |(§0n07§0n)7{|2 Z |(f799n)7‘{|2'
Pnos Pro ) H neN n#ng neN n#£ng

Summation over A yields

Yo heul? < D0 Ifeaul+

neN ,n#£ng neN ,n#£ng
1 —
+|1_ ( N) |2 E |(9‘9’ﬂ0799n)7{|2 Z |(f799n)?{|2
Pngr Pro ) H neN ntng neN n#no
=C Y |(fienul
neN n#ng

Since @ is a frame, it follows:

A
P < X2 1Ueaul® < 3 [ en)ul® < BII

neN n#£ng neN

Hence, ®\ {¢,,} is an (&, B)-frame. &

DEFINITION. A frame & for H is called ezact or minimal, if
Vng € N i @\ {p,,} is no frame for .
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COROLLARY. (Biorthogonality)
If ® is an exact frame, ® its dual frame, then

Proof. The statement “® exact” corresponds to case 1, in the
proof of the last theorem, with ng € A arbitrary. &

DEFINITION. A linearly independent subset ® = (¢,,)nen of H
is called an (A, B)-Riesz basis of H, if

i) spanf{(en)nen} =M.
ii) 3A,BeR, 0< A< B <oosuch thatV c:= (¢,)nen € }(N)

Allell < I'Y- ennlld < Blielliz-
neN

THEOREM 7. (Equivalent definition of a Riesz basis)

The following two statements are equivalent.
i) ® = (¢n)nen is a Riesz basis of H.

i) ® = (¢n)nen € HN is such that for all orthonormal bases F =
(én)nen of H the linear operator Mer : H — H defined by
©n e, (n € N) is bounded and invertible on .

Proof. i) = i) :
Let @ be an (A, B)-Riesz basis, £ an arbitrary orthonormal basis
of H. A linear operator is well-defined by its values on the basis
elements. Hence Mgg : ¢, — €, and Mg : e, — ¢, (n € N)
are well-defined linear operators from H onto H. The operators Mg
and Mgg are bounded, because

VA < |lgallu < VB, lealln =1, (11.29)
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more exactly,

|Mog|| = |Mgs| = VB.

1
VA’
By definition and the completeness of both systems & and F, one

has
Mop o Mpe = Mg o Mog = Idy.
therefore qué = MEge is bounded.
1) = 1) :
Let ® be as in ii). ¢ is complete in #H, by the bijective corre-
spondance of ® to an orthonormal basis.

< f,9>v=Morf, Morg)u (f,g€H)

defines a scalar product on H. Let || - [|;s denote the corresponding
norm. It follows that V f € H

111z = Mar flln < [Masll]|fll;

£l = |Mag o Mg flla = IMggflv < [ Mggllll fllar-

Since ||[Mog||, ||[Mgz| are bounded, one can define A := | Mgg|~2,
B := || Mg, so

1 1
ﬁ”f”?—l < [ fllar < \/—ZIUHH- (11.30)

Hence (-, ) and (-, ) define equivalent norms on .

Let f be an arbitrary element of H, f = 3", cn €nn. (Such an
expansion always exists, because of the completeness of ¢ in H.)
(/1.30) implies

71 —
el 32 coenlln <1 Y eapalli < IMHIPI Y enalr
where

12 eneullis = 11 D2 enMapenlll = | Y cnenllt = Y leal®

neN neN neN neN
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by Parseval’s relation. This yields V ¢ € [2(N)

41 p—
el < I3 cagalli < IMah Il

neN
respectively,
Allelliz <1l Y entpulld < Bllell,
neN
hence ® is a (A, B)-Riesz-basis. &

COROLLARY.
The following two statements are equivalent.

i) ® = (¢n)nen is a Riesz basis for 1.

ii) D ,enN Cnpn converges in H, for arbitrary sequences c € I2(N).

Proof. Theorem 7 ii) is equivalent to: )7 .\ ¢,p, converges iff
Y neN Cn€n converges, for any orthonormal basis F of H.
But, the last statement exactly holds if ¢ € I?(N). %

THEOREM 8. (Connection between frames and Riesz bases)
® is a Riesz basis of H iff ® is an exact frame for H.

Proof. [You80] “="
Let @ be an (A, B)-Riesz basis for #. Choose an arbitrary orthonor-
mal basis . Define Mg as in the last theorem. Mgg and qué are
bounded linear operators, and so are M}y and (Mg4)*. Define

T H —>12(N)

f = ((f7 en)H)nEN-
Then holds

TEf = ((f7 M‘DES‘Qn)H)nEN = ((M$Ef7 @n)H)nE/\ﬁ

and Tg is linear and bounded. Therefore

Te =TpoMip™": H— I3(N)
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fer ((f on)m)nen

is linear and bounded, i.e. there exists a constant C' > 0 such that

Y I(Fren)ul < CllfII

neN
more exactly, C' = B because of (/1.29) and F orthonormal basis.
T is injective, by the completeness of ®, even surjective, by the last

lemma. From the bounded inverse theorem, one, therefore, has that
qul is bounded. Therefore, 3 D > 0:

HfHZSDZ | <f799n >H |27

neN

more exactly, D = A, because T51|T¢(H) = Mjp o T}§1|T¢(H) and
(11.29) holds. It remains to show: & exact. This is clear by the
fact that the removal of a basis vector from a basis results in an
uncomplete system.

“<: ”
Let @ be an exact frame for A with frame bounds A, B.
Assertion 1: @ is a basis of H.

Proof of assertion I: One has to show: Every f € H possesses a
unique representation
f= E CnPn.- (11.31)
neN
By (11.14) one has:

/= Z (f: @) upn.
neN
For any other representation of the type (/7.31) results:
Vm eN (f,0m)n = Xnen n(@n, @m)H = Cm, because of the
biorthogonality. This yields the uniqueness of the coefficients c,,.
Assertion 2: ® Riesz basis. This means -by the corollary to theorem
T- 3N Cnpn converges iff ¢ € 2(N).

Proof of assertion 2: Assume ) -\ ¢ ¢, converges to f € H.
By assertion 1, the ¢, are unique,

Cp = (f7g‘—9\;b)?{ = (S£1f7 @n)?—h



WAVELETS - A TUTORIAL AND A BIBLIOGRAPHY 117

and so
Sleal’ = D0 1(Sq' fren)ul* < BlIS Fll3 < Ang\|27
neN neN

where we used (I1.5) and (I1.10). So ¢ € [2(N).
Assume ¢ € [*(NV). Assume N = N (which causes no problem,
since AV is countable.) Let n > m € N. Then

n n
1Y ciillyy < B el

For m,n — oo, this finite sum tends to 0, so the partial sums
(3= cigi)nen constitute a Cauchy sequence, which converges by
the completeness of . &

COROLLARY 1. (Estimation of the frame bounds)
i) If® is an (A, B)-Riesz basis, then ® is an exact (A, B)-frame.

ii) If ® is an exact (A, B)-frame, then ® is an (% , B)-Riesz basis.

Proof follows immediately, by the proof of the last theorem, using
that T is surjective, in this case. &

DEFINITION. A family ® = (@,)nen in H is called linearly 1*-
independent, it 3, cxr n =0 V ¢ € *(N) implies ¢ = 0.

COROLLARY 2.
® is a Riesz basis of H iff ® is linearly [*-independent frame.

Proof. Because of the last theorem, it remains to show:
® exact frame iff ® linearly /%-independent frame.
“:77
Assume, @ is an exact frame, and there exists a sequence 0 # ¢ €
BN):  Y,cncnpn = 0. Then, there exists m € A such that
¢m # 0. By the exactness of @ follows ¢, 20 Vn € N. So,

1

Pm = —— Z Cn¥n,

Em neN n#m
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i.e. ¢ can be removed from ®, and ® remains a frame. This contra-
dicts theorem 6.

“<:77

Let ® be a linearly /?-independent frame. Assume, there exists a m €
N such that ® \ ¢,, is still a frame. Hence, ¢, = 2 oneN ntm CnPn
and ¢ € [*(N). Define

Cn:{/é; n#m

-1 n=m.

S onen Cnen = 0, but 3 irle,|* > 1 > 0, contradicting @ linearly
[*-independent. &

C.K. Chui [Chui92b,p.71] proves this corollary for the special case
of a wavelet frame, directly, without using theorem 7.

COROLLARY. (FEquivalent characterizations of ONB)
Let ® = () nen be an orthonormal family in H. Then are equiv-
alent.

a) @ orthonormal basis of H.
b) & complete in H.

c) & ezact (1,1)-frame for H.
d) & (1,1)-Riesz basis of H.

Proof.
a) equivalent b), by definition.
c) equivalent d), by previous theorems.
d) equivalent a), by definition of a Riesz basis and Parseval’s relation.

%

I1.2. Wavelet Frames.

Now, as announced in I1.0, the general theory of frames will be
applied to the discretization of the CWT. There exists a standard
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choice for the set S in (//.1), namely, for fixed discretization param-
eters ag > 1, by > 0,

S:={(a,b) e R* xR: a=uag’, b=kboag’, j ke Z}. (11.32)

Given an analyzing wavelet ¢, define

7 .
VI (2) 1= s s (2) = ag¥(ape — kbo) (j,k € Z).  (11.33)

An analyzing wavelet v is called a frame wavelet, a tight frame
wavelet, a Riesz wavelet, or an orthonormal wavelet for the discretiza-
tion parameters ag, bg, if (¢?£b°)j7kez is a frame, a tight frame, a Riesz
basis, or an orthonormal basis for L?(R), respectively. We talk about
an (A, B)-frame wavelet, if ('¢?2b°)j7kez is an (A, B)-frame, etc. Con-
versely, a frame or basis in L?(R) is said to be a wavelet frame or a
wavelet basis, in case its elements are of the form (/7.33).

The most favourite choice, for the discretization parameters, is
the dyadic one:
ag = 2, bo =1.

In this case, we just speak of frame wavelets, and so on, dropping
the upper index agbg, in (17.33).

In case % is a frame wavelet for ag, bg, the results of the previous
section II.1 can be applied to (¢?2b°)j7kez, leading to the following
theorem:

THEOREM 1. (Wavelet frame expansions)
a) If ¢ is a tight A-frame wavelet for ag, by, then
1 apb agb
f=5 (S uie)viee Vfe L*(R).

5,kEZ

b) If ¢ is an orthonormal wavelet for ag, by, then

F= 30 (fepmen™ Viel*(R).

J,k€EZ
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c) If is an arbitrary (A, B)-frame wavelet for ag, b, then

F=37 (fa)gi = S (fuih)wi Vfe L*(R),
5,kEZ i kEZ
(17.34)

where ('¢?2b°)j7kez denotes the dual frame of (¢;£bo

duced in (11.11).

)j,k€Z7 intro-

Let % be a frame wavelet for ag, by. A function ¥ € L*(R) is
called a dual wavelet of ¥, for ag, by, if ﬂ;gbo = Qp?]gbo Vi keZ,ie.,
if the dual frame of (¢?gb°)j7kez is a wavelet frame for ag, by, again.

If 7 possesses such a dual wavelet, for ag, by, then equation (/7.34)
specifies to

F= 20 (R = 37 (L") vf e L*(R).
5,k€EZ 5,kEZ
REMARKS.
i) © is the dual wavelet of 1, for ag, by, iff ¢ is the dual wavelet of

¥, for ag, bo.

ii) If ¢ is an orthonormal wavelet, for ag, bg, then 7 is the dual
wavelet of itself, for ag, bg.

iii) Every frame wavelet 1, for ag, by has at most one dual wavelet
¥, for ag, bo.

iv) If ¥ exists, the frame bounds of ('@L;,gbo)j7kez are % and %, by
theorem 4 in II.1.

v) There exist frame (even Riesz) wavelets v, for ag, by, without
dual wavelets, for aq, bg.

The following example for v) was given by C.K. Chui [Chui92b,p.13]:
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Consider the dyadic case. Let ¥ be an orthonormal wavelet,
z € C, |z| < 1. Define
V(@) = 9 (2) — 2V20(22).

By theorem 7 in IL.1, (1), rez is still a Riesz basis, and so, by the-
orem 8 in II.1, an exact frame. Hence, the corollary to theorem 6 in
IL.1 implies that the unique dual frame of (¢%,); rez is biorthogonal
to it. Since (¥;k);kez was assumed to be orthonormal, one gets, in
particular, that

Yio(2) = Y $-to(2)Z,
=0

%(f) = o1 (z).

Assume, for all z € C with |z| < 1 exists a dual wavelet ¥, This
dual has to satisfy

7:/;’00(95) = ilb—zo(ﬁ)zl’ and &01(95) = to1(z),
=0
which leads to
$6) = oo 1) = T +1) = Fanle) = 2 -0(a)<
=0

and, therefore, to

f:'zp_lo(,r)zl =0 VzeC, |z|=1, z € R,

=1

contradicting ||| > 0. ¢

This example shows that the dual frame of a wavelet frame is,
in general, no wavelet frame. Nevertheless, it is not necessary to
compute S\;obo ';b;]gbo for all j, k € Z explicitly, to get the dual frame.

This is the content of the following proposition.

ProPposITION. (Construction of the dual wavelet frame)



122 DIETRICH KOLZOW

Let v be a frame wavelet for ag, by, Sgaes, the corresponding
frame operator. Then.

——

Pk (@ )= ad g (aiz) Vi ke Z.

Le. it suffices to compute S} a0b07 k € Z, explicitly.
0k

Yaobo
Proof. For j € Z define

D : L*(R) = L*(R)

()~ a f(aia).

———

We have to show that D?Ou')g}ibo defines an element of the dual frame
of (/ao °);kez for all j,k € Z. By definition of the dual frame,

Sq;aobo gb;gbo is the dual element of ;baobo Vj,k € Z. So, D}° ¢aobo
is certainly an element of the dual frame in case 7 = 0. For ] #0,

-1 Qﬁ;kobo _ Da0¢aobo‘

Paobo \1;(10 bo

So, it remains to show that quiobo and Da0 commute, or equiva-
lently, Sgaes, and DULO commute. (Since S\I,aobo D] = Da S\I,aobo is
D 0 Syaoto , and this holds iff DaOS =

Yo bo

equlvalent to D3° = S
St

Paobo
gaono P3°-) By deﬁnltlon7

Sgacte : L*(R) — L*(R)

P D2 (v
5,k€EZ
For f € L?(R) arbitrary, one has
7 i
S\IJGoboD;Of(m) = Syaoto @5 f(agr) =

= Y1 o} flaha)ad o (ai — Byl (@) =

Z / a5 F(u)ad Plajay u — k)dulpie™ (z) =

1,k€
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= 3 (foertoypit (@) = 30 (f, i)t (o) =

i kEZ i kEZ

= 3 (i) DR, (x) = DI Syagee f-
i,k€EZ

&

Whether 1 is an (A, B)-frame wavelet, for some given discretiza-
tion parameters ag, bg, depends on %, as well as on the parameters
ag, bg. A necessary condition, for (¢?£b°)j7kez to constitute an (A, B)-
frame, is given by the next theorem, due to I. Daubechies [Dau90].

THEOREM 2. (Necessary frame condition)
If v is a (A, B)-frame wavelet for ag, by, then

2 o, d
A< [P < B
w

~ bolnag Jo

and

A< 2T /0 )2 < . (I1.35)

“ bolnay J_os lw] —

Sketch of proof, following [Dau90,p.974] and [Dau92,p.63].
Step 1: For all positive trace class operators T : L%(R) — L?(R),
holds

ATrT < 37 (Tl %) < B-TrT, (11.36)
5,k€EZ

where TrT := 3, cn(Ten, €5), and (e,)nen an arbitrary orthonor-
mal basis of L?(R).

(TrT is independent of the choice of a special orthonormal basis,
by definition of a trace class operator.)

This is an immediate consequence of the definition of a frame
and the fact that each trace class operator T allows an expansion

T= Z (Ten,en)( -, en).

neN
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Step 2: Let h € H%*(R) admissible, hy(z) = ﬁh(ng), a €
R*,b€ R and

cmm%I{l“%) 1<a < ap,

0 otherwise,

where w denotes a positive integrable function, and define

o oo dadb
C: fr—>/0 /_Ooc(a,b)hab(f,hab) s

Then, one can show: (' is a positive trace-class operator. Hence,
(11.36) applies and results in

A-21n ao[/oo w(s)ds]||A|| <

0
00 oo bo + nb , dadb
3/0 /_ > 'W(M)K‘w’hab)ﬁ 7 <

neN

<B-2In ao[/ooo w(s)ds)|[A||. (11.37)

Step 3: Choose a special function w, in (/1.37):

w(s) = wy(s) = Ae NS

3

where A € R*. This function satisfies

b+ nb
> (Pl _ Ly e, (11.38)
neN a 0
where

1

p(a,)| < A and /Ooow(s)ds =5 (11.39)

(The crucial point to prove (/1.38) is that w possesses a unique

maximum and is monotone, otherwise.)
Inserting (/7.39) and (/1.38) in (/1.37), yields

2w o, dw
AP e < TR [ 1P + R < BIAP o, (11.40)

where |R| < Aep||¥||?, where ¢, is defined as in (1.19).
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Dividing (/1.40) by ||A]|?In ag and letting A — 0, results in the
first assertion, in (//.35). The second assertion follows analogously.

&

COROLLARY.
If ¢ is an (A, B)-frame wavelet, for ag, bg,, then, ¥ is a strongly
admissible analyzing wavelet such that

24 -bgInag < cy < 2B -bglnag,

where ¢y, is defined as in (1.19).
FEspecially.
If ¥ is a dyadic orthonormal wavelet, then holds

¢y =2In2.

THEOREM 3. (Sufficient frame conditions)
Assumptions.
¥ analyzing wavelet, ag > 1,

inf hag?w)|? > 0, I1.41
1§|w|§a0j€§%|v( 0 @)l ( )

sup Z [ (ag?w)|? < oo (11.42)
1< w|<a0 jez

and

B(s) 1= sup [d(ay ) [(ag e + )| (11.43)

decays at least as fast as (1+ |s|)~ (149 where ¢ > 0.

Assertion.
There exists a by** > 0 such that for all by < b3*** % is an
(A, B)-frame wavelet, where

or 2m 2 o1

A>={ inf ag’w) B B (==m)lz g,
= 1<|w|<a02|¢ 5 mg\:{o}[ﬁ(bo )B( b )z}
o ) 2T 1

BT sup Y [dage) 4 Y B m)S(— o m)E
0 1<|wl<ag 7 m€eZ\{0} 0 ’
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Sketch of proof, following [Dau90,p.983], [Dau92,p.69].

Step 1: The frame definition can be reformulated, as follows:

AllfII? < i—“ TP Y (a5 w)Pde + R(S) < BISI1%
» >
g (11.44)
where
R(f) =
2w R - P e P 2w
- aj,me;méo/_m T oty vl elontotms

Step 2: The first summand, in the middle term of (/7.44), is
always bounded, by assumption. Applying Cauchy-Schwarz’s in-
equality several times, yields the following estimation for the rest
R:

2 2 27 1
RO AP X0 BG-m)B(=F—m)]2,  (I145)
0 meZ,m#0 0 0
where 3 is defined as in (17.43).

Step 3: The decay condition on 3 ensures that

> BGrms- gl < X+ <o

meZ

at last for %—: > 2,1i.e. by < m, since in this case, ) 727 is a
majorant. &

The conditions of the last theorem are already satisfied, if
()] < Clwl*(1+ |w]) 77,

for some a > 0, v > a + 1.

For examples of wavelet frames, cf. [Dau92,p.73].

I1.3. Wavelet Orthonormal Bases (WONB).
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General Remark.

We confine ourselves to the dyadic discretization ag = 2, bg = 1,
for the rest of the chapter.

Theorem 1 b), in the last section, implies that the reconstruc-
tion of a function f € L?(R) from its discrete wavelet coefficients
(f,%¥jk);kez is the most efficient one, in case that 7 is a orthonor-
mal wavelet, since then, the numerically expensive computation of
the dual frame ceases.

But, discretizing CWT is not the only way, leading to WONBs.
Orthonormal bases of such a simple structure have been of interest,
for a long time, in various branches of pure and applied mathematics,
such as there are theory of function spaces, approximation theory and
mathematical physics.

The first construction of a WONB goes back to A. Haar, in 1910.
But, not before the late eighties, a unifying theory was created. This
was finally done by Y. Meyer and S. Mallat by the concept of mul-
tiresolution analysis, which will be represented in section I1.4.

EXAMPLES FOR ORTHONORMAL WAVELETS.
a) Haar wavelet [Hal0]:
1
<3y

z>1
0, otherwise.

—
o= O

<
<

¥y is compactly supported, but discontinuous.

J)H is continuous, but decays not faster as |i—|
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[Dau92]

Littlewood-Paley wavelet [Mey90], defined via its Fourier trans-

form by
R L < |w| <27
prp(w) =y 7

, otherwise.

¥rp is continuous, but decays not faster as |915_| 'J)Lp is compactly
supported, but discontinuous.

Modified Littlewood-Paley wavelet [Mal89b], defined via its Fourier
transform by

-, 4T < |w| < 7 or

~ 2m 7

Yrpm(w) = 4 < |w| < 4w+ 4%
0, otherwise.

Properties similiar to b).

Meyer wavelets [Mey89a], [Mey86b], defined via its Fourier trans-
form as

tw
2

: Zsin[fr(Elwl 1)),  F <<
(@) =Y ool - D) <ol <
0, otherwise,

where v € C*¥(R), k € N arbitrary, satisfies v(z)+v(l1—z)=1
and
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Pamy € S(R) (i.e. C°° with polynomial decay), Uty compactly
supported, ¥ar, € C¥(R), where k € N is determined by v.

[Dau92]

Battle-Lemarié wavelets/ Spline wavelets

[Bat87], [Bat88], [Chui92b], [Chui92d], [Dau92], [Lem88]: For
a precise definition, see for example [Dau92,p.146]. ¥pr i €
C'k_z(R) and 3y, Cr > 0 such that |¢prk(z)| < Che ezl
where v is the bigger, the smaller the parameter k.

/ ™ Pprr(r)de =0, m=0,1,....k—1.

— 00

[Dau92]

Daubechies wavelets [Dau88al: For a precise definition, see sec-
tion IL.5. %p is compactly supported and Hdélder continuous.
The degree of Holder-continuity increases, with increasing sup-
port-length.
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[Dau92]
Let © be an orthonormal wavelet. For j € Z, let
W, = span{i;; : k € Z}. (11.46)

Then, obviously
L*R)=PHWw;.
JEZ
Following Lemarié [Lem90b], we say that for ¢ happens the miracle
of low frequencies, if there exists a function ¢ € L%(R) such that
(¢(+ — k))kez is an orthonormal set, and for

Vo :=span{¢(- —k): ke Z}

holds
L*R)= P W, & VL.
J€Ng
The function ¢ is called a father function of ¥». By this, one has an
alternative orthonormal basis for L?(R), possessing a simple struc-
ture, namely

{Yjr, (- — k), j €N,k € Z}.

One can show that the miracle of low frequencies happens for
all the orthonormal wavelets, presented in the previous collection,
except for the modified Littlewood-Paley wavelet c).

The corresponding father functions ¢ are given by
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a)
] ($) L 1, 0<z<1
PH "] o, otherwise.
[Dau92]
b) prp(z) = SRz,
<)
vord wl <2
Pav(w) == ﬁcos[%l/(%kﬁ -1)], %’T < Jwl| < 4?#
0, otherwise.
[Dau92]

d) ¢BLk is the k" order cardinal B-spline.
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[Dau92]

e) ¢p is compactly supported and possesses the same regularity as
¥p. As for ©¥p, the regularity of ¢p is the higher, the bigger its
support.

[Dau92]

The non-existence of a father function, for ¥1p,, in example c),
will be proved in the following section.

I1.4. Multiresolution Analysis (MRA) and Quadrature Mir-
ror Filters (QMF).

QUESTION. Is there a simple concept to describe those wavelet or-
thonormal bases, for which the miracle of low frequencies, described
in I11.3 (p.72), happens? The answer rests on the following
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DEFINITION. A multiresolution analysis (MRA) is a sequence
(V;)jez of closed subspaces in L*(R) satisfying the following condi-
tions:

i) Njez Vi = {0},
iv) feV,.y < f(2-)eV,
v) feV; & f(- —-277k) eV, Vk€Z,

vi) 39 € Vo (9(- — k))rez Riesz basis of V. The function g is
called generating function of the MRA.

LEMMA. The Riesz basis, in vi), can always be chosen as an
orthonormal basis.

Proof. [Mey90c,p.27]. We will prove: For an arbitrary generating
function g, the following function defines the Fourier transform of a
function ¢ such that (¢(- — k))kez is an ONB of L%(R) :

P(w) = 1 g(w)

= - T
V2T (Yrez |§(w + 2k7)[?)2
First, it will be shown that (17.47) is well-defined, i.e. the de-

nominator does not vanish, almost everywhere. Since (¢(- — k))xez

is a Riesz basis of Vj, by assumption, there exist some constants
0 < A< B < oo with

Allelle < 'S crg(- = B)| < Bllell Ve = (ci)ez € 1*(Z). (11.48)
kEZ

(11.47)

Denote by C(w) := Y ez cre”*  (w € R) the Fourier series,
corresponding to the Fourier coefficients (cx)rez. The function C

9  We choose, here, the convention of A. Cohen, C. Chui, K. Gréchenig/W.R.
Madych, P.G. Lemarié and Y. Meyer. Be aware that there exists an alternative
definition of MRA in the literature, where V; C V;_1, c.f. [AkH92], [Alp92a,b],
[Ber91a], [Bey92], [BeyCR91], [Daud’a,92], [Heill W89], [Wil92].
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is 2m-periodic. So, in case that ¢ is a finite sequence, Plancharel’s
theorem implies
1

= ACllan < ([ 0P

1
< 5= BlICl o2y (11.49)

g<w>|2dw)% <

For infinite sequences, (I1.49) follows by continuity. The middle
term of (/7.49) can be written as

([ |c<w)|2w<w>dw)% ,

w(w) = Z |§(w + 2km)|* € ([0, 27]). (11.50)
keZ

where

Since A and B are independent of (', one can consider special func-
tions (Cn(w))nen, namely |Cn(w)]? := Ky(w), where Ky(w) de-
notes the Fejer kernel. For Ky holds:

/0% Kyw)dw =27, lim (Ky*w(w))=w(w) a.e. (I1.51)

N—=oo

So, substituting C,, in (/1.49) using (/1.50) and (I1.51) results in
V2rA < ]\}im (Kn * w)%(w) = (w(w))% < V2B a.e.,
—00

hence

V2rA < (3 |g(w + 2km)|2)7 < V2B ae., (11.52)

keZ

which proves that (/7.47) is well-defined.
Next we will show:

U:Vy— L*([0,27])

h(z) = erglz — k) = C(w)(w(w))

keZ

[T
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is an isometrical isomorphism.

The isometry follows by Plancharel’s theorem. U is injective,
because of the linear independence of the sequence (e™*%)ycz. It
is surjective, since any ¢ € L%*([0,2n[) can be written as ¢(w) =
C(w)(‘w(w))%, where C(w) = Y ez cke™ ™, and (cx)rez denotes the
Fourier coefficients of C(w)(‘w(w))_%. So, there exists a function h €
Vo with Uh = ¢, namely h = ;7 cxgok-

The last assertion, together with Uty = x,U VYV k € Z (where
ef(z) = f(z — k), xaf(z) := e f(z)), allows to transfer the
problem of orthonormalizing translations of a function in f € L%(R)
to the well known problem of orthonormalizing modulations of a
function, namely standard discrete Fourier theory. From there, it
follows that the functions yxq(w) with ¢g(w) = \/Lz_w a.e. constitute an

ONB for L2([0,2x[), and so ¢ defined by (17.47) leads to an ONB.
¢

There is no uniqueness, for the function ¢, to have the property
that {¢(- — k) : k € Z} is an ONB of Vj. Any such ¢, is called a
father function of the MRA (V;)ez.

COROLLARY. (Characterization of orthonormality)
If (¢(z — k))kez is an orthonormal, then

5 1
Z |p(w + 2kT)|? = 7. e (11.53)
keZ

Proof. Follows from substituting A = B =1, in (/1.52).

PROPOSITION. (Refinement equation'®)
For (V) ez multiresolution analysis, ¢ a corresponding father
function, holds.

p(z) = E h(k)V2p (22 — k), (I11.54)

keZ

10  Such equations are fundamental for subdivision algorithmsin computer aided
geometric design, cf. [DahmM90a,b].
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where

h(k) = \/5/_0; o(2) P2z — k)da. (11.55)

Proof. Follows from properties i) and iv) of a MRA and the fact
that the functions (¢1x)kez constitute an orthonormal basis of Vj.

%

For j € Z arbitrary, define the subspace W; of L%(R) by
VJ‘ @W]‘ = Vgt (11.56)

The spaces W; are called detail spaces of the MRA. Their definition
implies that
Pw, =L*R). (11.57)
JEZ
So, knowing an ONB for each of the spaces W; and uniting these
ONBs, results in an ONB for L*(R). This idea leads to the con-
struction of WONBs, as the next theorem shows.

THEOREM 1. (Construction of @ WONB from a MRA)

For every MRA (V;);ecz, there exists an orthonormal wavelet 1
such that (Yor)kez is an ONB of Wy, and for which the miracle of
low frequencies happens. Any father function ¢ of the MRA is a
father function of 1, in the sense of ch.11.3.

Proof. [Mal89b], [Daub92,p.135]. Let ¢ be a father function of
the MRA.

Assertion 1: Define H(w) := Y 7z h(k)e™* with (h(k))krez as
in (/1.55). Then holds a.e.

|H(w)|* + |H(w+7))* = 2. (I1.58)

Proof of assertion 1: Fourier transform of (/1.54) results in

HE (L) ae. (I1.59)
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Inserting (11.59) into (/1.53) yields, after substitution £ := %,

—_Z|H —|—k7r) ; —|—k7r)|2:

keZ

=Y [H(E+20m)?

leZ

+ 37 [H(E+2mm + )| (€ + 2mr + )| =
meZ

G(& + 20m)|*+

= CIHE)P+ He+ D ae.,

where we applied (/7.53) in the last step.
Assertion 2:

FeW, < f(w):%e%yf(w)}[(g—l—ﬂ)@(g), (I7.60)

where vy denotes a 27m-periodic function.
If f e Wy, then f e Vi and f L V. From the first fact it follows
that

f(z) = Z(fasolk oix(z ng York(z (11.61)

kEZ keZ

and so, after Fourier transforming,

€

fle) = Z5G5(5)e3) (1162

where

= ng(k)e_ik‘“.

kEZ
From the fact that f L Vy and Plancharel’s formula, one hasV k € Z

0 —/ z)por(z dm —/ f ”““’dw =

_/ Zk“’Zf (w + 27)p(w + 217)dw, (11.63)
leZ
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where convergence of this series holds in L1([0,27[). Substituting
(11.59) and (/1.61) into (/1.63), and splitting in a sum over odd and
even integers (so that (I7.53) can be applied), results in

GrwHW)+Gw+m)Hw+7)=0 ae. (11.64)

Now, (/1.57) excludes that H(w) = H(w+ 7) = 0 a.e., so there
must exist a 2m-periodic function Af(w) with

Giw)=A(w)H(w+7) a.e. (11.65)

and

Af(w)+Af(w+7) =0 ae.

Hence '

Af(w) = e™vs(2w), (11.66)
where v¢(w) is 2m-periodic, again. Substituting (/1.66) in (/1.65),
(11.65) in (I1.62), results in the assertion (/7.60). The inverse state-

ment follows, by inverse Fourier transform.
Assertion 3:
- 1

D) = 5T H (G + )

is the Fourier transform of a function ¢ with (¢or)rez ONB of Wy.

2) (11.67)

Proof of assertion 3: 1 is of the type (/1.60), hence ¥ € Wj.
The functions (tox)kez are orthogonal, since Plancharel’s formula
implies that

|7 v R = [T o= [ S et

o0 0 leZ

where, by assumption,

S e + 20w = §|H<§+ 4+ )P (% + m)]? =

leZ leZ

—}—2[71'—|—7r)|2 =

+ 2m)|? +
ZEZ leZ
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= MG+ P+ HE = 5,

by (11.53) and (11.58). So, [ (z)Y(z—k)de =1, for k =0, 0
otherwise.

Completeness in Wy.
Let f € Wy be arbitrary. (/7.60) and (//.67) imply that

fw) = vi(@)d(w),

where v¢(w) is a 27-periodic function. If v¢(w) € L?([0, 27[), inverse
Fourier transform results in the desired basis representation. By
definition of vy, one has

27 g
| )P =2 [ 1ase) P

On the other hand, by the orthonormality of the functions (vok) ez,

2m 2T
00> 2SI = [ 1Gs@)Pde = [N )P @+ m)do =

27
= [ @PIH @+ m P+ HE)Pdo = [ 21s0)|do
and therefore )
[ w)fde < oo,
0

so inverse Fourier transform yields the assertion.
Assertion 3, together with property iv) of a MRA, implies that
(¥jx)kez is an ONB of W; Vj € Z, and therefore (;;); ez WONB

of L%(R).
The miracle of low frequencies happens for ¢ by construction;
@, V; and W; can be identified with ¢, V; and W; in IL.3. &

A function %, as in the theorem, is called a mother wavelet, as-

sociated with the MRA (V;);ez.

The last proof is constructive. Inverse Fourier transform of (11.67)
results in the following explicit expression for the mother wavelet 1,
constructed in the proof:

= g(k)eun(e

keZ
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where

g(k) == (=1)*h(-1 - k). (17.68)

Note that a mother wavelet, associated with a MRA, is not unique.
(11.67) corresponds to the choice v(w) = 11in (/7.60). But any other
choice of a 27-periodic function v with |v(w)| =1 a.e., would do it,
as well.

A variant of (11.68), leading to a mother wavelet, too, which is
frequently used in the literature, is

g(k) == (~1)*h(2n + 1 - k),
for some fixed n € Z.

COROLLARY.
For an orthonormal wavelet b, the miracle of low frequencies
happens, iff 1 is associated with a MRA.

Proof. “<=" follows from the last theorem, “—", because the
father function of an orthonormal wavelet, for which the miracle of
low frequencies happens, defines a MRA by V; := span{y;; : k € Z}.

¢

Now, one can explain, why for the example c), in the previous
section, the miracle of low frequencies does not happen, or, equiva-
lently, why this orthonormal wavelet is not associated with a MRA
[Dau92,p.136].

Assume, for ¥ happens the miracle of low frequencies. By the
last corollary, 9 is associated with a MRA. Let ¢ be a corresponding
father function. Formulas (//.59) and (/1.67), together with (/1.58),
result in

I + [9@)? = SIHEPIGI + 5 1H (S + (I =

eI,

hence

PR + 1) = [pw)* ac.
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Repeating this arguments, one gets, for w # 0:
PAW)[* + [D(dw)* + [ (20) | = |§(w)
|2(8w) > + [ (8w) > + [ (dw) | + [$(2w)]* =

%

pw)l?,

P(2"0) 1+ (2 W) P+ 12 w) [ 4 [P(2w) [ = [9(w)

therefore,

) = lim [p(2"w)2 + 3 (i) 2

i=1

(11.53) results in
lim |p(2"w)|*> = 0 in L*(R),
whence, |o(w)|> =332, |4(27w)|? a.e. Therefore, holds a.e.

#, 0<|wl <% or
T <|w| <& or
27r§|w|§1677r,

0, otherwise,

(11.69)

by definition of 1@ Define H as in the proof of the last theorem.
For ¢, as defined above, |H(w)] = v2 YV w € [—47“, 47”], so by 2m-
periodicity,
18
|H(w)|=v2 Vw e [2r, 7”].
But, (/1.59) and (/1.69) imply
1 —
Vor
in contradiction to |@¢(2w)| = 0 a.e on this interval, by (/1.69).
Hence, v possesses no father function. &

167

=,

I @)lIg()] = [62)] ae. on [2r,

The wavelet 1, in the last example, is of slow decay. P.G. Lemarié
proved in [Lem92b] that the miracle of low frequencies happens for
all orthonormal wavelets, satisfying some smoothness and decay con-
ditions.

THEOREM 2. If ¥ is an orthonormal wavelet with
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i) v eHélder continuous for some ¢ > 0,

ii) w(@):=supp < [ T;ﬁf"’h | satisfies 2¥w(z) € LA (R)Vk € N,

iii) all zeros of tf) are of finite order.

Then, the miracle of low frequencies happens for 1.
Proof [LLem92b]. &

In particular, the assumptions of the last theorem are satisfied,
for all compactly supported real-valued orthonormal wavelets which
are e-Holder continuous, for some ¢ > 0. In this case, the father
function ¢ can be chosen compactly supported, as well.

Extensions of the MRA-concept.

The concept of MRA has been transferred to different discretiza-
tions than the dyadic one. Again, it leads to the construction of a
corresponding wavelet orthonormal bases. (Cf. [Au92b] , [Gr6M92],
[Stri93].)

Apart from this, one can change to more than one dimension, as
sketched in the following.

By means of a MRA in L?(R), one can construct ONBs of wavelet
type, for L(R") (n € N arbitrary ) :

Let ¢ be a father function, % a corresponding mother wavelet of

the MRA. Define
W=, =

For z = (z1,22,...,2,) € R", € = (e1,€3,...,6,) € {0,1}"\
{(0,0,...,0)} =: E, let

U (z) == (1) - P2 (x2) - ... - P (2n).
(2™ — 1 different functions.) Then,

{270 (Y2 —k), j€Z, ke Z", e€ E}
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is an orthonormal basis for L2(R"). More explicitely, in case n = 2,
one gets with

O (21, 22) == (21) - Y (22),
(2, 29) 1= ¢(21) - p(22),
Ut (@1, 29) = ¥(21) - P (22)

that {23\115(23.161 — k1,2j1‘2 - kg), ] € Z7 (kl,kg) € Z27 €€ {(0,1),
(1,0), (1,1)}} is an orthonormal basis of L?(R?).

Defining a MRA (V?);ez in L*(R"), analogous to a MRA in
L%(R), as a nested sequence of subspaces in L*(R"™), and imitating
the construction of theorem 1, one always obtains 2™ — 1 functions
Ul w21 guch that

{25092 — k), j€Z, ke Z", qe{1,2,...,2" —1}}
constitutes an ONB of L*(R)". (See [Mey90,p.90].) The special
bases, given above, appear, if one chooses the spaces V", in the

MRA of L?(R"), as the n-fold tensor product of the spaces V; of a
MRA of L*(R),

Vj” =V,0V,;®...0V; (n factors).

They are called separable MRA of L?(R™). Examples for non-separable
MRASs, can be found in [Mey90c,p.86], or in [KoV92].

Be aware, that the wavelet orthonormal bases, constructed from
a MRA of L?(R"), cannot be used to discretize the CWT in since
they are built by more than one mother wavelet.

The Signal Theoretical Background of MRA.

Let (V;);ez be a MRA of L%(R), let (W;);cz be the correspond-
ing sequence of detail spaces. For f € Vj arbitrary, define

fv, == orthogonal projection of f on V; (j=—1,-2,-3,..),

fw, = orthogonal projection of f on W; (j=-1,-2,-3,---).
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Property i) of a MRA implies that
ij17ij27fb;37'”

constitutes a sequence of worse and worse approximations of f.

By (11.56) holds: V;®&W; = Vj,;. So, in the decomposition fy, =
fvj_1 + fWJ_N the function fW]_1 contains all the detail information
on f, lost by changing from fy, to fv,_, (hence, the name detail
space for W;).

Given some N € N, the function f € Vi can be reconstructed

from the projections fv_, fw_ys fW_yy1s- -+ Jw_, Via:
N-1
F=Fiy+ D fwopg-
=0

If ¢ is a father function, ¥ a corresponding mother wavelet of the
MRA, the projections fy,, fw, are completely characterized by the
discrete coefficients ¢/ := (¢’ (k))kez resp. d’ := (d?(k))rez, where

cj(k) = (f,¢jr) and dj(k) = (f, ¥jk) : (11.70)
fv, = > dk)oiw,  fw, =D & (k).
keZ keZ
Once c is given, these sequences ¢/, d’ (j = —1,-2,...) can be

computed recursively, according to the following

LEMMA. (Fast Wavelet Transform). Given (h(k))rez, as in
(I1.55), (9(k))kez, as in (I1.68), and °, as in (I1.70), the sequences
o d (= —1,-2,...), defined in (11.70), can be computed, as
follows:

(k) = Z h(n — 2k)c*(n),
neZ

&’ (k) = Z g(n —2k)c*1(n). (11.71)
neZ

Proof. Induction over j:
c: j=-1:
C_l(k) =(f,o-11) = (Z Co(n)¢0n7¢—1k) =

neZ



WAVELETS - A TUTORIAL AND A BIBLIOGRAPHY 145

= Y ) (o) = Y ) [

@(m—n)%gﬁ(?‘jm — k)dz =

neZ neZ o
= Z A (n) /OO V20(2u — n)p(u — k)dz = E A (n)h(n — 2k).
nez - nez
(j = 7 — 1: completely analogous. )
d: j=-1:
VR = (F,$o10) = (X O m)gon pore) = (by (I1.68))

nez

=) @Omfzg Jorm(27 e — k) =

nez meZ
(Z n)@on, Z g(m)@o2kim(r)) = Zco(n)g(n—%).
n€Z meZ ne€Z
(j = 7 — 1: completely analogous. ) o

This leads to the so called Mallat algorithm [Mal89a,c] for
the decomposition and reconstruction of functions f € V (repre-
sented by the corresponding discrete sequences ¢ € [%(Z), defined
n (11.70)):

Let

H: I*(Z) — 1*(Z)

(c(k))rez — (Y h(n = 2k)c(n))rez,

nez
G: I3(Z)— 1(Z) (I1.72)
(c(k))rez — (Y g(n — 2k)e(n))rez.-
nez

Starting from c® € [*(Z), define recursively

= HdT, & =Gt (j=-1,-2,...).

Given some N € N, ¢ can be reconstructed from ¢=N,d=N, d=N+1,
..,d7 " via
N =H¢ +G*d (j=-N,-N+1,-N+2,...,-1).

Graphically:
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Decomposition of ¢ :

Reconstruction of ¢°:

Data compression by Mallat algorithm.
Assume, ¥ is a sequence of length I € N, representing a dis-
crete signal which shall be transmitted. For N € N, ¢~V is a blurred
version of ¢, just allowing to resolve the main features of ¢%. ¢~V
is a sequence of length QLN and can therefore be transmitted more
cheaply then 0 itself. Fach additional consideration of a detail se-

quence d=N, d=N+1 g=N+2  d=! improves the quality of the
transmitted signal, and finally results in the original one. Since the
length of & (j=-N,-N+1,-N+2,...,—1)is 2%, maximally

L L L L L

data have to be transmitted. However, for applications, the quality of
the signal reconstructed from ¢=N,d=N d=N+1 . d=N*t* usually
suffices, for some & < N — 1. So, one can renounce the transmission
of d=N+k+1 g=N+k+2 —  d=1 which means a saving of QN_Lﬁ +

QN_% + ...+ % data, i.e. data compression.

ey

Pyramid schemes for image processing.

The (1-dim.) Mallat algorithm, presented above, can be extended
to two dimensions, starting out from a two-dimensional MRA. This
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two-dimensional analog is an example of a class of so called pyramid
schemes, developed for image processing by P. Burt and E. Adelson
in 1983 [BurA83a,b]. These pyramid schemes were the basis for
Mallat, to develop his algorithm, using wavelets. As a matter of
fact, Mallat treated the one- as well as the two-dimensional case,
creating the concept of MRA, on this occasion. This, in particular,
explains the name of multiresolution analysis.

Quadrature Mirror Filters (QMFs).

Define (h(k))rez, as in (I1.55). By (I1.58), H(w) =
D okeZ h(k)e=" satisfies

i) |H(W))?+|H(w)]* = 2. (I1.73)
If » € L'(R), integration of (11.54) yields
i) H(0) = V2. (11.74)

This corresponds to the definition of the so called Quadrature Mir-
ror Filters (QMFs), introduced by D. Esteban and C. Galand in
1985, to decompose an arbitrary signal in disjoint frequency bands,
allowing perfect reconstruction. (See [Dau92,p.156] or [Ve92] for an
introduction to QMF's.)

So, every MRA leads to a QMF. Under which conditions, con-
versely, a QMF leads to a MRA (and therefore to a WONB), is the
content of the following theorems.

THEOREM 3. (S.Mallat)
Let H(w) = ez h(k)e ™ satisfy (11.73), (11.74),

(k)| =001+ k)™ VkeZ, (I1.75)
and H(w)#0 in [—5, 5] (11.76)

Define
II —H 27Fw) (I1.77)

V2”keN
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Then, ¢ is the Fourier transform of a function ¢ € L?*(R) such
that (p(z — k))rez is the ONB of a closed subspace Vg in L*(R). If
o € CYR) and ¢ satisfies

lo(@)] < Cr(1 427, [¢'(2)] < Ca(1 +27) 7,

for some constants Cy,Cy > 0, then, the subspaces (V;);cz defined
by feV, < [f(277) € Vq, constitutes a MRA in L*(R).

Proof. [Mal89b] ¢

THEOREM 4. (I. Daubechies)
Let H(w) = Y ez h(k)e™™* satisfy (11.73), (11.74) and

> |h(k)|]k| < o0, (I1.78)
kEZ

for some ¢ > 0. Assume, there exists a N € N such that

H(w) = Vil L VIS fk)e ), (11.79)

keZ

where, for some n > 0,

Y IFR)IK" < 00, Bi=supeer| Y flk)e ™| <2V
keZ keZ
Then ¢, defined as in (I1.77), is the father function of a MRA,
satisfying
logB
[@(w)] < C(1+ )N T
The same regularity holds, for the mother wavelet 1, constructed

from the MRA.

Proof. [Dau88a].This proof has a graphical motivation. Remem-
ber that the coefficients h(k) are the same as in the refinement equa-
tion (/7.54). Starting from the characteristic function of the unit
interval, the iteration of the refinement equation results in the fa-
ther function. &

For the next theorem, we need the following
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DEFINITION. A compact set K C R is called congruent to [—m, ]
modulo 2, if for almost every o € [—7, 7] there exists a unique y € K
such that z — y € 27Z.

THEOREM 5. (A. Cohen)
Let H(w) = Y ez h(k)e™* satisfy (11.73) and (I1.74). Define ¢

as in (I1.77). Then the following statements are equivalent.

i) H is an element of the Sobolev space H™, for some m € N, such
that there exists a compact set K, congruent to [—m, 7] modulo
2m, with 0 € K and

H(;—k);éo Vk e N, we K.

ii) ¢ is the father function of a MRA, satisfying ¢ € H™. (Then,

e H™, as well.)

Proof. [Co90a,b], [Dau92,p.182]. &

I1.5. Compactly Supported Orthonormal Wavelets.

For applications, compactly supported orthonormal wavelets are
of special interest. By theorem 2 in section 11.4 and the following
remarks, all such wavelets, which are in addition real-valued and
e-Holder continuous, for some € > 0, stem from a MRA, with a com-
pactly supported father function. Therefore, the definition of the
coefficients h(k),k € Z, characterizing the corresponding QMF (cf.
(11.55)), implies that only finitely many of them can be different
from zero. In other words: H(w) = ez h(k)e™™ is a trigono-
metric polynomial. So, it is natural, to construct regular, compactly
supported orthonormal wavelets, by starting from finite sequences
(h(k))rez (resp. trigonometric polynomials H), which satisfy the
conditions of one of the theorems, at the end of the previous section.
This was done by I. Daubechies, in 1988, using theorem 4.

Obviously, any finite sequence obeys the appearing decay condi-
tion (/1.78). The class of trigonometric polynomials, fulfilling (11.73),



150 DIETRICH KOLZOW

(11.74) and (11.79), at the same time, (and therefore leading to a
MRA by theorem 4), is described in the following

PROPOSITION. H is a trigonometric polynomial, satisfying (11.73),
(11.74) and (11.79) for some N € N, iff for the trigonometric poly-
nomial

F(w) =Y f(k)e™™,

keZ
appearing in (11.79), holds.

[F(@)* = P(sin®3),

where
P(z) = Py () + ;rNR(% ), (I1.80)
N-1
Pae) = 3 (N —k1-|-l€)$k
k=0

and R is an odd polynomial, chosen such that P(z) > 0 for z €
[0,1]. 1

Sketch of Proof. [Dau92,p.171]. Substituting (/7.79) into (11.73),
yields the following problem:
find a polynomial P such that

1-a)NP@)+2VP1-2)=1.

The existence and uniqueness of a solution P is guaranteed by a
theorem of Bezout that can be proved constructively, using Euclid’s
algorithm. &

The explicit construction of I’ (and therefore H) now follows, by
a lemma of Riesz [Dau92,p.172], which gives a recipe, how to extract
the “square root” of the trigonometric polynomial |F(w)|?. (More
explicitely, Riesz’ recipe leads to the factorization of a polynomial,
which can be performed numerically.)

11 In the first construction of compactly supported orthonormal wavelets
[Daud8al, the choice was R = 0.
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The graphically motivated proof of theorem 4 in II.4 yields an
algorithm (the so called cascade algorithm) to sketch the graphs of
the wavelets, to be constructed, although no explicit formula for the
wavelets is known, in general.

Note that the proposition retains the following freedoms in the
construction of compactly supported orthonormal wavelets.

The parameter N can be choosen arbitrary.
R and the “square root” of I are not uniquely determined.

So, there are different classes of compactly supported orthonor-
mal wavelets, possessing different regularity properties (cf. [Daub92,
Ch.7]), but, one can always observe an increase of regularity, with
increasing support length.

® is called symmetric, if there exists a g € R such that
P(zo+z) =9Y(zo—2z) VzeR,
antisymmetric, if there exists a zg € R such that
P(zg+2z) = —9(zo—2) Yz €R.

A common property of all real-valued, compactly supported or-
thonormal wavelets is the missing of any symmetry or antisymmetry,
stated in the following

THEOREM.
If a real-valued, compactly supported orthonormal wavelet 1) is sym-
metric or antisymmetric, then 1 is the Haar wavelet.

Proof. [Dau92,p.252]. The proof relies on the fact that, in case
of compact support, the various father functions, corresponding to a
given MRA, differ only by a translation. &

If one allows % to obtain even complex values, compact support
and (anti)symmetry are compatible, for orthonormal wavelets. As
well, there exist biorthogonal bases of (anti-)symmetric, real-valued,
compactly supported wavelets [Dau92,p.259].
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I11.6. Smoothness, Decay and Oscillation.

DEFINITION. Let m € Z. A function f: R — C is said to

a) decay of order m, if there exist constants C' > 0, @ > m+1 such
that
[f(2)] < CA+[z[)™" Ve eR;

b) be smooth of order m, if ¥ € C™(R) and 1) is bounded V 0 <
[ <my

c) oscillate of order m, if

/ ’¢($)$ld$20 for 1=0,1,---,m.

— 00

THEOREM. (Oscillation theorem). Let ¢ € L*(R) be an arbitrary
orthonormal wavelet. Assume, ¥ decays of order m and is smooth
of order m (m € N). Then 1 oscillates of order m.

Proof. Cf. [Dau92,p.153] or [Mey90c,p.93], for a different proof.
Induction over [ :=number of vanishing moments.

[=0:

1 generates an ONB and so especially a dyadic frame with frame

bounds A = B = 1. So, by (11.35),

oo dw
Cy =21 P(w)|>— < oo.
o= [ <
) de.cays at least as W (¢ > 0), therefore ¢» € L'(R), i.e. ¥
continuous.
Hence 9(0) = [*°_4(z)dz = 0.
[—1—=1
¥ is continuous, () # 0, therefore exists an open interval I with
) # 0 on I. Since the dyadic rationals are dense in R, there exists
J, K € Z with 277K € I. Taylor expansion of % up to order [ around
277K gives: Ve >0 31> 4 > 0such that |z — 277k| < § implies
{
)~ 3 %d)(n)(Q_JK)(x oKV < o =27 kL (T1.81)

n=0 """
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Choose j > 0, j7 > J. Because of the orthonormality of gy and
i1k (j # 0) we have

0= /OO V(@)@ — DT K)de =  (by (I1.81))

— 00

=Y %lp(“)(z—"f() /Oo (z — 27 K)"(2iz — 20T K)dz + R,

— 00

(I1.82)

R = /_ T () - zl: %¢<n>(2—J1<')(m 2T K27 — 2T K ).

n=0
(11.83)
By assumption,
/ " Pp(z)de =0 Vn<l,
so (11.82) reduces to
1 T [ Ny - 4 -
S0 K) /_Oo(ac 9T K20 — 2T K)de =
1 . o
= 2B K) () /_ P (11.84)

The R-term can be estimated as follows: )
By assumption, 1 is bounded ¥ n by some constant C'. To-
gether with (//.81), one gets

|R| < / ele — 27 K|dz+
lz—2—7K|<$
+C (1= (z =277 K\ |27z — 2077 K)|dx
|lz—2—7YK|>§

= [ dule@ldy+C [yl eyl <
ly|<é ly|>8

2768 . . - o] .
< 26/ 12| () |2 du + 200/ (14 9)'(1 +2y)~dy <
0 §
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. 0 ~ 0 1—}-5 1
<202H+1/ 1 +200/ 1 y) 0 dy,
<20 [ o ) s
because

1 1 1 1446 1 1446
< i for y>3,

1427y 22774y 2042627ty 142814y
so, altogether,

1446

. < Cre(9—iVI+1 4 (ro—ia
(11.83) < Ce(27) ! C270 ey

where the constants only depend on C, @ and [, not on ¢, ¢ and j.
By (/1.82) and (11.84), it follows that

1
IO TRy @]

[ ate(wdul = R| <

< N(pWERTTK)) el 4 27705 (1 4 5)H

Because ¢ and j were arbitrary, the right hand side term converges

to 0. &

DEFINITION. % is said to be of exponential decay, if there exists
a constant v > 0 such that e?1#l¢)(z) is bounded.

COROLLARY. (Smoothness versus decay)
If ¥ is a dyadic orthonormal wavelet, the following properties exclude
each other.

i) v is smooth of order m ¥ m € N.

ii) v is of exponential decay.

Proof. Assume, there exists a dyadic, orthonormal wavelet @ €
L?(R), wich satisfies both i) and ii). Exponential decay implies
(polynomial) decay of order m V m € N, so

/OO e'p(z)de =0 VIEN,



WAVELETS - A TUTORIAL AND A BIBLIOGRAPHY 155

and therefore l
ds -
wlﬂo =0 VIieN.

On the other hand, the exponential decay of ¢ implies (by the Paley-
Wiener theorem) that 1@ is analytic in some strip in C. So it is a
well known consequence from complex analysis that L/A) = 0, since all
its derivatives (and therefore its power series) vanish at one point.
So g/; = 0, and this cannot be a dyadic orthonormal wavelet. &

Compare with the examples in II.3.
Uncertainty principle of Battle [Bat89].

Let ¢ € L*(R) be a dyadic orthonormal wavelet. Then, the fol-
lowing properties exclude each other.

i) v is of exponential decay.

ii) uA') is of exponential decay.

Proof. ;@ is of exponential decay implies, by the Paley-Wiener
theorem, that ¢» € C*°(R), supp v is compact. Hence, all derivatives
are bounded, i.e. % is smooth of order m. This is in contradiction
to the oscillation theorem. &

Giving up orthonormality and just requiring “i frame wavelet”,
allows exponential decay of @ and 1. The Mexican hat wavelet
(cf.1.2.1) is an example, for this [Dau92,p.75].

III. Group Theoretical Abstractions.

I11.0. Guide to the following chapter.
The affine group (Gas¢,0), defined by
Gaff =R* xR, and (a,b)o(a",b)=(a-d';b+a-b"), (I11.1)

can be identified with the group of affine transformations on the real
line via the isomorphism

I: (a,b) — wyy, where wg: R—- R, zw—ax+b. (111.2)
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If G5y is endowed with the product topology of R* X R, (G,¢y,0)
becomes a locally compact topological group. For (a,b) € G,y
arbitrary, define the following unitary linear operator

Ula,b): L*(R) — L*(R)

$(@) = Ula,b)(e) = —— i) =
ot (0l
= =0 = ). (111.3)

U: (a,b)— Ula,b),

from G,fs to the set of unitary operators on L?(R), is called the
canonical representation of G,rs on L*(R). Tt turns out that for

¥, f € L*R) holds:

The mapping

Tyfla,b) = (f,Ula,b)?),
and it will be shown in II1.2 that

co= [ 106,U(a,b)9) dr(a,b)
Gays

where dur(a,b) = % denotes a left Haar measure on G,y and
¢y is defined as in (1.19). We know, from the orthogonality relation
(1.21), that for ¢y < oo holds:

Vf,g¢€ LQ(R) : ((fv U(av b)'@b), (97 U(a7 b)w))L2(Gaff,dﬂL) = Cll!(th)'
(111.4)

In the following chapter, we will consider an abstraction of this
situation to an arbitrary locally compact group G, instead of Gy,
and an arbitrary Hilbert space H, instead of L*(R). In particular,
we will see that (/17.4) holds, in a more general setting (cf.I11.3).

II1.1. Preliminaries on Locally Compact Groups (LCGs).

In the following, (G, o) denotes a locally compact group (LCG),
i.e.
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i) G is a group, with multiplication o, and

ii) G'is a locally compact topological space such that the mapping
P: GxG—=G
(9,h) = goh™!

is continuous.

For g € G, the left (resp. right) translation L, (resp. R,) is
defined by
Ly: G=G hw— goh,

resp.

R,: G=G h— hog.

pr, (resp. pug) denotes a left (resp. right) Haar measure on G,
i.e. pur, (resp. pg) is a Borel measure on GG, and for all g € G and all
Borel sets M of GG holds:

pr(LgM) = pr (M) (resp. pr(RyM) = pr(M)),

where

L,M:={heG: dmeM h=L;,m}
(resp. RygM :={h € G: A3m € M h = R,M}).

The existence of left and right Haar measures, for arbitrary lo-
cally compact groups (G, was proved by A. Haar, J. von Neumann
and A. Weil'?. They showed, furthermore, that uy (resp. ug) is
uniquely determined, up to a constant factor. If p is a left or right
Haar measure with p(G) < oo, one usually chooses this constant
such that pr,(G) = 1.

In case that G C R™ and L, is a C'-diffeomorphism with Jaco-
bian DL,(h), independent of A, there exists a simple construction
method for the corresponding left Haar measure:

dui(g) = const. "g, (111.5)

1
——d
|detDL,|

12 See e.g E. Hewitt, K. Ross, Abstract Harmonic Analysis I, Berlin (1963),
Ch. IV.
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where d"¢g denotes the n-dimensional Lebesgue measure. Analogous
conditions on R, result in

1
d = const.————d"g. I11.
{ir(g) = cons PRI (I11.6)

G is said to be unimodular, if every left Haar measure on G is a
right Haar measure on GG as well, and viceversa.
Evidently, every abelian group is unimodular.

EXAMPLES.

a) (G,o0)=(R",+) is unimodular with

dur(9) = dur(g) = d"g,

since the Lebesgue measure is known to be translation invariant.
(The construction, suggested above, leads to Lebesgue measure
on R™, too.)

b) Affine groups Gyy, ijf.
Goss, with the product topology on R* x R.

G:ff : topological subgroup of G, ¢, consisting of (a,b) € G,y
with a > 0.

Since

0
DMMW0=<§Q)

b
D&Mww=<§1>

are independent of h, one can apply (/11.5) (resp. (I/11.6)) to con-
struct the Haar measures, for these two groups:

and

dur,(a,b) = const.%dadb, (111.7)
a

1
dur(a,b) = const.—dadb, (111.8)
a
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where, in both cases, the constant is conventionally chosen equally
to one. This shows that the affine groups G,sf and ijf are not
unimodular.

II1.2. Unitary Representations of LCGs.
General assumption.

(G, 0) locally compact group, with left Haar measure dyuz, and
right Haar measure dup.

‘H complex Hilbert space, with scalar product (-, )%, norm || -||.

U(#H) set of unitary operators on #.

DEFINITION. A unitary representation of (G,0) on H is a homo-
morphism

U: G—=UH)
g~ Ulg).
U is called irreducible, if Vf € H

Fa{U(g)f: g€ C)=H,
An element ¢ € H \ {0} is called U-admissible, if

o= [ U0l dute) <o (1119)
(Then, [ |(¢,U(9)¢)ul*dur(g) is finite, too. Cf. [Hol93b].)

U is a square integrable unitary representation, if there exists a

U-admissible ¢ € H \ {0}.

Note that there exist non-square integrable irreducible unitary
representations, e.g.

U: (G,0):=(R,+) = U(T), g+~ Ulg),

where '
Ulg): T—>T, tw et
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In this case, [ (¢, U(g)t)ul*dur(g) = =2 dg.

If G is a group of bijective mappings on a topological space X
with regular Borel measure A such that the neutral element e of G
corresponds to the identity 7d, on X, one can construct an irreducible
unitary representation of G as follows.

Define H := L?(X, \),

U: GoUH), ¢g—Ulg),

where
Ulg): H—H,
fe U0 =1 M=o
! - W%Hmf(Lg—l')7 otherwise. :

For ¢ € # \ {0} arbitrary, define
Hy =span{U(g)y: g€ G} CH.

Then, U is an irreducible unitary representation of G' on Hy, as a
straightforward calculation shows.

If one chooses 1 € H \ {0} such that

|10 @, vu*duly) < .
then U is a square integrable representation of G' on H,.

EXAMPLES.

a) Every locally compact group G can be regarded as a group of
bijective mappings on itself, via the action of the left and right
translation. In this case, the foregoing construction leads to the
so called left and (resp. right) reqular representation X (resp. p):

A G—=ULAG, dur)), g~ Mg),

where

’\(g) : LZ(G7 d,uL) - LZ(G7 d,uR)
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(970, otherwise,

respectively,
p: G— UG, dur), g+~ plg),

where

,0(9) D L (G7 d,uR) — LQ(G7 dNR)

0, £l =0
e { f(-og),  otherwise. (111.12)

These representations are clearly irreducible as well as square

integrable.

By (I11.2),G,ys can be identified with the group of affine trans-
formations on the real line:

Gapf ~{wwp :R—= R, 2z az+0b, wherea € R*, b€ R}.

Since, for arbitrary f € L?(R), by (/11.10) holds
z—b

a

)|*dz = |al| f]*,

Izl = [ 15
one gets, for every ¢ € L*(R) with [|¢|| # 0, that:
U: Gagg = UL*(R)), (a,b) = Ula,b),

where

U(a,b): L*(R) — L*(R)

0, Ifl/=0
fl—> ﬁf(m;b% OthETQUiSE, (]1113)

is an irreducible, unitary representation of G,¢s on

1 r—0b

Hy = 5pan{ \/mzp(T) : a € R*, be R} (I11.14)
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ASSERTION. Vi € L*(R), [|¢]| > 0 :

Hy = L*(R). (I11.15)

This can be seen as follows.

Assume, there exists a ¢ € L%(R) such that H, is a closed sub-
space of L*(R), but Hy # L*(R). Then, there exists a f # 0 in Hi,
ie. (f,va) =0 V(a,b) € R* x R. Recall that (f, ¥a) = Ty f(a,b)
as in (1.2), and T}, is injective, by the theorem in L0. &
The function ¢ € L?(R) is U-admissible, if

o> [ 1w U h P = [ [ 1) =

- [ / (a)e b))

(/_Z ﬁ@/}(a@)e' 5)do)
= [T dariat ot = 1ol [ 19e)PL

— 00

ie.

Note that cg = ¢y, for ¢, defined in (1.18). In other words: the
U-admissible elements of L%(R) are just the admissible analyzing
wavelets for CWT. Since we know that admissible analyzing wavelets
exist (cf. the examples in 1.2.1), U is a square integrable representa-
tion of Gioyy.

c) ijf can be identified with affine transformations on the real
line as well, where, this time, a is restricted to RT. By the same
arguments as in b), we get that U, as defined in (/1/.13), is a
unitary representation of ijf on Hy, given by (/11.14). But,

in contrast to (I71.15),in this case, H, # L*(R) (cf. 1.2.5).
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However, the restriction of the operators U(a,b) to H*(R), as
defined in 1.2.6, yields an irreducible unitary representation of
ijf on H2(R). Since, for ¢» € H2(R), the Fourier transform
vanishes for w < 0, the U-admissibility of %, cg < 00, now takes
the form

0o d
| B@PE <o,

so cg = ¢y holds. Since there exist admissible analyzing wavelets

in H%(R) (cf. Paul wavelets, 1.2.1.ii)), the restriction of U, to
a > 0, is a square integrable representation of ijf on H%(R).

I11.3. The Orthogonality Relation for Square Integrable
Representations of LCGs.

The main result of this section is the following

THEOREM. (Orthogonality relation)

Let G be a locally compact group with left Haar measure dpy,, H a
complex Hilbert space and U a square integrable, irreducible, unitary
representation of G on H. Define

Ap:={¢Y e H: ¢ is U — admissible}.

Then, Ay is dense in H, and there exists a unique positive operator

Cu: Ay — H such that Vi,V € Ay, Yfi,fr€H

| U061 U i (9) = (Cu®, Cudhu(fi, fobu

(111.16)
If G is unimodular, Cr is a multiple of the identity.

To prove (111.16), several variants of the lemma of Schur will be
needed. We will prove them, in advance.
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The classical lemma of Schur. (Characterization of irre-
ducibility)

Let G be a locally compact group, H s complex Hilbert space, and
U a unitary representation of G on H. Then U is irreducible iff the
only bounded linear operators A on H with

U(g)A= AU(g) YVge G (I11.17)
are of the form
A=X-Idy (A€R). (111.18)
Proof. 13
“<:77

Assume A = X - Idy is the only solution of (/71.17). Let M be a
closed subspace of ‘H which is invariant under U, i.e. Vg € G, f €
M : U(g)f € M. Then, M* is invariant under U, as well. Because
H =M ML, for all f € H, there exists a unique decomposition
f = fi+f2, where f; € M, f, € M*. Define the projection operator

P: H->M f[f— fi.
Then, P is a bounded operator on H, and
U(g)P=PU(g) Yg €.

Hence, P is a solution of (//1.17), and by assumption, there exists
a A€ R with P=AX-Idy. We must distinguish two cases. First, if
A = 0, it follows that M = {0}, i.e. ML = . Second, if A £ 0, it
follows that A = 1, hence P = Idy, and so M = . In any case, we
see that there cannot be an invariant, proper subspace of 7. Hence,
U is an irreducible representation.

“:77

Let U be an irreducible representation of G on H. Let A be a solution
of (111.17). Then,

Ulg)A" = (A(U(9)))" = (AU(g™"))" = (U(g™)A)" = AU (9),

13 Cf. A. Wawrzynczyk, Group representations and special functions, Warsaw
(1984), p.143.
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hence A* is a solution of (/11.17), too. Define B := A+ A*, C :=
i(A— A*). Then, B and C' are solutions of (/11.17), selfadjoint, and
the corresponding spectral families consist of orthogonal projectors
which are solutions of (/1/.17). Now, the image of a projection
operator which commutes with U(g) Vg € G is a U(g)-invariant
subspace. Because U is assumed to be an irreducible representation
of G on H, this image must be all of . Hence, the only possible
projection is the identity projection. Therefore

B=p-Idy, C=X-Idy,
for suited real u, A and consequently A =v - Idy withv e R.

COROLLARY.
Let G be a locally compact group, H, H' complex Hilbert spaces,
U an irreducible unitary representation of G on H, U' a unitary
representation of G on H'. If A is a bounded linear operator from H
to ”H' with
AU(g)=U'(9)A Vg € G, (111.19)

then, A is a multiple of an isometry.

Proof. For every bounded linear operator A holds:
(IT1.19) <= (U'(9)A)"AU(g) = (U'(9)A)"U’(9)A
= (AU(9))*AU(g) = AU (g)U'(9)A
= Ul (g)A*AU (g) = A"A <= A*AU(g) = U(g)A*A
= A*A is a solution of (I11.17) < A"A=X\-Idy.

The last equivalence holds by Schur’s lemma. Hence:

(I11.19) = (Af, Ag)u = ([, A"Ag)n = A f, 9)n- &

THE GENERALIZED LEMMA OF ScHUR. Let G, H, H', U, U’
be as in the corollary. Let D be a dense U-invariant subset of H
(i,e. UD C D, D = H). If A is a closed linear operator from D
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to ”' satisfying (111.19), then, A is a multiple of an isometry, and
D="H.

Proof [GrosMP85].
Step 1:
For f,g € D define:

(f7g)D = (f7g)7-{ + (Af7 Ag)?—l"

Then, D is a Hilbert space with scalar product (-, -)p, because (-, )y
and (-, )y are scalar products, and D is complete with respect to
| - |, because of the closedness of A.

Step 2:

A: (D,(-,)p) = H' is bounded, because
Afllze AFl3,
A4S DAy e,
Ifllp AL + 111

Step 3:

Ulg): (D, ()m) = (D, (5 )n)
is unitary Vg € G, since

1U(9) f1p = U (9) f113 + 1 AU (9) 13 =

=1 fll3 + 10" (9) Afll3e = I £ 13 + I AF Il = I F115-

Step 4:
U(g)|p is surjective Vg € G, since

f=UgU(g™")f VfeD,

and D is invariant under U(g™!). Therefore, the previous corollary
can be applied, if one replaces (#,(+,-))x by (D, (-,-)p). It follows
that A is a multiple of an isometry from D to H, i.e.

VfeD: [|Afl5e = MIFlID = M Sl5 + MASIF (X € R).

Because f € D was arbitrary, we can assume f # 0 and A # 1,
hence,

A
2 _ N g2
141 = T2
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So, A is a multiple of an isometry from D C H (now with H-norm)
to H'. Since D is dense in #H, and A is continuous, A extends to
a multiple of an isometry from H to H'. Because A is closed, by
assumption, it follows that D = H. &

SKETCH OF THE PROOF OF THE ORTHOGONALITY RELATION.
[GrosMP85]

Assertion 1:

Let ¥ € Ap. Then,
Ty : H— L*(G,dug)

fe= U@y, fn (I11.20)

is a multiple of an isometry.
The proof of assertion 1 follows by the generalized lemma of Schur
with
H =L} (G,dpr), U =X, A=TY,

D=y = {fe s [ THN)) dunly) < oo},
By this, (/71.16) holds for ¢» =¥, f; = fs.

Assertion 2:
Let ¥, ¥y € Ay, fi,f2 € H, Tg,Tg as in assertion 1. Then,
there exists a constant cyg > 0 such that

(T3 11,78 f2) 1260y = € (f1s f2)n- (111.21)

The proof of assertion 2 follows by the classical lemma of Schur
with A =TTy

Assertion 3:
dy Cy: Ay — H positive such that

(CU\I/, C[ﬂ}")y = Cy- (11.22)
To prove of assertion 3, consider the quadratic form

q: Ay X Au = C (P, W) = ¢y,
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q is closed, symmetric and positive, so it satisfies the assumptions of
a variant of Riesz’ representation theorem!?, which guarantees the
existence of a unique positive operator such that (77.22) holds.

If G is unimodular, ¢(U(g)®, U(g)¥)n = q(%, V), hence CyyU(g) =
U(g)Cu. Applying the generalized Schur’s lemma, once more, yields
the assertion. &

COROLLARY 1. Vo € Ay, VfeH

L1009yt dus () = IICovlf - 171

with C'y as in the orthogonality relation.

Proof. Choose ¥ = v, fi = fyin (I11.16).

COROLLARY 2. V¢ € Ay, Vfi,fo € H and TY, as defined in
(111.20):

(fi, )u =0 <= (T A, T f2)r2(Gam) = 0.

Proof.
“==7  (I11.16) with ¥ = .
“="  (I11.16), noting that Cy is positive, hence (CyWV, Cyp)y #
0 for ¥ # 0. &

COROLLARY 3.
The range of Tg, as defined in (111.20), is a reproducing kernel
Hilbert space.

Proof. As in 1.2.4, one can show that the reproducing kernel is
given by

KJ(g,9) = ( ! (T7U(g")¥)(9)-

Cutp, Cup)u

14 Cf. T. Kato, Perturbation Theory for Linear Operators, Berlin (1976).
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COROLLARY 4. For a square integrable, irreducible, unitary rep-
resentation U of G on H, the U-admissible elements are dense in
H. If, in addition, G is unimodular, then, all elements of H are
U-admissible.

(Compare with theorem 1 in 1.2.1, for the affine case.)

Appendix A. The Windowed Fourier Transform

Another transform, sharing many properties with the wavelet
transform, has been introduced by D. Gabor, in 1946: the so called
windowed Fourier or Gabor or short time Fourier transform. The
following pages shall serve for a comparison between both transform
methods.

A.1. The Continuous Windowed Fourier Transform (CWFT)

Fix g € L2(R) \ {0}. g is called a window function.
For (w,t) € R X R, define

Gut() == gz —t). (A.1)

The continuous windowed Fourier transform (CWFT) of a function
f € L?(R), with respect to the window function g, is given by the
following function

W, f:RxR—=C

o0

(wyt) = Wyf(w,t) := / f(2)gut(z)dz.

— 00

For a fixed value (w,t) € R x R, the complex number W, f(w,1)
is called the windowed Fourier coefficient of f, with respect to the
window function ¢, at the point (w,?). The continuous windowed
Fourier transform operator, with respect to the analyzing wavelet ¢,
is given by the following integral operator

W,: L*(R) » CB*R_ f W,
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Interpretation:
o0

Wol(o.t) = [ fla)gla = e da = VIr(f()gT D).

— 00

So, up to a factor v/2m, W, f corresponds to the Fourier transform
of the function f(-)g(- —t). Choose for example

Then, the windowed Fourier transform coefficient W, f(w, t) describes
the frequency content of f, restricted to the time-window [t—%, %], t e
R. Hence, the name “windowed Fourier transform”. In praxis, one
usually uses smooth window functions, for example Gaussian func-
tions (1.17), as it was done, first, by D. Gabor.

Fourier representation.

Woront) = e [~ @GR = W, (e, 1)

— 00

Properties.

W, is an injective, bounded, linear operator from L*(R) to L*
(R x R), possessing the following invariance properties.

i) [W,f(-—z0)](w,t) = em™™ W, f(w,t —xq) (translation invari-
ance);
i) [Wyf(e“ f(-N](w,t) = Wyf(w — wo,t) (modulation invari-

ance).

W, f is continuous as a function in (w,t).
(Proof analogous to the wavelet case.)
For an arbitrary window function g, which does not satisfy an

additional admissibility condition, as the analyzing wavelet in the
CWT case, we have the following
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Orthogonality relation:

Vfi,f2 € L*(R): /_OO /_Oo (W, fi(w, )W, fa(w, t)]dwdt =

= 2r|lgll*(f1, f2). (4.2)

As a consequence,
1
V2r||g]]

is an isometry, and inversion formulas, similiar to those for CWT in
1.2.3, are valid. In particular, RgW, is a reproducing kernel Hilbert

W, : L*(R) — L*(R x R, dwdt),

space.

There is no analogue of the time-/frequency-zooming of CW'T,
in the CWFT case. This can be explained as follows: Defining the
center and the radius of a function, as in (/.6) and (1.7), we get:

Mg, = My +1, Agwt:Agv mg?t:mg—l—w, Ag/w\t:Aﬁ

Consequently, Ve > 1
A (guwt, ) = 2¢A, Vw,t €R,

AI(§53,¢)) = 2¢A; VYo,t € R,

where the interval I is defined as in 1.1.

Therefore, for no wy € R, the interval I(g,, c) converges to some
point of R, as w — wg. A corresponding statement holds for 1(g.¢, ¢),
with respect to t.

Illustration of the (w,t)-dependence of the time-frequency win-
dows

R(gut, ¢) == 1(gut, ¢) X I(Gut,c)  (cf.1.3):
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[Chui92b]

A.2. The Discrete Windowed Fourier Transform (DWFT)

Fix wp, tg € R*. Let g be a window function. Define

woto 1mwoT

Imn ($) = Ymuwq,ntoy ($) =€ g(:n — nto).

The discrete windowed Fourier transform (DWFT) of a function f €
L%(R), with respect to g and the discretization parameters wy, to, is
given by

W97w0¢0f = ((fv g;)zogo))m,nez'

To reconstruct f from the discrete windowed Fourier coefficients
W wotof in a stable manner, one requires again that the functions

(geolo),, ez constitute a frame of L*(R).

It turns out that, in contrary to the wavelet case, there is an
upper bound for the product of the discretization parameters wy, tg,
in order that the functions (g4¢%),, ez constitute a of L%(R), more
precisely:
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There exists no window function g such that (§401),, ,cz is a
frame of L*(R), in case

wo - tp > 2. (A.3)

(For information, see [Dau90,p.978].)

So let us restrict to wotp < 27, in the following.

Using the same arguments, as in the proof of theorem 2 in 11.2, one
can show that a necessary condition for (¢20!°),, ez, to be a frame

of L?(R), is the existence of two constants 0 < A < B < oo such
that

2w
A< Jql? < B. A4
< ol < (4.4)

As for the CWFT, no additional admissibility condition on g is
needed.

A special consequence of (A.4) is that “(geol0),, ,ez ONB of
L%(R)” is only possible in case

wo - to = 271', (A5)

which is a critical case, due to (A.3).

The following theorem shows that windowed Fourier frames, at
the critical value (A.4), necessarily possess bad time-frequency local-
ization.

Uncertainty principle of Balian-Low. (1985)

If (geot0),, wez is a frame for L*(R), where wotg = 2, then either

gmn
zg(z) ¢ L*(R)

or
wj(w) ¢ L*(R).
Symbolically:
Y
Ay Ay = @/\ (R(¥,¢)) =00 Ve2>1.

Proof. [Bal81] or [Dau90,p.976]. &
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This result should be compared with Battle’s uncertainty princi-
ple for WONBs, as proved in IL.5.

The previous results can be summarized in the following diagram:

[Dau92, p.113]

Another important difference between DWT and DWET is that
the dual frame of a windowed Fourier frame is always a windowed
Fourier frame, with respect to the same discretization parameters
wo, to:

(geoto),. ez frame for L*(R) = 3§ € L*(R) such that

—~—
~woto woto

G000 = g% Vm,n € Z.

(Cf., the proposition in 11.2, for the wavelet case.)

A.3. Relationship between CWFT and the Heisenberg Group
[BlaMW91], [Heil W89]

The Heisenberg group (G, o) is the locally compact group, de-
fined by Gy := R?,

(w,t,8) 0 (W 1, 8) = (w+ o t+t' s+ 5 +wt).
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Define the left and right translation L, ; s, R, s,s), asin IIL1. Since
100
DL(WJZS) (w’, t, S/) =101 p|=1,
0 1
independent of (', ¢/, s), and
1 0 ¢
DR(w,t,s) (w', t, 8/) = 0 10 =1,
0 01

independent of (w',#',s"), (111.5) and (/11.6) can be applied to con-
struct the left and right Haar measure on G, which results (by choos-
ing the appearing constant to be one) in

dur(w,t,s) =dur(w,t, s) = dwdtds,

i.e. the Heisenberg group is unimodular.

A square-integrable, irreducible, unitary representation of (G, o)
on L%(R) is given by

U: Gg = U(L*R)), (w,t,8)— Uw,t,s), where (A.5)
U(w,t,s): L*(R) — L*(R)
f=Ulw,t,s)f = L¢e_isfz"""']‘(- —1).

Vor

So, the orthogonality relation (//7.11) holds for G = Gy, H =
L%(R) and U, as defined in (A.6). In particular, the unimodularity
of G ensures that every g € L%(R) is U-admissible. Fixing s = 0,
we get for f,g € L2(R), w,t€R:
(1)) = =W, f(,1)
€ T - = w,t),

g Vor ?
and (I/11.11) reduces to (A.2). So the CWFT stems from a group
representation as does the CWT.

(f;U(w,t,0)g) = (/,
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Concluding remark.

Point 3 explains the parallels in the theory of CWT and CWFT,
e.g. the orthogonality relations and their consequences, as well as
their main difference, namely the necessity of an admissibility con-
dition for CWT, in contrary to CWET. The reason for this is that
G g is unimodular, while GG, ¢y is not.

Appendix B: Coherent States
B.1. Definition and Basic Properties.

Let £ be a topological space. A set {¢;:[ € L} of elements in a
Hilbert space # is called a set of coherent states for H (in the sense
of J.R. Klauder and B.-S. Skagerstam [KISk85]), if the following two

conditions are satisfied:

i)  Continuity.
lim ”lbl — ‘¢’10|’y =0 VigelLlL. (B.l)
l—)lo

ii)  Resolution of Unity.
There exists a Borel measure [ on £ such that Vf, g € H

(Fooy = [ outn, gl (B.2)

EXAMPLES.

a) L = Gupp, H =L*R), ¥ = ¥up, as in (I.1), where ¢ is an
admissible, analyzing wavelet, il left Haar measure on Gy,

ie. dl = 142 (Cf. 1.0, Lemma 1ii) and (1.21).)

Cwa

b) L= ijf, H = H*R), 9y, dl as in a). These are the affine
coherent states, introduced by Aslaksen and Klauder [AslK68]
to describe the movement (without reflection) of a particle, on

the real line.
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c) L=R? H=L*R), ¥y = gt as in (A.1), where g is a window

. _ 1
function, dl = EIRIE dwdt.

Coherent states for H induce a functional representation of H,
consisting of continuous functions, as follows: For f € 7, define
F:L— Cby

() = (f, ¥1)u.
F is a continuous function of [, because of (B.1) and the continuity
of the scalar product.

C:={F:L—=>C | F=(f,¥1)u for some f e H}

constitutes a reproducing kernel Hilbert space, with scalar product,
given by (F,G)¢ := [, F(I)G(1)dl, and reproducing kernel K(I,!') =
(Y, Y1)

In case of the examples, given above, F' corresponds to the CW'T,
resp. CWE'T, of f. Hence, the foregoing explanation confirms the
well-known fact that the ranges of these transforms are reproducing
kernel Hilbert spaces.

B.2. Canonical coherent states.

In example b), choose

(M)

_zZ
e 2.

g:=r

=

The functions (gwt)(%t)eRz are called canonical coherent states.'®

Properties.

i) g is an eigenfunction of

2

d
H = —w—l—lﬂ, (B3)

with eigenvalue 1. Here, H can be interpreteted as the Hamil-
tonian of a harmonic oscillator.

15 R.J. Glauber, in: C. DeWitt, A. Blandin, C. Cohen-Tannoudji (Eds.), Quan-
tum Optics and Electronics, Gordon and Breach, New York, 1964.
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Consider s as time-variable. Then, the standard solution of the
time dependent Schrédinger equation

d
by = Htbs, o = 1, B4
i5¢ s, Yo =1 (B.4)
for given v, is
_ —iHs,, _ N\~ (ZiHS)"
b=y = 3 T,

where convergence of the series holds in L%(R). For the special
choice ¥ = g.¢, where
(w,t) € R? is fixed, one gets:

¢s = Gut,s = emsngts7
where w; := wcos2s — tsin2s, t; := wsin2s + tcos2s, a; =
T (wt—wst,). Le.: Under time-evolution, a coherent state remains
a coherent state, up to a phase factor.

The reproducing kernel Hilbert space C for ¢, = g.+, is a space
of entire functions, the so called Bargmann Hilbert space Cpayg,

defined by
CBarg = {F 1 R2 = C | F(w,t) = e #7510 4 it),

o entire}.
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