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SOMMARIO. - Sia A un operatore ellittico lineare del secondo ordine con

coefficientt misurabili e imitati su un aperto limitato Q di R, sia
K* = {w* € Hj(Q): A*w* < 1in D'(Q),
e w* >0 ae in Q},

e sia Qp un’arbitraria successione di sottoinsiemi apert: di Q. Dimo-
striamo il sequente risultato di compattezza: esistono una sottosucces-
sione, che wndichiamo ancora con Qp, ed una funzione w* € K* tali
che, per ogni f € L*(Q), le soluzioni up, € HE(Qp) delle equazioni
Aup = f in Qp, estese a zero su Q\Qyp, convergano debolmente in
H}(Q) all’unica soluzione u del problema

(%) {U € Hg(Q) N L®(Q)
(Au, w*p) — (A"w*, up) + (1, up) = (f,w p) Ve C5°(Q).

Studiamo inoltre in maniera sistematica le proprieta delle soluzioni di
tale equazione. Dimostriamo infine il sequente risultato di densita: per
ogni w* € K™ esiste una successione Qy di sottoinsiemi aperti di Q
tali che per ogni f € L*(Q) le soluzioni up € H}(Qy) dell’equazione
Aup = f in Qy, estese a zero Q\Qy, convergano debolmente in H} ()
alla soluzione di ().

SUMMARY. - Let A be a linear elliptic operator of the second order with

bounded measurable coefficients on a bounded open set Q2 of R, let
K* ={w* € H}(Q): A*w* < 1in D'(Q),

and w* > 0 a.e. in Q} ,
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and let Qp, be an arbitrary sequence of open subsets of Q2. We prove the
following compactness result: there exist a subsequence, still denoted
by Qp, and a function w* € K* such that, for every f € L*(Q), the
solutions up, € HE(Q) of the equation Auyp = f in Qp, extended by
zero on Q\Qy, converge weakly in HE(2) to the unique solution u of
the problem

(+) {u € Hi Q)N L®(Q)
<AU, W*90> - <A*w*7 u@) + <1,Ug0> = <f7 w*§0> VQD € C((JDO(Q)
We provide a self-contained study of the properties of the solutions of

(). We prove also the following density result: for any w* € K* there
erists a sequence Qp, of open subsets of Q such that for every f € L (Q)

the solutions u, € H} () of the equation Auy = f in Qy, extended by
zero on Q\Qy, converge weakly in H}(Q) to the solution of (x).

Introduction.

The purpose of this paper is the study of the asymptotic be-
haviour of solutions of linear elliptic equations with Dirichlet bound-
ary conditions in varying domains. This problem has been consid-
ered by many authors under different assumptions on the domains
and on the operators. A wide bibliography on this subject can be
found in [5]. Here we are interested in a compactness result without
any hypothesis on the domains.

Our problem can be described in the following way. Let A be a
linear elliptic operator of the second order with bounded measurable
coefficients on a bounded open set  of R”. Let f € H~1(Q) and let
Qj, be an arbitrary sequence of open subsets of 2. For each h € N
let us consider the solutions uy of the Dirichlet problem

(0.1) up € Hy(Q1),  Aup = f in Q

and study the behaviour of u, when £ tends to infinity. Using the
variational method it is easy to prove that the sequence wu; has a
subsequence that converges weakly in H}(Q) to some function u.
We want to find the equation satisfied by the limit function . Since
L*(Q) is dense in H~1(Q), in our investigation it will be sufficient to
consider f € L*(€2). Let w} be the solution of the Dirichlet problem

(0.2). wy € Hy(Q),  A*w; =1 in Q.
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As we did for uy,, we can prove that w} has a weak limit w* in H} ().
By taking now suitable test-functions in (0.2), and (0.1) and passing
to the limit we find that = is a solution of the following problem:

u € H(Q)
(03) <Au7 W*S‘Q> - <A*w*7 u99> + <17 u@} = <f7 w*3‘9>
Ve ().

The aim of this paper is precisely to provide a self-contained pre-
sentation of the properties of the solutions of equation (0.3) and to
use this equation to give an elementary description of the asymptotic
behaviour of the solutions of (0.1). Let us notice that the solution uy,
of (0.1) satisfies an equation of the form (0.3) with w* replaced by
the solution w} of (0.2),. Under suitable assumptions we shall prove
some existence and uniqueness results for (0.3) and the continuous
dependence of u on w*. Let us denote by K* the set of all functions
w”* such that

(0.4) w* € Hy(Q), A*w* < 1 in D'(Q), and w* > 0 a.e. in Q.

Note that the solutions wj of (0.2). belong to K* (Proposition 1.1)
and so does their limit. For any w* € K* and any f € L*(R)
we shall prove that there is one and only one solution of (0.3) in
HJ(Q)NL>(2). In order to do this we shall prove first the existence
and the uniqueness of the solution for a more regular w* and then
approximate our problem by similar problems with smooth data.
This method will allow us to prove the existence of a solution for
(0.3) even in the case f € H™'(Q) (Theorem 2.7). The estimates
one can prove for this solution give its continuous dependence on w*
in the weak topology of H(Q). This shows, in particular, that the
family of problems of type (0.3) with w* € K* is closed under the
weak convergence of the solutions.

Problem (0.3) was introduced by Dal Maso and Garroni in [5]
where it is studied in an equivalent formulation. They proved that
for every w* € K™ there exists a positive Borel measure g on {2,
depending on w* and vanishing on the subsets of Q of capacity zero,
such that for every f € L*(Q) the solution u of (0.3) coincides with
the solution of the problem

(0.5) ue Hy(Q)NLQ)
' (Au,v) + [quvdp = (f,v) Yuve Hy(Q)NLL(Q).
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Note that, in many interesting cases, the measure p can be very
singular and this fact introduces a lot of technical difficulties.

One of the advantages of studying limits of Dirichlet problems
by using directly (0.3) and not (0.5) is that some of the proofs can
be made independently and in a rather elementary way. We do
not have to use singular measures nor fine properties from capacity
theory. The degeneracy of the equation (0.3), that follows from the
fact that w* can be zero on sets of positive measure, represents a
difficulty of the problem but not a major one since it still allows us
to prove some existence and uniqueness results.

The third part of the paper is devoted to the proof of the following
density result. We shall show that for any w* € K* there exists a
sequence €2, of open subsets of ©Q such that for every f € L™(Q)
the solutions up, of (0.1) converge weakly in H}(2) to the solution
u € HHQ)NL>(Q) of (0.3). This means that the family of problems
of type (0.3) with w* € K* can be considered as the closure of the
Dirichlet problems (0.1) with respect to the weak convergence in
HL (). By the theorems proved in the previous sections it is enough
to prove the existence of a sequence €2;, such that the solutions wj
of (0.2). converge weakly in H{() to w*. This will be done by
using the method of Cioranescu and Murat [4] following a simplified
version of [6].

1. Notations and Preliminaries.

Let us fix an nxn matrix (a;;) of functions of L>(R") satisfying,
for a suitable constant « > 0, the ellipticity condition

n

(1.1) Y a(2)E& > algf?

7,7=1

for a.e. z € R™ and for every £ € R".
For every open set U of R™ let A : H'(U) — H™'(U) and A* :
HY(U) = H=Y(U) be the elliptic operators defined by

Au=— 3" DiaDju)  and  Aw=— 3 Di(a;Dju),

i5=1 t,j=1
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where H'(U) and H{(U) are the usual Sobolev spaces and H~1(U) is
the dual of H}(U). Tt is well known that, on HJ(U), A* is the adjoint
operator of A, that is: (A*u,v) = (Av,u) for every u,v € H}(U),
where (., .) denotes the duality pairing between H~*(U) and H}(U).

Let © be a bounded open subset of R”. For any u € H}(Q) we
shall denote by u™ and u~ the positive and the negative parts of u:
ut =uVv0,u” =—(uA0). Then u=u" — u~ and it can be easily
proved that for any uw € H}(Q), ut, v~ € H}(Q). If U is an open
subset of €, each function v € H(U) will always be extended to €
by setting u = 0 in Q\U.

Let K* be the set of functions which satisfy (0.4); then it is easy
to see that K* is a closed convex subset of HJ(Q). Moreover, for
every w* € K*

a/ |Dw*|* dz < (A*w*, w*) < / w* dz,
Q Q

and this estimate shows that K* is bounded, and hence weakly com-
pact in HJ(€).
Let w§ be the solution of the Dirichlet problem

Awy =1, wy € Hy(Q).

By the maximum principle we have w* < w( a.e. in Q for every
w* € K*. As w§ € L™(Q) (see [9]), the set K* is bounded in
L>(Q).

Let us denote by H* the set of all functions w* € H{(Q) with
the property that there exists an open subset U of €2 such that w*
is the solution of the Dirichlet problem

w* € Hg(U)
A*w* =1 1in U.

We shall show that the closure H* of H* in the weak topology of
H} () coincides with K*. We begin with the easier inclusion: H* C
K*. 1t is enough to prove that H* C K*.

ProprosiTION 1.1. Let U be an open subset of 2 and let w* be
the solution of the Dirichlet problem

(1.2) A*w* =1in U, w* € Hy(U).
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Then w* € K*.

Proof. To prove that w* € K* we follow the argument of [2]. Let
z be the solution of the variational inequality

z€ Ky, (A"2—1,v—2) > 0 Vv e Ky,
where
(1.3) Ky={ve Hy(Q) : v <0ae on Q\U}.

By the maximum principle we have z > 0 a.e. on Q (see, e.g.,
[8], Chapter II, Theorem 6.4), so that z = 0 a.e. on Q\U, hence
z € HJ(U) (see, e.g., [1]). If v € H}(U) and v = 0 a.e. on Q\U, then
v € Ky. Therefore from the variational inequality we obtain easily
that z|yy is a solution of (1.2), hence z = w* a.e. in Q. Since all
solutions of variational inequalities with an obstacle condition of the
form (1.3) are subsolutions of the corresponding equation (see, e.g.,
[8], Chapter I, remark after def. 6.3), we conclude that A*w* < 1
in € in the sense of distributions, hence w* € K*. &

The inclusion K* C H* will be proved in the third section.

2. Some existence and uniqueness results for the limit
problem.

As mentioned in the introduction, we want to prove that for any
w* € K* and any f € L*>(Q) there exists one and only one solution
of (0.3) in H}(Q) N L>(R). In order to do this we need to prove first
some lemmas. Let us begin with the case of w* € W1>(Q).

LEMMA 2.1. Let w* be a function in W1 (Q) such that A*w* <
1 in D'(Q) and w* > € in 2, for some constant ¢ > 0. Then there
exists a unique solution of the problem

u € HY(Q)

(2.1) (A, w o) — (A"w™, up) + (1, up) = (f, w*p)
Ve HHQ).
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Proof. The existence of a unique solution of (2.1) is a consequence
of the Lax-Milgram lemma. Indeed, let us consider the bilinear form

on H}(Q)xH}(Q) defined by:
a(u, ) = (Au, w*p) — (A"w", up) + (1, up).
It can be easily seen that

alu, @) = / ( Z a;; DjuD;p)w* dz—

t,5=1

Q Q

,5=1

To show that a is coercive we estimate

a(u,u) = /Q( Z a;; DjuDiu)w* dr—

7,7=1
—/(Z a;iDjw*D;u)u dm—}—/ u?dz.
&= Q
Since w* € W1H*°(Q), the distribution A*w* belongs to H~1:°°(£).
Then the inequality A*w* < 1in D'(2) implies that (1—A*w*,v) >
0 forevery v € Hy'(Q),v > 0. Asu € HY(Q), we have u® € Hy' (Q)

and uDju = $D;(u?). Then

—/Q(Z a;iDjw Diu)udm—l—§/gu2dx: §<1—A w*,u?) > 0.

1,5=1

Since w* > ¢ a.e. in Q, the ellipticity condition (1.1) implies that

/(Z a;; DjuD;u)w™ dz > EOAHDUH%Q(Q),
Q

t,5=1

which, together with the previous inequality gives
1
a(u,u) > EOAHDU”%Q(Q) + (1 — A*w*, u?) + 5/ u?dz >
Q

1
> eal| Dul|7aq) + 5““”%2(9) 2 CEHUHJQLI&(Q)
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for some constant ¢, > 0, and this proves that a is coercive.

LEMMA 2.2. Under the hypotheses of the previous lemma the
solution u of (2.1) satisfies the estimate

lullzia) < el flla-1g)

where the constant ¢ > 0 depends only on €2 and on the ellipticity
constant o and does not depend on ¢.

Proof. By taking ¢ = i* as test-function in (2.1) we obtain
w

u? u?

(A, u) = (A", —) + (L, —) = (f,u).

)
w* w*

2 2
Since u_* € Hy'(Q) and 1— A*w* > 0 we have (1 — A*w*, u_*> > 0.
w w
By the ellipticity condition we get

a||Dullaq) < (fyw) < [[fla-1@llullm e
and the Poincaré Inequality implies the conclusion of the lemma.

LEMMA 2.3. Under the hypotheses of Lemma 2.1, if f > 0 in 2
then the solution u of (2.1) is positive.

Proof. This can be easily seen by taking in (2.1) the test-function

©= u_* Indeed, we have

w
(Au,u™) + (1 — A%w*, 2y = (f,u7).
w
: uu~
Since uu™ = —(u~)? and 1— A*w* > 0, we have (1 — A*w*, —*> <

0. As f > 0inQand v~ > 0a.e. in 2, we have (f,u™) > 0, hence
(Au,u™) > 0. The definition of u~ and the ellipticity condition

(1.1) imply

0 < (Au,u”) = —(Au”,u") < —allu || < 0
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so that u~ = 0 a.e. in €. &

We shall use this lemma to compare the solution u of (2.1) with
the solutions of the problems

w € HY ()N L>®(Q)

(2.2) (Aw, w*p) — (A*w*, we) + (1, we) = (1, w*p)
Voe Q)

and

(2.3) wo € Hy(Q) Awg =1 in €.

LEMMA 2.4. Under the hypotheses of Lemma 2.1 problem (2.2)
has a unique solution w and w < wqy a.e. in ), where wy is the
solution of (2.3).

Proof. Lemma 2.1 gives the existence of a unique w € H}(Q)
that satisfies the equation in (2.2) for any ¢ € H}(Q2). By Lemma
(w — wg)*

w*
in (2.2) and (w — w)* in (2.3) and taking the difference of the two
equalities we obtain (w — wg)t = 0 a.e. in Q, that is w < wq a.e. in
Q. Since wg € L*(Q2) we get w € L*(£2) and so w is a solution of
(2.2). The uniqueness follows by density arguments. &

2.3 we have w > 0. Then by taking the test-functions

LEMMA 2.5. Under the hypotheses of Lemma 2.1, if f € L*>(Q)
then the solution u of (2.1) satisfies the estimate [u| < ||f||pe()w
a.e. in §), where w is the solution of (2.2).

Proof. Let ¢ = ||f||fe(q). Multiplying the equation in (2.2) by
¢ and subtracting the equation (2.1) satisfied by u we obtain that
cw — u is the solution of the equation in (2.1) with f replaced by
c— f. Applying now Lemma 2.3 we get cw — « > 0 a.e. in €2, hence
u < cw a.e. in €. The inequality v > —cw is proved in a similar
way. &

LEMMA 2.6. Let w* € K*and let Q' be a reqular bounded open
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subset of R"™ such that Q CC . If w* is extended by 0 on '\,
then A*w* < 1 in D'().

Proof. This property was proved in [3], Lemma A, in the case of
the Laplace operator —A. For the sake of completeness, we repeat

the proof here for a general operator A.
Let us define the set K" = {v € H}(?) : v < w* a.e. in '}
and let z be the solution of

ze KV
(2:4) { (A2 —1L,v—2)gr > 0 Voe KvY',
where ( , )q/ denotes the duality product between H~!(Q') and
HLQ.
Then z > 0 in Q. Indeed, z is the greatest subsolution of
A*v = 1 that belongs to K*". (See, e.g., [8], Chapter II, Theorem

6.4.) As 0 is such a subsolution we have z > 0 in '
We claim that z = w*. If we take v = w* in (2.4), we obtain

(A"z — 1, w™ — z)gr > 0.
Since 0 < z < w* in ', we have w* — 2 = 0 on '\ Q hence
(2.5) (A2 —1L,w" —2z)g > 0.
As 1 — A*w* > 0in Q, we get

(A*w™ — 1,w* — z)q < 0,
and subtracting (2.5) we obtain

(A*(w" —2),w" —2)qg <0
and so, the ellipticity of A* implies w* — z = 0in €. Since 0 < z <
w* = 0in Q\Q, we have shown that w* = z in £’ and the conclusion
follows from the inequality

1-A*2 > 0in @,

which holds for all solutions of variational inequalities with an ob-
stacle of the form (2.4). (See, e.g., [8], Chapter II, remark after Def.

6.3.) ¢
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THEOREM 2.7. For any w* € K* and any f € H=Y(Q) there
exists a solution u of the problem

u € H}(Q)

(0.3) (Au, w*p) — (A*w™, up) + (1, up) = (f, we)
Ve e C5(Q),

which satisfies the estimate [Jul|g1qy < cf| fllg-1(q), for a suitable

constant ¢ that depends only on Q and on the ellipticity constant «
and does not depend on w*.

Proof. Let us consider a regular bounded open subset ' of R"
such that Q CC Q' and let us extend w* by 0 on Q'\ Q.

By Lemma 2.6 we have that v* = 1— A*w* > 0in D’'(Q), hence
v* is a positive Radon measure. As A*w* € H='(Q'), we have also
that v* € H=1(Q').

We can approximate (a,;) by a sequence (af;) of matrices of class
C* which converges a.e. to (a,;;) and satisfies the ellipticity and
boundedness conditions with the same constants as (a;;). We shall

k3

denote the corresponding operators by A, and A*. Let v¥ € C*° (),

v} > 0, approximate v* strongly in H=1(€) and let w} be the

€

solution of the Dirichlet problem

wi —e € Hy (),
1— Afw: =vrin H-Y(Q).

From the regularity theory we deduce that w} € C*° ().

Let us prove that w? —e converges to w* weakly in H}(2'). Since
w} — ¢ is bounded in HJ (') it has a weak limit v € HJ(Q'). We
write the weak form of the equation:

/ (Z a?iDichjw:) dz = /
" =1 Q

As (a5;) is bounded, we have |a%;D;p| < M|D;p| € L*(R) and
the pointwise convergence a.e. of a5, D;¢ to a;;D;p implies, by the
Lebesgue Dominated Convergence Theorem, the strong convergence
in L2(Q). As Djw? converges weakly in L2(') to D;v we obtain
that the left hand side of the equation converges to

/ Z aj; DipDjvdz .
Q' .

1,7=1

pdz — (VZ,0) Ve HiQ).
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Then, as v* — v* in H=1(Q), (v, ¢) converges to (v*, ¢), so that v
satisfies the same equation as w*, i.e.

/,(Z a;;DjvDip) dx = /Qleodw— (V') Yee Hy(),
7,7=1

hence w* = v a.e. in Q.

Let us prove now that w} — e — w* strongly in H}(€2'). In the
equations satisfied by w* and w] we take as test-functions w* —w+¢
and obtain

(Aw™, w* —wl) + (v, w" —w. +¢) =
=(Lw" —w +e) = (Alw], " — wl) + (v, w" — w] +¢).
The ellipticity condition for A} gives

of|[D(w” — wI)l| T2 < (AX(w" —wl),w" - w])

and using the previous equality we substitute (Afw}, w* — w
obtain

¥y and

€

al| D(w*=wl)|[fa gy < (Alw” = A"w", w”—wI)+(v] —v", w*—wi+e).

As v — v* strongly in H=1(€') and w? —e — w* weakly in H} ('),
the second term in the right hand side converges to zero. Let us
consider the first term

(Afw* — A"w™, w* —wl) = / ( Z (a5; — a;) Djw* Di(w* — w?))dz .
Q .5

7,7=1

As a;; and (a$;) are bounded, [(a$; — a;)D;w*| < M|Djw*| €

L2(Y), (a5; — a;;)Djw™ converges pointwise a.e. to zero, by the

Lebesgue Dominated Convergence Theorem, the convergence is also

in L2(Q). As D;(w* —w?) converges weakly in L%(') to zero we get

that the first term converges to zero and so || D(w* — w}) H%?(Q/) — 0,

.
7t

that is w} — ¢ — w* strongly in HJ(Q').

We shall continue now the proof of the existence of a solution of
(0.3).

Let us consider the function wl Ve. As A*w] < 1and A™ <1
we have that 1 — A*(wXVe) > 0.(See, e.g., [8], Chapter II, Theorem
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6.6.) Since w: —e — w* strongly in H}(Q') and w* > 0, also
(wive)—e — w*V0 = w* strongly in HJ (). As (wXve) € WH*(Q),
by Lemma 2.1 there exists a function u, € H}(Q) such that

(2.1) (Acue, (wIVe)p) — (AZ(wi V), uep) + (1, u-0) =

T =(fwivey)  Vee Hy(Q)

By Lemma 2.2 we have ||u.||g1(q) < ¢l f||z-1(q), so that, up to
a subsequence, u. converges weakly to a function u € H}(Q). We
shall consider now test-functions ¢ € C§°(€2) and by passing to the
limit in (2.1). we get that the limit function u is a solution of (0.3).
As u, — w in H}(Q) and lluellmr@y < ellfllz-1(q), from the lower
semicontinuity of the norm we obtain that [|u[|g1q) < || f[lg-1(q)-

PROPOSITION 2.8. Let w* € K* and f € H™Y(Q). Ifu €
HY(Q) N L>(Q) is a solution of (0.3) then u satisfies the equation
for any test-function ¢ € H(Q) N L>°(Q). Moreover, if uy, uy €
HL(Q) N L= () are solutions of (0.3) then uy = us.

Proof. Let uw € H}(Q) N L>(Q) be a solution of (0.3) and let
p € H}(Q) N L>®(Q). Since w* € K* is also in L*>(2) the prod-
ucts up and w*e belong to HJ(Q2) N L (), hence all terms of the
equation are well-defined. There exists a sequence ¢}, of functions in
C§°(9), bounded in L°°(Q), that converges strongly in Hj(Q) to ¢.
We consider in (0.3) ¢, as test-function, pass to the limit in the
equation

<Au7 ’LU*SD}L> - <A*w*7 ‘UQO}L> + <17 ‘UQD}L> = <f7 w*ﬁoh>
and obtain that u satisfies the equation with ¢ as test-function.

In order to prove the uniqueness let us denote by u the difference
up — ug. We have

/Q(Z a;; DjuD;ip)w” d;r—/ﬂ(z ajiDjw*Dicp)udm—l—/ngodx =0

i,j=1 6,j=1

for every ¢ € C57(Q) .
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As w* and u are bounded, this equality holds for any ¢ € H}(2) N
L> (). Then we can take u as test-function and obtain

(2.6)

/Za DuDuw dz — / Za DwDuudx+/u2d$:0.
Q

7,7=1 7,7=1

We have that

< x* 1 * *
/Q( Z a;Djw* Diu)udr = §<A w*, u?)

t,5=1

and since (1 — A*w*,u?) > 0, we get

/ZaDuDu)wdm—}— /udm<0
Q

1,J=1

As the first term is nonnegative, by the ellipticity of (a;;) and the
positivity of w*, we obtain that « = 0 a.e. in €2 and so the uniqueness
is proved.

THEOREM 2.9. Let w* € K* and f € L*(Q). Then there ezists
a unique solution of the problem

u € HYH Q)N L=(Q)
(2.7) (A, w*p) — (A*w™, up) + (1, up) = (f, w*e)
Ve O (Q).

Moreover, u satisfies the equation for any test-function ¢ € H3(2)N
L>°(Q) and we have the following estimates ||ul|g1(q) < cf| fllg-1(q)
and |u| < ||fllre@w < [[fllpe@)wo a.e. in Q where w and wo
are the solutions of (2.2) and (2.3), respectively, and c is a constant
depending only on €2 and on the ellipticity constant o and not on

w*.

Proof. Let us consider the construction done in Theorem 2.7 for
the proof of existence. If we denote by w( the solution of the Dirichlet
problem A.w§=1in Q, w§ € H3(), and by w. the solution of

We € H(} (©2)

(Acwe, (W Ve)p) = (AZ(wZ V e), wep) + (1, wep) =
= (1, (wIVe)g) Ve Hy(Q),
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then by applying Lemma 2.5 and Lemma 2.4 to A, and (w?V ¢),
we obtain that |uc| < ||f|lzeo@we < [|f|l5o(@)ws. Since the weak
convergence of u. to u and of w. to w proved in Theorem 2.7 implies
the pointwise convergence of a subsequence, by passing to the limit
we obtain |u| < [|fllpe@w < [|f]|peo(@)wo. Since wo € L*(Q),
also w € L*(£2). Then the uniqueness and the fact that the equa-
tion is satisfied for any test-function in H}(2) N L°°(£) follow from
Proposition 2.8 and Theorem 2.7 gives the first estimate. &

ProposITION 2.10. Let f € L*(Q), let U be an open subset of
Q and let v and w* be the solutions of the problems

u e Hy(U) w* € Hj(U)
Au=finU A*w* =1 U.
Then u is the solution of

u € HY(Q) N L>(Q)
(2.7) (A, w ) = (A"w™, up) + (1, up) = (f, wp)
Ve C5P(Q).

Proof. Let ¢ € C§°(Q). Since u, w* € H}(U) N L>®(U), the
products up and w*¢ belong to H}(U) so that can be considered as
test-functions in the equations satisfied by w* and u, respectively.
We obtain that

(Auw'e) = (f,u'g), (A" ug) = (Lug), Ve e C(Q)

and by subtraction, we get that » is the solution of (2.7). &

Let us study now the dependence on w* of the solutions of (2.7).

THEOREM 2.11. Let f € L™(Q), let wy € K* and let uy, be the
solution of the problem

up € HY(Q) N L=(9Q)

(2.8) (Aun, wip) — (A*wy, ung) + (1, ung) = (f, wip)
Ve C5e(Q).
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Assume that w} converges weakly in H}(2) to a function w* € K*.
Then uyp, converges weakly in H} () to the solution u of (2.7).

Proof. The estimate [Jup||g1(q) < ¢l fllz-1(q), proved in Theo-
rem 2.9, gives the existence of a subsequence, still denoted by wuy,
that converges weakly in H}(Q) to some function u. As |up| <
I fll . (@)wo, where wq is the solution of (2.3), the sequence (uy) is
bounded in L*°(), thus u € HJ () N L>(). Then

(Aup, whp) — (A"wi, unp) + (1, unp) = (f, wip)

can be written as

/Q( Z a;;DjupDip)wy dz — /Q( Z a;;Djwy Dip)updz+-

7,7=1 7,7=1

+ [ unpda= (i),

we may pass to the limit and obtain that u is a solution of (2.7).
The uniqueness of the solution implies that the whole sequence (up)
converges weakly in HJ(Q) to the solution u of (2.7). &

LEMMA 2.12. Let Qp be an arbitrary sequence of open subsets
of Q. Then there exist a subsequence, still denoted by 2y, and a
function w* € K* such that for every f € L*(R) the solution uy,
of (0.1) extended by 0 on Q\Qp converges weakly in H(Q) to the
solution u of (2.7).

Proof. Let wj be the solution of (0.2),. As (w}) is bounded
in H}(Q) there exists a subsequence, still denoted by (w}), that
converges weakly in H}(£2) to a function w*. Since w; € K* (Propo-
sition 1.1) and K* is weakly closed we obtain w* € K*. Let u; be
the solution of (0.1). Then, as (up) is bounded in H{ (), it has
a subsequence that converges weakly in H} () to some function u.
By Proposition 2.10 uy, is the solution of (2.8) and by applying now
Theorem 2.11 we deduce that the limit  is the solution of (2.7). ¢
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3. A density result.

Our purpose is now to complete the characterization given by
Theorem 2.12, that is we want to show that if w* € K*, f € L*()
and u is the solution of (2.7) then there exists a sequence of domains
Qy, such that the corresponding solutions up, of (0.1) converge weakly
in H}(Q) to u. From Theorem 2.11 of Section 2 it follows that
we have only to prove that any w* € K* can be approximated by
solutions of (0.2),.

Let us return to the sets K™ of all functions which satisfy (0.4)
and H* defined in Section 1 (before Proposition 1.1). We shall prove
that the weak closure in H}(Q) of H* is equal to K*. As we have
already remarked the closure of H* is contained in K™ (Proposition
1.1). So we have only to prove that any function w* € K* can be
approximated by functions in H*. To this end let us define two
auxiliary sets:

K7 - the set of all functions in K* that are continuous and strictly
positive on € and

K3 - the set of all functions in H}(Q) that satisfy A*w*+bw* = 1
in the sense of distributions on €2, for some continuous and positive
function b.

REMARK 3.1. K3 C C%(Q)n K*.

Proof. Let w* € Kj. By De Giorgi’s Theorem (see, e.g., [7]
theorem 8.22) w* € C°(Q). Since A*w* + bw* = 1 in the sense of
distributions and b > 0 we get w* > 0 and A*w* < 1. &

REMARK 3.2. The closure of K3 in the weak topology of H{ ()
contains K7.

Proof. Indeed, let w* € K{. Then A*w* 4+ v = 1, where v €
H~'(Q) is a positive Radon measure. Since w* > 0, we can define
v

p = —. We can approximate p strongly in H~Y(Q) by continuous
w

and positive functions b..
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Let w} € K3 be the solution of the following Dirichlet problem:

wi € Hy(9),
A*w! + b.w? = 1.

Then w} > 0and, asb. > 0, A*w} < 1in the sense of distributions
on 2.

By De Giorgi’s Theorem w? € C°(Q) hence 1 — A*w} = b.w? €
C°(©). As (w}) is bounded in Hg (), there exists a function @ €
H} () such that w? converges to w weakly in H} (). Since w} <
wy, where wj € H () is the solution of A*w} = 1in Q, and w €
L () we have that (w¥) is bounded in L*°(2), hence w € L> ().
We have

Q Q o

t,5=1

Passing to the limit as ¢ — 0, we get

" dv
Db Do) d b — = d ().
/Q(Zaﬂ 0 D;p) w+/ﬂwww* /Qﬁpw Vee (5 (Q)

,5=1

The above equation is satisfied for all ¢ € H}(€). This can be
proved by density arguments using the fact that @ € L*(Q) and
that Hg () C L},(Q) for any positive Radon measure belonging to
H7Y(). As w* is a solution in H}(Q), we get that w* = @ a.e. in
Q. So, w: converges to w* weakly in H}(Q). &

REMARK 3.3. The closure of K7 in the weak topology of H{(€2)
is equal to K*.

Proof. Let us first remark that by definition, K7 C K*. Let
w € K*. Then v = 1 — A*w* is a positive Radon measure that
belongs to H~1(€2). We can approximate it strongly in H~!(£2) by a
sequence of positive smooth functions v.. Let us consider the solution
v, of the Dirichlet problem

{ ve € HY(Q)

A*v. +vov. = 1.
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By the maximum principle v, > 0 and by De Giorgi’s Theorem
ve € C°(Q). By the same arguments as before we obtain the weak
convergence in Hi () of ve to w*. In order to obtain a sequence of
functions in K7 let us consider the solution w§ € Hg(2) of A*w? =1
By the strong maximum principle [9] we have that w§ > 0 and, by
De Giorgi’s Theorem, w§ € C°(2). We define then w? = (1 —¢)v. +
ewp. It is easy to see that w} € K7 and w} — w* weakly in HJ ().

&

The conclusion of the Remarks 3.1-3.3 is that K73 is dense in K~
with respect to the weak topology of H}(€2), hence in order to prove
that H* is dense in K* it is enough to show that every element of
K3 can be approximated by elements of H*.

THEOREM 3.4. The closure of H* with respect to the weak topol-
ogy of H}(Q) contains K*.

Proof. As we have mentioned above it suffices to show that the
closure of H* with respect to the weak topology of HJ(f2) contains
K;. Let w* € Kj. This means that w* € H}(2) and there exists a
continuous, positive function b on €2 such that A*w* 4+ bw* =1 on Q2
in the sense of distributions.

In order to get a sequence of functions in H* that converges
weakly in H} () to w* we shall use the method of Cioranescu and
Murat [4] following the lines of [6]. There exist a sequence of open
subsets Qj, of ©, a sequence 2, of functions in H'(£2) that converges
weakly in H'(Q) to 1 and two sequences \; and v}, of measures in
H~Y(Q) such that A*z; = v, — Ay in Q, A\, converges to b weakly in
H™Y(Q), v, converges to b strongly in H~'() and (A, ) = 0 for
every function ¢ € H}(Q). For the construction see [6]. We may
assume that 0 < z; < 1 a.e. in €.

Let us define up, = zw*. By construction u; € H3(Qp). From
the weak convergence of z, to 1 we deduce that uj converges to w*
weakly in H}(Q).

Let w} be the solution of the Dirichlet problem

w;(z € H(}(Qh)7
A*wy =1 on Q.

We extend wj by zero on Q\Qj. Then (w}) has a subsequence that
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converges to some function v weakly in H}(2). We want to prove
that w* = v. (As a consequence the whole sequence (wj}) converges
to w*.) The properties of z, and w* imply that there exists ¢; > 0
such that |lup||p~@) < c1. There exists also ¢ > 0 such that
lw;ll o) < 2. We have

n

(A%up, up — wh) = / (E aj; DjunDi(up — wj))dz =
Q

i,j=1
= L(Z ajiDjzhw*Di(uh_WZ))dm+L<Z ajiDjw*thi(uh—wZ))dm =
ij=1 i,5=1

n

:/ Z ajl»Djthi(w*(uh—wZ))dzﬂ—/ (Z ajl-Djthiw*)(uh—wZ)dm—k

Qi,j:l £2 i,7=1

—|—/ Z ajiDjw*Di(zh(uh—w;))d:c—/ (Z ajiDjw*Dizh)(uh—wZ)da: =
i,7=1 i,j=1

= / w* (up — wj)dvy + / (1 —bw*)zp (up — w} )de—
Q

Q
- »/ﬂ< Z ajiDjthiw*)(Uh—wz)dx_/gz<Z ajiDjw*Dizh)(uh—w;)dx =
ij=1 i,5=1

=h+5L—-1I3— 14

where we have used the fact that w*(u, — w}) € Hj(Q4) so that
(An, w*(up —wy)) = 0.

As w*, (up), (w}) are bounded in L*(2), the product w*(u; —
w}) converges to w*(w* — v) weakly in H}(Q2). Then the strong
convergence of v, to b in H~1(2) implies the convergence of I to
Jo w*(w* —v)bdz. Since uj, —w; — w*—vin L*(Q), the second term
I5 converges to [ (1 — bw*)(w* — v)dz . From the weak convergence
of D;z; to 0in L*(), the boundedness in L>°(Q) of (uj — w}) and
its strong convergence to w* — v in L*(Q) we deduce that I3 — 0
and the same arguments hold for I;. So that

allun = willjpy gy < (A%(un = wi),un — wf) =
= (A"up, up — wp) — (A%wp, up — wp) =
(A up, up — wy) — (1, up — wy) = Zy

Since Zj converges to [o w*(w* — v)bdz + [o(1 — bw*)(w* — v)dz —
(1, w* — v) = 0 we get w* = v. So, for any w* € K3 there exists a
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sequence of functions wj in H* such that w} converges to w* weakly
in H}(Q), hence H* is dense in K*. &

THEOREM 3.5. Let w* € K* and f € L*(Q). If u is the solution
of (2.7) then there exists a sequence §;, of open subsets of 0 such
that the corresponding solutions uy, of (0.1) extended by 0 on Q\Qy,
converge to u weakly in H ().

Proof. Theorem 3.4 gives the existence of a sequence €} of open
subsets of © such that the solution wj of (0.2). converges weakly
in H3(Q) to w*. Then the corresponding solutions uy, of (0.1) con-
verge weakly in H} () to u. This can be seen for example by using
Proposition 2.10 and Theorem 2.11. &
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