STOCHASTIC PROCESSES IN BANACH SPACES.
QUASIMARTINGALES AND STOCHASTIC
INTEGRALS (*)

by JaMmEs K. BrRoOKs (in Gainesville)(**)

1. Introduction.

In this paper we shall examine stochastic processes taking their
values in a Banach space. The structure of quasimartingales is stud-
ied from the point of view of regularity and the existence of a Doob-
Meyer decomposition (section 4). The framework for the stochastic
analysis is given in section 2; properties of quasimartingales and their
associated Doléans function appear in section 3.

In order to develop the stochastic integral and its properties, a
bilinear vector integration theory is sketched in section 5, along with
a Lebesque space in which convergence theorems are given and a
Dunford-Pettis criterion for weak compactness. This foundation is
then used in section 6 to define [ HdX, the stochastic integral of a
predictable process H taking values in a Banach space I relative to
a summable cadlag process X with values in L(F,), the space of
bounded operators from F into the Banach space G.

References are supplied for the reader interested in the interesting
interplay between functional analysis and stochastic processes.

2. Definitions for the stochastic structure.

Throughout this paper we shall assume the following stochastic
setting.

(*) Presentato al “Workshop di Teoria della Misura e Analisi Reale”, Grado
(Italia), 19 settembre-2 ottobre 1993.

(**) Indirizzo dell’Autore: Department of Mathematics, University of Florida,
Gainesville, Florida 32611-8000 (U.S.A.).



8 JAMES K. BROOKS

(2, F, P)is a probability space. The family (F;)eg, is a filtration
satisfying the “usual conditions” ([D — M]). These conditions are
the following. For each t € R} = [0, 00), F; denotes a sub o-algebra
of subsets of F; for t; < ¢y, we have 7y, C Fy,. All the P-null sets
belong to Fy. Finally, we assume that the filtration (F);eg, is right
continuous, that is F; = EQO Fite := Fy,. Without loss of generality,

we may assume that 7 = Vi»o F.

The probabilistic view of a filtration is that F; contains all the
events up to (and including) time ¢.

E is a Banach space with dual space E’. Let | - | denote the norm
of any given Banach space.

X = (Xy)ter, will always denote an FE-valued adapted process,
with X; € L}E(P), for each t > 0. The term adapted means that X; is
Fi-measurable. Thus the process X does “not look into the future.”
Each X; : Q — F is a random vector which describes certain events
which occur up to time ¢.

We shall always consider X to be extended to ¢ = co by defining
X = 0. If X has a limit at oo, denote this limit by X,_.

There are two main o-algebras in stochastic analysis which con-
sist of subsets of R4 x Q. The first one is (O, the optional o-
algebra, which is generated by all real valued processes (Y;):>o that
are adapted and right continuous. The second o-algebra P is the
predictable o-algebra, which is generated by all the real valued adap-
ted processes (Z;) that are left continuous on (0,00). Note that
P C O. The term predictable is a good one since the property
7y = Zy—, for t > 0, hints of a certain ability to see slightly into the
future. We shall give some alternate definitions of these two funda-
mental o-algebras which will shed some light on their structure.

The notion of a stopping time, which is due to Doob, is the cor-
nerstone of the general theory of stochastic processes. Intuitively, it
is a random time which does not look into the future.

A random variable T": © — [0, 00] is a stopping time (relative to
the filtration at hand) if the event {1' < ¢t} € F;, for each t € Ry.

The calculus of stopping times is a necessary tool for any stochas-
tic analysis. In this paper, we shall just use the known properties
without citing the appropriate theorems. Given a stopping time 7T,
the o-algebra Fr C F is the collection of all events A such that
ANAT <t} € F;. This justifies the statement that the random time
T does not look in the future. Obviously, if T" is a constant, then
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Fr coincides with the obvious corresponding member of the filtra-
tion. Roughly speaking, one can extend to stopping times 7 and
o-algebras Fr all that is known for constant times ¢ and o-algebras
.7:1‘.
If T is a stopping time, let X7 : Q2 — F denote the random vector
defined by
Xr(w) = X7 (w), for w e

The process X T (the process stopped at 7') is defined to be the
process (X¢aT)ier+-

Suppose that U and V are two nonnegative extended real valued
functions defined on Q such that U < V. We denote by [U, V] the
subset of Ry x € defined by [U,V] = {(t,w) € R4 x Q,U(w) <t <
V()

Likewise we define the stochastic intervals [U, V), (U, V) and (U, V].
In particular, the graph of U is [U] := [U, U].

Observe that when U and V' are stopping times, then [U, V] € O.
In fact, O is generated by the class of stochastic intervals [S, co],
where S is a stopping time. P is generated by the stochastic intervals
of the form (S, T], where S and T are stopping times, and [O4], A €
Fo, where O4(w) is 0 or depending on whether or not w € A. Note
that [O4] = {0} x A.

We say that a stopping time T is predictable if there exists a
strictly increasing sequence (7),) of stopping times which converges
toT and T,, < T on {T > 0}. We say that the T, predict 7.
Let us mention that T is a predictable stopping time if and only if
[T,00) € P.

Now we shall examine the building blocks of P. For every «,
where 0 < a < oo, we denote by A(0,a] the ring generated by
rectangles of the form (s,#] x A, where 0 < s <t < aand A € F,.
Note that if £ < oo, then (s,#] x A is a predictable rectangle. We set
A0,0) = U A0, 5],

A nice result is that the ring A(0, 00) generates P N ((0, 00) x £2).
Note that A(0,c0) consists of all finite disjoint unions of bounded
predictable rectangles (s, t] x F', with ¢ < oo (we always assume that
I € Fs, when we write (s,#] x F.

This result indicates the character of the events belonging to
PN ((0,00) x Q). In this section of the paper we avoid subsets of
the form {0} x Q, because these sets play no role in the analysis




10 JAMES K. BROOKS

concerning regularity — which we shall first address. Of course, if we
add the predictable rectangles [O 4], then we can generate all of P.
We shall do this when we turn to stochastic integration.

3. The Doléans function. Quasimartingales.

We define the Doléans function ux of the process X on A(0, c0)
as follows:
For each predictable rectangle (s,t] x F, set

px (5,8 F) = E(Lp(X; - X,)).

In particular, px ((s,00] X F) = —E(1pX,).

Note that py is finitely additive on the semi-ring of predictable
rectangles, and thus it can be extended to an F-valued, finitely ad-
ditive measure on the algebra .A(0,00]. This function is invaluable
in the study of quasimartingales, as we shall see.

We define the following regularity condition.

Condition (R). lim, F(1FpX:) = F(1pX,), for each F € F.

Note that the above condition is obviously equivalent to the con-
dition
limypspex ((s,t] x ) = 0.

Now we shall list some properties of px.

1. X is a martingale if and only if ux = 0 on .A(0, c0).

2. X is a submartingale if and only if ux > 0 on A(0,00). X is a
negative submartingale if and only if px > 0 on A(0, oc].

3. If Y is another process, then px = py on A(0,00) if and only
if X —Y is a martingale. We have px = puy on A(0, oo] if and
only if X is a modification of Y, i.e. Xy = Y; a.s. for each ¢.

4. If Y is a negative submartingale and if | ux(A) |< py(A4) for
each A € A(0,00], then | Xy |< —Y; a.s. for each ¢.

5. For any stochastic interval (S,7] with S and T simple stopping
times, we have px(5,7] = F(X1 — X3).
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For any «, with 0 < a < oo, we define the mean variation of X
on (0, a] to be the number

Vary (0, ] = sup % [| E((Xey, = Xo) | 7o) (1< 00,

where the supremum is taken over all finite partitions 0 <¢,< ... <
t, = a. The mean variation Varx(0,a) of X on (0,a) is defined
similarly by taking ¢, < a.

It is important to be able to compute Varx (0, «) by taking the
supremum over different sets, for example, random partitions. We
shall present various representations of Varx (0, a], along with the
relationship between Varx (0, o] and | px |, the variation of px. But
first, some definitions.

We say X is a quasimartingale on (0, @], or on (0, ) if Varx (0, o]
< oo or Varx(0,a) < oo respectively. We shall be interested in
three types of quasimartingales, namely those on (0, o], on (0, c0),
and those on every bounded interval (0, «]. We will list some impor-
tant facts concerning quasimartingales along with some convergence
properties. In particular, X is a quasimartingale on (0, @] or (0, @),
with @ < oo if and only if px has bounded variation on A(0, @] or
A(0, ) respectively. In fact, | ux | ((0,a] xQ) is equal to Varx (0, «].

We say X is of class (D) if the family {X7 : T simple stopping
time } is uniformly integrable. Say that X is of class (L D) if for each
fixed o < o0, the above family, with T < «, is uniformly integrable.

Note that the definition of X being a quasimartingale reminds
us of the definition of a function being of bounded variation. Let’s
push this analogy further: think of martingales as constant functions
and submartingales as increasing functions. Then it seems reason-
able to expect that we can decompose a real valued quasimartingale
as a difference of two supermartingales — and this is exactly Rao’s
beautiful theorem [R]. A measure theoretic way of looking at it is to
regard ,u} and py as being Doléans functions of supermartingales.

To appreciate the importance of quasimartingales, by the impor-
tant Bichteler-Dellacherie theorem, the most general process X such
that the stochastic integral [ HdX can be defined, is (under a change
of measure!) a quasimartingale. As we shall see, even characterizing
summable F-valued processes X for stochastic integration in Banach
spaces uses the notion of a quasimartingale.

Let’s look at more properties involving these fundamental con-
cepts.
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Assume that X is a quasimartingale on (0, a] for each a < oo,
and let 7 be a total subset of E’. The following conditions are
equivalent for any s < oc.

() Timegs | | (58] @) = 0;
(b) limypeux ((s,t] x F) =0, for every I’ € Fg;

(c) For any a < 0o, we have
Varx (0,a] = sup X || E(1r (Xe, = Xs.) | ) 1,

where the supremum is taken over all finite families ((s;, ¢;] X F3)
of disjoint predictable rectangles contained in (0, a] x Q.

For any o < oo, we have
| ux [ ((0,a] x ) = Varx (0, af
and
| x| ((0,@) x Q) = Varx (0, a).
For any a < oo, we have
Vary(0,a] = sup X | E(Xs,, — Xs,) |
= sup %; || E(Xs,,, — X5, | Fs;) |1,

the supremum being taken over all finite increasing sequences
51 <€... <S5, of simple stopping times S5;, with S,, < a.

X is a quasimartingale on (0, ) or on (0,«] if and only if ux
has bounded variation on A(0, &) or A(0, a] respectively.

Any martingale is a quasimartingale on (0,00); it is a quasi-
martingale on (0, 00) if and only if sup; || X; ||1< oo, and this
last expression is Varx (0, a].

Any negative submartingale and any positive supermartingale is
a quasimartingale on (0, co].

A process X with integrable variation, that is E(| X |w) < oo,
is a quasimartingale on (0, o).

X is a quasimartingale on (0,00] if and only if X is a quasi-
martingale on (0, 00) and supy || X; [|1< oo.
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X is aquasimartingale on (0, @] if and only if the stopped process
X is a quasimartingale on (0, co].

If X is a quasimartingale on (0, a], then | X | is a quasimartingale
on (0, a].

X is a quasimartingale on (0,00] if and only if the following
condition is satisfied:

for every ¢ < oo, there is a positive function f; € L'(P) such
that for every F € F; we have

| px [ ((t,00] x ) < E(17ft).

The next result is due to Orey [O].

Assume that X is a quasimartingale on each bounded interval.
X is right continuous in the mean if and only if it is right con-
tinuous in probability. If X has a right continuous modification,
then it is right continuous in the mean.

Here is another theorem proved by Orey [O].

Assume that X is a right continuous quasimartingale on (0, co].
Then

(a) X is integrable for every stopping time T

(b) 1If (T},) is a decreasing sequence of stopping times converg-
ing to T, then X7, — X7 in the mean.

This concludes our list of fundamental properties concerning
quasimartingales. Now we turn to regularity properties.

4. Regularity of quasimartingales.

The Doob-Meyer decomposition.

As we have seen, quasimartingales are fundamental entities in

stochastic theory. Of the upmost concern is when a quasimartingale
X has a cadlag modification Y, that is, for each ¢, X; = Y; a.s.,
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and Y is cadlag — right continuous, with left limits existing. Why is
being cadlag so important? Look at it in the following light. Given
a stopping time T, most calculations involve X7, but unless X is
cadlag, X7 is not measurable. Without being able to work with the
random vector X7, little progress can be made.

Another important aspect in working with a quasimartingale X,
is when does X have a nice form which will permit us easy access
to the information X contains? If we can express X in the following
manner:

/Y:M‘I‘A’

where M is a local martingale and A is a predictable cadlag process
with paths of finite variation, then certainly everyone would agree
that X indeed has a very nice form. If X has such a representation,
we say X has a Doob-Meyer decomposition (which is unique up to
an evanescent set if M is cadlag).

The main result in [B-D.1] is that the regularity of X and the ex-
istence of a Doob-Meyer decomposition for X are equivalent. More-
over, weak regularity is equivalent to strong regularity, and both are
equivalent to the regularity condition (R), which we stated in sec-
tion 3. This condition is new even for the scalar case. In [D-M, vol.
B], only a sufficient condition is given for the existence of a cadlag
modification of a supermartingale.

The main theorem in [B-D.1] gives fourteen equivalent statements
concerning the regularity and the existence of a Doob-Meyer decom-
position for a quasimartingale X. The proof is long and sheds new
light on the structure of quasimartingales. Before stating this the-
orem, we shall give a quick presentation of the main results and
corollaries of the theorem. Remember X : R X Q — F is a quasi-
martingale.

(A) Assume that £ has the Radon-Nikodym property (RN P).
Then X is cadlag if and only if X is weakly cadlag, that is < =/, X >
is cadlag for each z’ € E’. Furthermore, X is cadlag if and only if
X has a Doob-Meyer decomposition of the form X = M + A, where
M is a cadlag local martingale and A is a predictable process with
finite variation and Ay = 0. This decomposition is unique up to an
evanescent set.

(B) Assume E has the RN P and X is a quasimartingale. Then
X has a cadlag modification if and only if X satisfies the regularity
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condition (R), or even the following weak regularity condition (W R):
(WR) limy, < E(1pXy),z >=< E(1pX,),z >,

for each s < oo, I’ € Fy, and z in a norming subset Z C F'.

(C) Without any assumption on the Banach space E, we have
the following results concerning the existence of a cadlag modification
of X in terms of its right limit X, along the rationals:

(Cy) If X is a local martingales, then X exists a.s., Xy is a
local martingale and a cadlag modification of X.

(We use the fact that a cadlag modification for F-valued martin-
gales exists; this was established in [B-D.2].

(Cg) If X is a quasimartingale with separable range and if X
exists a.s., then X, is a right continuous modification of X if and
only if the regularity condition (R) holds. If X is real valued, then
X4+ and X_ exist a.s.

(C3) If X has integrable variation, then X, (which exists ev-
erywhere) is a cadlag modification of X if and only if condition (R)
holds.

(D) Assume again that I has the RNP. Then X is a quasi-
martingale of class (D) and satisfies condition (R) if and only if X
has a Doob-Meyer decomposition X = M + A with M a (not neces-
sarily right continuous) martingale of class (D) and A a predictable,
cadlag process with integrable variation and Ay = 0.

Conditions (D) and (R) together are also equivalent to the as-
sociated measure px being o-additive and with bounded variation.

THE REGULARITY THEOREM. Assume that F has the RN P
and that X is a quasimartingale on each bounded interval and has
a separable range. Let Z C E' be any set which is norming for the
range of X.

The following assertions are equivalent:

(1) X has a cadlag modification.
(2) X has a right continuous modification.

(3) X is right continuous in the mean, that is, for the strong topology
of LL.
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4) X is right continuous for the weak topology of L.

(4)

(5) X is right continuous in probability.

(6) X satisfies condition (R).

(7) X = M + A, where M is a (not necessarily right continuous)
local martingale and A is a predictable, cadlag process with finite
variation and Ag = 0.

(1) < X, z > has a cadlag modification for each z € Z.
(2') < X, z > has a right continuous modification for each z € Z.

(3") < X,z > is right continuous in the mean, that is, in the strong
topology of L', for each z € Z.

(4') < X, z > is right continuous in the weak topology of L!, for each
z€Z.

(5') < X, z > is right continuous in probability for each z € Z.
(6") X satisfies condition (W R).

(7)< X,z >= M(z) + A(z), for each z € Z, where M(z) is a
(not necessarily right continuous) local martingale and A(z) is a
predictable, cadlag process of finite variation with Ag(z) = 0.

The decomposition in (7) or (7') is unique up to an evanescent
set.

REMARKS. The above theorem and its corollaries are taken
from [B-D.1]. The reader is referred to this paper for the proof of the
theorem, along with a number of corollaries and theorems involving
quasimartingales, and the proofs of some of the results in section 3,
properties 1-18, some of which are established in proving the above
theorem. Other pertinent references include [D-M], [F], [Fg], [K],
[M.1], [M-P] (the last two references deal with Banach-valued mar-
tingales), [O], [R], [P], [Y]. See [B-M] for decompositions of weak
quasimartingales.
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5. Integration in Banach spaces.

In order to represent the stochastic integral as a genuine inte-
gral, we must develop an integration theory for infinite dimensional
measures — even if we restrict ourselves to the scalar setting (here
the “stochastic measure” is LF-valued. To develop the stochastic
integral in Banach spaces, we establish a bilinear integration theory.
This has been given in [B-D.3], [B-D.4], and [B-D.5]. In this section
we shall present only the barest of sketches of this theory due to
space limitations, and refer the reader to the above references for all
undefined terms used in the sequel.

Throughout, F, F,G will be Banach spaces. The unit ball of a
Banach space G is denoted by ;. The space of bounded linear oper-
ators from I into (G is denoted by L(F,G). We write E2 C L(F,G) to
mean that F'is continuously embedded in L(F,G). Examples of such
embeddings are F = L(R,E); E C L(E',R)= E"; F C L(F, E&,F),
if F' is a Hilbert space over the reals, ¥ = L(E,R);if F and F are
Hilbert spaces, F C L(F, E®pus F), where HS denotes the Hilbert-
Schmidt norm. We write ¢g ¢ G to mean that GG does not contain a
subspace which is isomorphic to ¢g. A subspace Z C E’ is norming
for Eif | z |= sup{|< z,2 >|: 2 € Z1}, for z € F.

We shall define an integral [ fdm, where m is E C L(F,G)-
valued, and f is F-valued. Then in the next section, this integral
will be used to define the stochastic integral [ HdX where H is F-
valued, and predictable, and X is L(F,G) valued.

R will denote a ring of subsets of a set .S, and ¥ is the o-algebra
generated by R. We shall assume that S is a countable union of sets
from R.

Let m : R — E C L(F,G) be a finitely additive measure. We
say that m is strongly additive if for any sequence of disjoint sets A,
from R, we have m(A,) — 0.

We shall need the following extension theorem which is stated in
terms of norming subspaces of F, which will be used to establish a
summability theorem for stochastic processes [B-D.4].

1. THEOREM. Let m : R — FE be a finitely additive measure.
Suppose that 7 C E' is norming for E. Then conditions (a), (b) and
(c) are equivalent.
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(a) mis strongly additive on R and for each z € Z, zm is g-additive

on R.
(b) m is strongly additive and o-additive on R.
(c) mcan be extended uniquely to a o-additive measure m : ¥ — FE.

(d) Assume ¢y ¢ E. If m is bounded on R and if zm is o-additive
on R for each z € Z, then m can be extended uniquely to a
o-additive F-valued measure on ..

(e) Assume c¢g ¢ F. Let (,F, ) be a measure space, 1 < p < 0o
and let m : R — LY (u) be finitely additive and bounded. For
each z € Z define the measure zm : R — L¥(u) by (z2m)(A) =<
m(A),z > for A € R. If zm is o-additive on R for each z € Z,
then m can be uniquely extended to a o-additive measure m :
5= Li(p).

The semivariation of m: R — E C L(F,G).

For each set A € R, define the semivariation mpg(A) of m on A
relative to the pair (F,G) by

mrG(A) = sup | Xierm(Ai)z; |,

where the supremum is taken over all finite families (A;);er of disjoint
sets from R with union A, and all finite families (z;);cs of elements
from Fy. We then obtain a set function mrqg : R — [0,400]. We
remark that

mrq(A) =sup | /sdm l,

where the supremum is taken over all F-valued, simple R-measure
functions s, such that | s |< 14; the integral [ sdm is defined in the
usual manner.

We say m has finite (respectively bounded) semivariation rel-
ative to (F,G) if mpg(A) < oo for every A € R (respectively
sup {mrg(A) : A € R} < co. If £ = L(R,F), we sometimes
write 7. In this case, m has bounded semivariation on R if and only
if m is bounded on R.
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2. PROPOSITION. Assume Z is a closed subspace of G’ which is
norming for G. If | m, | is bounded on R for each z € Z, then mr g
is bounded on R.

3. ProposITION. Let m : R — L(F,G) be finitely additive with
bounded semivariation relative to (F,G). If ¢o ¢ G, then {| m. |[:
z € Zy} is uniformly strongly additive on R. If m is o-additive on
R, then this set is uniformly o-additive on R.

The last two important propositions are due to Dobrakov [Do.1],
[Do.2], in a more restrictive setting. Since the set in Proposition 3
occurs often, let us set

mpg =4 m, |1z € Z;}

where m, : R — F’ is defined by < z,m,(A) >=< m(A)z,z >
where z € F,z € Z. Of course, | m, | is the total variation set
function of m,.

From now on in this section we shall assume that m : ¥ — F C
L(F, @) is finitely additive and has bounded semivariation mp g and
Z C @' is norming for GG. Also we shall assume that mp g consists
of o-additive measures. We shall develop an integration theory with
respect to m functions f: 5 — F.

We say that aset () C S is m-negligible if there exists aset A € X
with @ C A such that m(B) = 0 for every B C A, B € ¥. Thus a
set A € ¥ is m-negligible if and only if mpg(A) = 0. We say that a
function f:S — F is m-negligible (or f =0, m — a.e) if it vanishes
outside an m-negligible set. A subset ¢ C S is said to be mgg-
negligible if for each z € 7, @) is contained in an | m, |-negligible set.
Note that ) need not belong to 3.

A function f : S — I is said to be mpg-measurable if it is
m,-measurable for every z € Z. We say that f : S — F if m-
measurable if it is the m- a.e. limit of a sequence of F-valued, X-
measurable simple functions. If f is m-measurable, then it is mgg-
measurable. The converse is true if mg g is uniformly o-additive as
the next proposition shows (this is the case if ¢o ¢ G of if G is weakly
complete).

4. ProPOSITION. (a) Let A be a control measure of m. Then
mp,q is uniformly o-additive if and only if mrpg << A.

(b) Suppose mp is uniformly o-additive. Then a function
f S5 = Fis m-measurable if and only if f is mpg-measurable.
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Next we extend the definition of mp g to functions. For each
f:S — F (or R) which is mpg-measurable, we define

ira(f) = sup{| [ sdm |

where the supremum is extended over all F-valued, -measurable
simple functions s such that | s |<| f|on S.
One can show that

ﬁzp7g(f):sup{/|f|d|mz zeZ).

For simplicity, write N = mpg. We shall now list some proper-
ties.

(i) N is sub additive and positively homogeneous on the space of
mp,g-measurable functions.

(i) N(fH)=N(SD

(i) N(f) <N if | fI<] g |-

(iv) N(f) =sup {N(1af) : A € B} = sup {N (f1(151<n)) }-
(

v) N(supf,) =supN(f,) for every increasing sequence (f,) of pos-
itive mp g-measurable functions.

(vi) N(Xf,) < XN(f,) for every sequence of positive mp g-measurable
functions.

(vii) N(lim inf f,) < lim inf N(f,) for every sequence of positive
mp,g-measurable functions.

(vili)If N(f) < oo, then f is finite mpg-a.e.

(ix) If f:S — F is mpg-measurable and ¢ > 0, then
1
NS 1> € < AN ().

If mpa({| fu — f|> ¢}) = 0 as n — oo for each ¢ > 0, we say
that f, — f in mgg-measure.
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(x) If N(f, — f) — 0, then f, — f in mpg-measure then there
exists a subsequence (f,,) converging mp g-a.e. to f.

We mention that the Egorov theorem is not valid in general, but
it can be proved in the case mp g is uniformly o-additive.

We denote by Fr(mpg) the space of all mp g-measureable func-
tions f : S — F such that mpq(f) < co. The mapping f — mra(f)
is a seminorm on this vector space, which is complete relative to
this seminorm (use property (vi)). We call Fr(mpqg) the space of
F-valued mp g-integrable functions, however the reader can choose
any closed subspace of Fr(mpq) as the space of integrable func-
tions, according to the refinements of the specific problem at hand.
This will be illustrated in stochastic integration theory.

Note that Fp(mpg) C Lk (] m. |) continuously for each z € Z.
We can extend Proposition 2 and show that if 7 is closed in G’, then
mrc(f) < coif and only if [ | f|d| m, |< co for each z € Z. In
this case we have

Fr(mra) = () Li(lm. |).
z€Z

The set Br of all bounded [-valued m g g-measurable functions
is contained in the set Fr(mp,g). In particular, the sets Sp(R) and
Sr(X) of the I'-valued, R-measurable, respectively
Y-measurable simple functions are contained in Fr(mpq), however,
unlike the classical case, these sets are not necessarily dense in B
for the seminorm mpgg, unless mp is uniformly o-additive. Set
B = Bg.

For any subspace C C Fr(mpqg), we denote by Fr(C,mrq)
the closure of C in Fr(mpq), which is also complete. We have
Fr(Sr,mr.E) = Fr(Br,mr g).

Let us record some properties of Fr(mpq).

5. THEOREM. (a) If f € Fr(B,mrq), then mpc(fla) — 0 as
mra(A) — 0. The converse is also true if mpq is uniformly o-
additive.

(b) If f € Fr(mrg) and if mpa(fla,) — 0 for any sequence
of mp g-measureable sets A, | ¢, then f € Fp(B,mrq).

() If f S — F is mpg-measureable and if | f |< g €
fR(B, mF7g), then f € fF(B, mF7g).
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(d) f e Fr(B,mgq) if and only if f is mpg-measureable and
| fle Fr(B,mra).

(e) Suppose (f,,) is a sequence of functions from Fr(mpq) which
converges uniformly on S to f. Then f € Frp(mpq) and f, — f in
Fr(mra)-

(f) If m has finite variation on X, then mpq is uniformly o-
additive and Fr(B, mrg) = Fr(mra).

6. THEOREM (Vitali). Let (f,) be a sequence from Fr(mpq)
and let f : S — F be mpg-measurable. If condition (1) below and
either of conditions (2a) or (2b) are satisfied, then f € Fr(mpq)
and f, = f in Fp(mpq).

(1) mra(fula) = 0 as mrg(14) — 0, uniformly in m.
(2a)f, — f in mp g-measure.
(2b)f,, — f pointwise and mp ¢ is uniformly o-additive.

Converseley, if f, — fin Fr(B,mrg), then (1) and (2a) hold.

7. THEOREM (Lebesgue). Let (f,,) be a sequence from Fr(B, mrg)
and let f : S — F be an mgg-measurable function and suppose

g € fR(B,mFg). If

(1) | fu |I< g, mpg-a.e. for each n, and any one of the conditions
(2a) or (2b) holds:

(2a)f, — f in mpg-measure.

(2b)f, — f pointwise and mp g is uniformly o-additive, then f €
fF(B, mF7g) and fn — f n fp(mﬂg).

The integral

If f € Frg(m) := Fr(mpg), then f € Li(] m. |), hence the
real number [ fdm, is defined. The mapping z — [ fdm, is linear
and continuous from Z’ — R. Suppose Z = G'. Then [ fdm € G",
where [ fdm denotes the above map.
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Thus
< z,/fdm >= /fdmz, for z € G

Also, | [ fdm |< mpg(f), that is, the integral is continuous on
Fra(m). Thusif (f,) and f satisfy the Vitali or Lebesque theorems,
then [ f,dm — [ fdm in G".

We are particularly interested in the case when [ fdm € G. One
can prove that if ¢, ¢ G, then [ fdm € G, for all f € Fpg(m). In
general, if C is a subset of Fr(m) such that [ fdm € G whenever
f € C, then [ fdm € G, whenever f € Frg(C,m). Note that this
is true when C = Sg(X). It is reasonable to call certain subsets of
Fr(m) integrable functions when they satisfy additional conditions
imposed by the specific problem to which the integration theory is
applied. In the case of stochastic integration, we impose the condi-
tion that the stochastic integral be cadlag.

Weak Completeness and weak compactness in Fr (B, m).

One of the main goals in [B-D.3] was to obtain sufficient condi-
tions for weak completeness and weak compactness (Dunford-Pettis
type of theorems) in Fr (B, m). To establish these results, a char-
acterization of elements in (Fg (B, m))’ was given, using techniques
of Kéthe spaces. This theory can be applied to stochastic integra-
tion theory to yield new convergence theorems — even in the scalar
setting.

A crucial property in establish weak compactness theorems is the
Beppo Levi property.

Let m : ¥ — F C L(F,G) be a o-additive measure. We say
that mg g has the Beppo Levi property if every sequence (f,) of
positive ¥-measurable simple functions with sup,mrq(f,) < oo is
a Cauchy sequence in Fg(B, mpg). Note that in this case sup, f, €
.7:]1@ (B, mF7G) .

8. THEOREM. Let m : ¥ — F C L(F,G) be o-additive. Suppose
that m has finite semivariation and mp g is uniformly countably ad-
ditive (for example, if co ¢ G). If [ fdm € G for every X-measurable
function f € Frg(m) then mp g has the Beppo Levi property.
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In the sequel, m : ¥ C L(F, ) is o-additive and has finite semi-
variation mpgq.

9. THEOREM. Assume that F is reflexive and ¢, ¢ G. Then
Fra(B,m) is weakly sequentially complete.

10. I'THEOREM. Assume mpq is uniformly o-additive (e.g. if
¢, ¢ G), and suppose I is reflexive, let K be a subset of Frq(B, m)
such that

(1) K is bounded.

(2) lim,mpg(fla,) = 0 uniformly for f € K, whenever A, € ¥
and A, | ¢.

Then K is conditionally weakly compact in Fr (B, m). If more-
over ¢, ¢ GG, then K is relatively compact.

11. THEOREM. Let K C Fr g(B,m) be a set satisfying the fol-
lowing conditions:

(1) K is bounded.
(2) [4, fdm — 0 uniformly for f € K

whenever A, € F and A, | ¢.
Then K is conditionally weakly compact. If, moreover, F does
not contain a copy of ¢,, then K is relatively weakly compact.

12. THEOREM. Assume ¢, ¢ FE. Let (f,) be a sequence of ele-
ments from Fr g(B,m). If [, fndm — [, fodm for every A € X,
then f, — fo weakly in Fr (B, m).

6. Stochastic Integration in Banach spaces.

Now we are in a position to develop a stochastic integration the-
ory in Banach spaces. We shall define stochastic integrals [ HdX,
where H is F-valued and predictable, and X is a cadlag, L(F,G)-
valued process.
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Throughout the remainder of this paper, we shall assume the
stochastic structure presented in section 2. For 1 < p < o0, we fix a
cadlag process X : Ry x Q — F C L(F,G) such that X; € LE(P) =
Lg, for each t.

Summable Processes

The key concept in the theory of stochastic integration in Ba-
nach spaces is that of a summable process. First we define the
stochastic measure Ix as follows:

Ix:R— LY

is defined first for predictable rectangles by Ix[O4] = 41Xy, and
Ix(s,t]x A= 14(X;—X;), and then extend it in an additive fashion
to R. Since F C L(F,G), we can consider LE c L(F,LL), and thus
the semivariation of Ix can be computed relative to the pair (F, LE).
We denote the semivariation of Ix relative to (F, Lg) by I~F7g—rather
than by IF,L{;; here I := Ix.

Thus we have

Ipa(A) =sup || Ix(A)z; I, AER

where the supremum is extended over all families of vectors z; € F}
and disjoint sets A; from R contained in A. If Ix can be extended
to P, we define I~F7G on P in an analogous fashion. Iy is said to have
bounded semivariation relative to (F, L) if Ir g is bounded on R.

We say X is p-summable relative to (F,G) if Ix has a o-additive
Lg—valued extension, still denoted by I'x to the predictable o-algebra
P such that Ix has bounded semivariation on P relative to (F, LE).
If p =1, we say, simply, that X is summable relative to (F,G). If
X is p-summable relative to (R, ), regarding F as L(R, F), we say
that X is p-summable.

REMARKS. Observe that X is p-summable if and only if I'x has
a o-additive extension to P, since in this case Ix is bounded in L§
on P, which implies bounded semivariation relative to (R,Lg). If
1 <p' < p<oo,andif X is p-summable relative to (F, &), then it is
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p’-summable relative to (F,G). In particular, p-summable relative to
(F,G) implies summable relative to (F, G), hence most results proved
for summable processes remain valid for p-summable processes. If
X is p-summable relative to (F,G), then X is summable relative to
(R, ).

We mention that if X is a process with integrable variation, then
X is p-summable relative to any pair (F,G) such that £ C L(F,G).
If ¥ and G are Hilbert spaces, then any square integrable martingale
X with values in &£ C L(F,() is 2-summable relative to (F,G).

Note that X is p-summable relative to (F,G) if and only if Iy
has a o-additive extension to P and Ix has bounded semivariation
on R (rather than on P) with respect to (¥, LE). Hence the problem
of summability reduces to a great extent to that of obtaining a o-
additive extension of Iy from R to P. Once the summability of
X is assured, we can apply the theory of section 5 to the measure
m = Ix, and define an integral with respect to Ix. This will lead to
the stochastic integral.

Summability criteria.

Now we turn to the fundamental question concerning the stochas-
tic measure. When is Iy summable? We arrive at the unexpected
result that if F¥ 2 cg, then the mere boundedness of Ix on R implies
that X is p-summable relative to (R, F)! This is one of the main re-
sults in [B-D.4]. Otherwise stated, boundedness of Ix on R implies
not only that the finitely additive I'x is o-additive on R, but that I'x
has a o-additive extension to P. The key tools involved in the proof
of this theorem involve properties of the pertinent quasimartingales
induced by X. Let’s state the theorem.

1. THEOREM. (Summability extension theorem). If E' ¢, then
the following assertions (1) - (5) are equivalent. If E is any general
Banach space, then assertions (2) - (5) are equivalent and (1) implies

(2)-

(1) Ix can be extended to a o-additive measure on P.

(2) Ix is bounded on R, the ring generated by predictable rectangles
in R+ x €2.
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Let Z C L%, be any closed norming subspace for Lg. Forg € Z,
let G denote the process defined by Gy = D(g|F).

(3) For each g € Z, X is a quasimartingale on (0, c0).
(4) For each g € Z, < Ix,g >: R — R is bounded.

(5) For each g € Z, < Ix,g > is o-additive and bounded on R.

The Stochastic integral.

Now we shall define the stochastic integral. We will study the
class of predictable process H (i.e. processes measureable with re-
spect to P such that [ HdX = [ HdIx exists.

X will be a p-summable process X : Ry x Q — F C L(F,G),
throughout this section, relative to the pair (/,G). Hence Ix is a o-
additive measure on P with values in L§ C L(F, Lg). We shall apply
the integration theory in section 5, with ¥ = P or ¥ = P[0, 00], m =
Ix, F, replaced by LY, G replaced by LE and Z C (LE)’, a norming
subspace for Lg, where L + 1 = 1. For z € G, we have the measure
m, = (Ix), : P[0,00] — I’ defined for A € P[0,00] and y € F as
follows:

< yyma(A) S=< m(A)y, z >= / < Ix (A)(w)y, 2(w) > dP(w).

Thus we have

(Ux)pre = mpre =sup {|m. [: z € Z,[| 2 [|,< 1}

Note that {co} x Qis | m, |-null, for each z. We shall write I =
IX7IF,G = IF7L§7]F,G = {| m, |Z zZ € Zl}.

We denote by Fr(Irq) the space of all predictable processes
H :R; x Q — F such that

I~F7g(H):sup{/|H|d|mz|:zEZ1}<oo.

For any extension of H to Ry x Q, the value of Ir g (H) is the same.
We know Fr(IFq) is complete for this seminorm. Again for any set
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C C Fr(Irg), we denote by Fr(C, IFq) the closure of C in Fr(Irq).
We can define the integral [ Hdlx € Z' for H € Fr(IFq) and the
mapping H — [ HdIx is a continuous linear mapping from Fr(Irq)
into Z'. The integral [ HdIx depends on the norming space 7, but
the integral corresponding to 7 is the restriction to Z of the integral
corresponding to (LE)’. To further simplify notation, we write

fF,G(X) = fF,Lg(X) = fF((IX)F,Lg)-

If H € Fra(X), then for every ¢t > 0, we have loyH € Fra(X).
We denote

Hdly = / loqHdlx,
[0.1]

and define

Hdly = Hdly = / Hdly.

[0,00] [0,00]

Thus for each H € Fpg(X), we obtain a family ([ y Hdlx)ie[o,00)
of elements in Z’. We are interested in the subspace of Frg(X)
which consists of processes H such that for every t € [0,00], the
integral f[o,t] HdlIx belongs to the subspace LE of Z’. If in each

equivalence class [f[ HdIx] we choose a representative, also de-

0,t
noted by f[o,t] Hdly, gwe obtain a process (f[o,t] Hdlx)ep0,00) With
values in (G such that f[o,t] HdIx belongs to LE for each t. Now we
need to be sure we have a cadlag modification for this process. We
shall make the appropriate definition of our main Lebesgue space
presently. Note that we have in place the Vitali and Lebesgue the-
orems at our disposal. A number of technical results are needed to
establish the final stochastic integral. One useful tool is the follow-

ing.

2. THEOREM. Let (H")o<n<oo be a sequence of elements from
Fra(X) such that | H” |<| H° | for each n, and assume that H™ —
H pointwise.

If [H"dIx € Lg for each n > 1 and if the sequence ([ H"dIx),,
converges pointwise on 2, weakly in G, then [Hdlxy € Lg and
[H"dIx — [Hdlx in the o(LE, LL,) topology of LL, as well as
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pointwise, weakly in G. If ([ H™dIx) converges pointwise strongly
in G, then [ H"dIx — [ HdIx strongly in L},.
Note that since X is cadlag, then for simple processes H of the
form
H = 1015400 + Y1<i<nl(s; 1:]x 4; Tis

where the sets in the definition of H are predictable, we have

o Hdlx =14, Xo7, + Xi<icnla, i (Xeae — Xsiar)
and the process ([ 4 Hdly) is cadlag.
Now we define our Lebesgue space of processes.

3. DEFINITION. We denote by L}?7G(X) the space of processes
H € Fr(X) satisfying the following two conditions:

(1) JogHdlx € LE for every t € [0, o0].
(2) The process ([j 1 HdIx)ie[0,00) has a cadlag modification.

The processes H € L} (X)) are said to be integrable with respect
to X. In this case, any cédlag modification of the process in (2) is
called the STOCHASTIC INTEGRAL of H with respect to X and
is denoted by [HdX or H - X:

(H-X); = (/ HaX) = [ Hdlx as
t

Note that (H - X ). = [HdIx.

If X is real valued, regard R as being embedded in L(F,F),
and then the space of F-valued integrable processes is denoted by
L (X).

One can prove that L}?,G(X) is complete relative to the seminorm
Ir and that L q(X) contains all caglad (left continuous, right

limits exist) processes of Frg(X). In particular, L 4(X) contains
the class £ of predictable elementary processes of the form

Holgoy + Xa<i<n Hil(1, 14

where (Ti)0§i§n+1 is an increasing family of stopping times with
To = 0, and H; is bounded, F-valued, and Fr,-measurable for each

1.
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The completeness of L};G(X) follows from the next result.

4. THEOREM. Let (H") be a sequence in L o(X) and assume
that H* — H in Fpg(X). Then H € Lp(X). Moreover, for
every t, we have (H" - X); — (H - X); in LE, and there ezists a
subsequence (n,) such that (H"" - X); converges to (H - X); a.s. as
r — 0o, uniformly on every compact time interval.

5. COROLLARY. L (X) is complete.

6. COROLLARY. If I is uniformly o-additive, then Lk (X))
contains all the F-valued, bounded, predictable processes (in };artic—
ular, this is true when G 2 ¢g or F' =R).

Observe that one can state the Vitali and Lebesgue theorems
for stochastic integrals, in light of the theory in section 5. As an
illustration of the general theory in section 5 applied to stochastic
integration, we state the following theorem.

7. THEOREM. Assume X is p-summable relative to (F,G). As-
sume I’ is reflexive and Irq is uniformly o-additive (for example
if co ¢ G). Let K C LY o(B,X) be a set satisfying the following
conditions: 7

(1) K is bounded in L (B, X).

(2) Hl4, — 0in L}?G(B, X), uniformly for H € K, whenever A,, €
P and A, | ¢.

Then K is conditionally weakly compact in L};G(B,X). If, in
addition, cg ¢ G, then K is relatively weakly compact in L} (B, X).
In this last case, for every sequence (H") from K, there exists a
subsequence (H™) such that ([ H"dX); converges weakly in LE,
as r — oo, for every t.

REMARKS. Now that we have established an integration the-
ory for stochastic processes, there are, as the reader can well imag-
ine, a myriad of results to be established — for example, the re-
lation of the integral to stopping times, stopped processes, lim-
its, summability of the process H - X, the associativity properties
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H. (K- -X) = (HK)- X, jumps A(H - X), local summability,
semi-summable processes, the Hilbert space setting, and the ensu-
ing isometries involving (I~M)F7L%, | Inr(Ry x Q) HL%, where M is a
square integrable martingale, semimartingales, and so on. These top-
ics, and more, are treated in [B-D.4]. Applications to Ito’s formula
are given in [B-D.6]. We mention that in the infinite dimensional
case, a summable process need not be a semimartingale, hence the
Bichteler-Dellacherie theorem breaks down in this setting.

The stochastic integral, first developed by Ito, and its extension,
in the real valued case, is given in [D-M]. The reader is urged to
study the deep and beautiful theory masterfully presented in this
book. The starting point for establishing the stochastic integral for
the reals is the isometry theorem for square integrable martingales.
This method was also used by Kunita [Ku] for Hilbert space valued
processes. Pellaumail [P] had the wonderful idea to consider Ix in
the real case and express the stochastic integral as a genuine integral
with respect to an infinite dimensional measure; due to the lack of a
satisfactory integration theory the project was not completed — even
the establishment of a cadlag modification of H - X could not be ob-
tained. Kussmaul, using this approach, treated the real case in the
elegant book [K]. In [M.2] and [M-P], the Hilbert-valued case is dis-
cussed in detail. Two integrals are defined: the first is an isometric
integral using Hilbert-Schmidt operators; the second uses the notion
of a control process, which exists due to deep stopped inequalities
established by Métivier and Pellaumail for square integrable martin-
gales [M.1, section 19].

Several attempts in the Banach space setting have been made
([P], [Y.1], [Y.2], [M-P], [M.2], [K'], [Pr]) but either the Banach
spaces were too restrictive, or the construction did not yield the con-
vergence theorems necessary for a full development of the stochastic
integral. Without this, Ito’s formula cannot be properly established
(see [G-P]). By using Pellaumail’s approach involving the stochastic
measure, coupled with the appropriate Lebesque space for the bilin-
ear integral, the general stochastic integral is developed in [B-D.4].
The nuclear space case is treated in [U] and [B-D.7].
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