ON THE COMMUTATIVITY OF s-UNITAL RINGS
AND PERIODIC RINGS (*)

by R.D. GIRl AND SHRADDHA TIwARI (in Nagpur)(**)

SOMMARIO. - In questo lavoro vengono provati due teoremi relativi alla
commutativita di anelli s-unitali e di anelli periodici.

SUMMARY. - In this paper two theorems have been proved for the commu-
tativity of s-unital rings and periodic rings respectively.

Let R be a ring, Z its centre and z,y € R. For the following
properties (1) and (2), n is a fixed positive integer and for the prop-
erties (3), (4) and (5) n is a positive integer depending on pair z, y.
For the last property (5') the positive integer n’ depends on pair y, z

—

C(n) :n[z,y] = 0 implies [z,y] = 0.
P (Z) s e (2y)" - ( z)"a" € 7.

Pl(n) : [z, y"] =

C'(n) :nf[z,y] =0 1mphes [z,y] = 0.
Crpr(zy) « [(zy)™*! — 2"y zy] = 0.
5)  Chopa(ya)  [(ya)™ ! =y 2™ ya] = 0.

W N
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[

Infact (5) and (5') represent the same condition provided n =
n'. They are different in case otherwise. In theorem 1, it is shown
that if R is an s-unital ring satisfying conditions P’(n), C'(n) and
[Cr41(zy) and C,  (yz)], then R is commutative. In theorem 2, it
has been proved that a periodic ring, in which nilpotents of R forms

a commutative set and the ring satisfying conditions C'((n + 1)n)

(*) Pervenuto in Redazione il 4 novembre 1994.
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and P (7) is commutative. In the end counter examples are given
which show that the hypotheses of our theorems are not altogether
superfluous. It is to be noticed that C'(1), C’(1), P'(1) are vacuously
true namely empty conditions.

1. Introduction.

Throughout this paper R represents an associative ring (may be
without unity 1), Z the centre of R, C'(R) the commutator ideal of
R, N the set of nilpotent elements of R and [z,y] = 2y — yz for all
z,y € R.

A ring R is called a left (resp. right) s-unital if 2 € Rz (resp.
z € zR) for each z € R. Further R is called s-unital if it is both left
as well as right s-unital, that is, z € xR N Rz, for each z € R.

If R is s-unital (resp. left or right s-unital) then for any finite
subset I’ of R there exists an element e € R such that ez = ze =z
(resp. ex = z and ze = z) for all z € F'. Such an element e is called
the pseudo (resp. pseudo left or pseudo right) identity of I in R.

A ring R is called periodic if for every z in R, there exist distinct
positive integers m = m(z), n = n(z) such that 2™ = z". By
a theorem of Chacron (cf. [7, Theorem 1]) R is periodic if and
only if for each z € R, there exists a positive integer k = k(z) and
a polynomial f(X), f.(\) with integer coefficients such that z* =
2FH f(2).

In the present paper we use the following notations for the dif-
ferent properties. Among the following first 8 properties we take n
to be a fixed positive integer.

1) P(n):[z",y"] =0, forall z,y € R.

-1

Z) ra™(zy)" — (yx) 2™ € Z, for all z,y € R.
zy)" — (yz)"2"] =0, for all z,y € R.

2) C(n):n[z,y] = 0implies [z,y] =0, for all z,y € R.
3) Popi(zy): (zy)"H — 2ty =0 for all z,y € R.
4) Pup1(Z) : (zy)™t — 2"yt ¢ Z for all z,y € R.
5) Pu(Z):(zy)" — (yx)* € Z, for all z,y € R.
6) Cu(Z2):[z,(zy)" — (yz)"] =0, for all 2,y € R.

)
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For the properties (9) to (11) mentioned below the positive inte-
ger n = n(z,y) depends on pair z,y. Whereas for property (11’) the
positive integer n’ = n'(y, z) depends on pair y, z.

9)  P'(n):[z",y"] =0, forall z,y € R.

10)  C’(n) : n[z,y] = 0 implies [z,y] = 0, for all z,y € R.

11) ! (zy) : [(zy) T — 2"yt gy =0, for all y,z € R.
1) Cyy(yz) [(ya)» ! — y'Flg+1 ya] = 0, for all y,z € R.

Obviously P'(n) = P'(n') and C’'(n) = C’'(n’) when n = n'.
Let P be a ring property. If P is inherited by every finitely

generated subring and every natural homomorphic image modulo
the annihilator of a central element, then P is called an H-property.

ExaMPLE. C'(n) is an H-property.

If P is a ring property such that the ring R has the property P if
and only if all its finitely generated sub-rings have property P then
P is called an F-property.

ExampLE. Commutativity is an F-property.

Abu-Khuzam et al [1, Theorem 2] proved that an s-unital ring
satisfying conditions C'((n+1)n) and P,41(zy) is commutative. Later
on, Abu-Khuzam and others [4, Theorem 1] proved that an n-torsion
free ring with unity satisfying P(n) and P,41(7) is commutative. By
weakening the hypotheses of the foregoing theorems, we prove a gen-
eral result on commutativity of s-unital rings with properties P'(n),
C'(n) and [C},(zy) and C], ,(yz)] which is given as our theorem
1.

In their paper [4, Theorem 2] Abu-Khuzam and others, showed
that n-torsion free periodic ring (not necessarily with unity) with
conditions, N commutative and Py;(Z); is commutative. We gener-
alize this result by weakening the condition P1(Z) by Py (Z). In
fact Py1(Z) is wekened as C11(Z) and Cy4(Z) is weakened as CT;(Z)
and is obtained by replacing first coordinate z of the commutator by
2™t However Pjy(Z) is the condition between C11(Z) and C},(Z).
Hence it is the generalisation of condition Pi;(Z). We also weaken
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the condition of the ring R to be n-torsion free by the condition that
commutators are (n 4+ 1)n-torsion free.

2. Preparatory Results.

To make the ground work for theorems 1 and 2, we use the fol-
lowing known results.

ProprosiTION 1 [10, Proposition 1]. Let P be an H-property and
P’ be an F-property. If every ring with 1 having the property P has
the property P’, then every s-unital ring having P has P’.

LEMMA 2 [9, Theorem]. Let R be a ring in which, given a,b € R,
there exist integers m = m(a,b) > 1, n = n(a,b) > 1 such that
a™b™ = b"a™. Then the commutator ideal of R is nil.

LeMMA 3 [2]. If[z,y] commutes with z, then [z, y] = ka* [z, y]
for all positive integers k.

LEMMA 4 [12, Lemma]. Suppose that R is a ring with identity
1. If 2™[z,y] = 0 and (z + 1)"[z,y] = 0 for some z,y in R and
some integer m > 0, then [z,y] = 0. A similar statement holds if we
assume [z,ylz™ = 0 and [z, y](z + 1)™ = 0 instead.

LEMMA 5 [8, Lemma 4]. Let R be a ring with identity satisfying
the properties P'(n) and C'(n). Then

i) a€ N,z R imply[a,z"] =0,

ii)a € N, b€ N imply [a,b] = 0.

Part (ii) is special case of part (i).

LEMMA 6 [5]. Let R be a periodic ring such that N is commuta-
tive. Then the commutator ideal of R is nil, and N forms an ideal

of R.

LEMMA 7 [8, Theorem 1]. If R is an s-unital ring satisfying the
identities P(n), C(n) and CY,(Z), then R is commutative.
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3. Theorems.
Now we come to our own theorems introduced in section 1.

THEOREM 1. If R is an s-unital ring, satisfying the identities
P'(n), C'(n) and [C] ., (zy) and C}, ,(yz)], where n and n' are

o3
positive integers depending on pair x,y and pair y,z respectively,
then R is commutative.

Proof. According to proposition 1, we may assume that R has
unity 1. Since R satisfies the hypothesis P’ (n) viz [z™, y"] = 0, which
by lemma 2 yields that the commutatorideal is nil. This implies that
the set of nilpotent elements N forms an ideal.

This implies that N2 C Z (1)

Let @ € N and b € R. Put z = (¢+ 1) and y = b in the
hypothesis C}_(zy) i.e. [(zy)"t' — 2"t1y"*t zy] = 0, to obtain
[(ab+ )"t — (¢ + 1)" T "] (ab + b) — (ab + b)

[(ab+ 6" — (a+ 1)™+Hp"H] =0 . 2)

Using same substitutions for z and y in the identity C],,,(yz), we

get [(ba+ b)"" 1 — b7+ (a + 1) 1] (ba + b) — (ba + b)
[(ba+ 0)" " — b"*F(a+ 1)+ =0 (2")

The conditions (11) and (11’) are same provided n = n’. There-
fore we can write (2') as follows.

[(ba + b)* T — 0" (a + 1)t ] (ba + b) — (ba + b)
[(ba + b)" ! — "t (a+1)"T]=0. (3)
On subtracting (3) from (2), we get
(ab+b)(a+ 1) To" T — (a+ 1) H6" T (ab + b)+
b a + 1) (ba 4 b) — (ba + b)b" T (e +1)"T =0 .

Using binomial expansion for terms having powers (n 4 1), con-
dition N? C Z and lemma (5), we obtain after simplification that

n[ba 6"t — ab™t? 4+ b"tab — 6" T%a] =0 .
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After rearranging the terms, we get
n[b" ! [a,b]] =0 .
Since R satisfies the property C’(n), we get
6" [a,b]] =0 .
By using the identity [z -y, 2] = [y, z] + [, 2]y, we obtain
b"[b, [a, b]] + [67,[a,b]]b= 10 .

Or b™[b, [a,b]) = 0 (Since [b", [a,b]] = 0 by lemma 5(i)).
Replacing b by b+ 1 and using lemma 4, we get

[b,[a,b]]=0 (a€ N, beR). (4)
Using lemma 5(i), eq. (4) and lemma (3), we get
0 =[a,b"] = nb" [a,b] .
By the property C’(n) and lemma (4) we get
[a,] =0 (a€ N, beR).
Thus the nilpotents of R are central and since C'(R) is nil
[z,[z,y]] =0 forall z,y € R . (5)
Using eq.(5) and lemma (3), we have
0=[z",y"]=na" '[z,y"] for all z,yin R .
By lemma (4) and property C’(n) this yields
[z,y"] =0 for all z,yin R .

n—l[

Similarly 0 = [z,y"] = ny"~ [z, y] yields [z,y] = 0, for all z,y in R.

Thus R is commutative.

THEOREM 2. Let n be a fized positive integer and R be a peri-
odic ring (not necessarily with identity). If R satisfies the identities
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C((n+1)n), Py (Z) and if N is commutative, then R is commutative.

Proof. We consider the proof in two parts.

Part I: When R has an identity 1. By lemma (6), N is an ideal of
R, also since N is commutative, N> C Z. Note that a € N gives that
a is quasi regular namely @ has quasi inverse so (14 ) has inverse in
R. Now for a € N, b € R we choose z = (1+a) and y = b(1+ a)™!
in the hypothesis 2" (zy)" — (yz)"2"™ € Z, to obtain,

(1+a)""(1+a)™' =" (1+a)" € 7 . (6)
This gives, in particular,
{0+a)"™0" (1 4+ a)™ = 0" (1 +a)"} (1 +a) =
1+ a){(1+a)"T6"(14+a)™" = 0" (14+a)"} .
Using binomial expansion and condition N? C 7, we get
(n+1)(ab” —b"a) = (1+a){(1+a)"To"(1+a)" 0" (1+a)"} (7)

Since N is commutative ideal.

So (14 a)(ab™ — b™a) = ab™ — b"a therefore (7) yields
(n+1)(14a)(ab"=b"a) = (1+a){(14+a)" " (1+a)~ =b"(14+a)"} .
Further since @ € N, (1 + a) is a unit in R and thus

(n+1)(ab" —b"a) ={(1 +a)"Mo"(1 +a) ' =" (1+0a)"} € 7,

by (6). Thus (n+ 1)[a,b”] € Z.

Since in R every commutator is (n 4 1) n-torsion free so
la,b"] € Z . (8)
Now suppose #1,23...2r € R. Since R/C(R) is commutative

(z1,...,zp)" — 2t ...2p € C(R) C N by lemma (6). But N is
commutative, therefore

[a,(z1...2)" ] = [a,2] ...z} fora e N (9)
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Combining (8) and (9), we conclude that
[a,z}...2y] € Zfora € N, z1...2p, € Rand k > 1 (10)

Let S be the sub ring of R generated by the n*-powers of the ele-
ments of B. Then by (10),

[a,z] € Z(S) for all a € N(S), z € S (11)

(where Z(S) and N(S) have their usual meanings).

Combining the facts that S is periodic, N(S) is commutative
and the condition (11), Abu-Khuzam’s theorem [3] shows that S is
commutative and hence

[z",y"] =0 forall z,y € R . (12)

Since every commutator in R is (n+ 1) n-torsion free and R satisfies
the properties Pj{(Z) and (12), lemma (7) yields that R is commu-
tative. (Lemma (7), which is for an s-unital ring is true for ring with
unity also, because ring with unity is an s-unital too.).

Part II: When R does not have identity 1.

First we establish two claims,

1) Idempotents of R are central.

2) Homomorphic image of nilpotent elements of the ring R is the
set of nilpotent elements of the homomorphic image S of R.

Cram 1. Let eg € R be an idempotent and r € R.
Put z = eg, y = eg + egr — egreg in P (7)), to get

e (eo(eo + eor — egreg))”™ — ((eo + eor — egren)eg) e € Z

and hence ef(eq + egr — egreg) — eg - € € Z

Or egr — egreg € Z.

Therefore in particular eq(egr — egreg) = (eor — egreg)eg = 0. Or
egr — egreg = 0.

i.e. egr = egreg. Similarly reg = egreg and so egr = reg and the
claim follows.

Cram 2. If o : R — S is a homomorphism of R on to S then the

nilpotents of S coincide with o(N), where NV is the set of nilpotents
of R.
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This claim is essentially proved in [11].

Now we come to main proof. A ring R is isomorphic to a subdirect
sum of sub-directly irreducible rings R;(: € I'). Suppose that o; :
R — R; is the natural homomorphism of R on to R;, let z; € R; and
o;(z) = z;, * € R. Since R is periodic, z° = 2" for some integers
s >r > 0, and hence

s—r)r

o = at is an idempotent. (13)

By claim 1, o;(eg) is central idempotent of R;. Since R; is subdirectly
irreducible, so o;(eg) = 0 or o;(eg) = 1; provided 1; € R;.
Now there arise two cases:

Caste 1. When R; does not have an identity then o;(eg) = 0 i.e.
207" = 0. Thus R; is nil and hence by claim (2), R; = 0;(N). By

k3
hypothesis N is commutative, therefore R; is commutative.

CASE 2. When R; has an identity 1;.
Let o;(ep) = 15, ey € R.
Since R is periodic, we choose s > r > 0 such that ef = e;". Let

"(s—r)r

€0 = €g , then eq is also an idempotent and moreover, o;(eg) =

lgs_r)r = 1;. By claim 1, eg is a central idempotent element of R.
Thus egR is a ring with identity eg. Clearly egR inherits all the
hypotheses of the ground ring R including the property C'((n+1)n),
but R; may not have C'((n+ 1)n). However by part I it follows that
eg R is commutative.

i.e. [eoz, epy] = 0 for all z,y € R, which implies [o;(z), 0;(y)] =0
(since 0;(eg) = 1; and thus

R; = 0;(R) is commutative. Hence the ground ring R is also
commutative, which proves the theorem.

4. Counter Examples.

In this section we provide some counter examples showing that
all the hypotheses of theorems 1 and 2 are individually essential.

ExampPLE 1. The following example is to show that the condition
C’(n) is indispensable in theorem 1.
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Let
a b ¢
R= 0 a d |lab,ec,deGF(2)
0 0 a
For all pairs of elements z,y € R, we can find n = n(z,y) =
n'(y,z) = n’ > 1 such that R satisfies all the hypotheses of theo-

rem 1 except the condition C’(n), and R is not commutative.
For example, choose

1 1 1 1
x=101 11|, y=1|20
0 0 1 0

o = O
=

and n = n’ = 2. Then the foregoing fact can easily be verified.
For other choices of elements z,y and n = n(z,y) = n'(y,z) =
n' > 1, the similar verifications can be made.

ExampLE 2. Following example shows that the condition
[Ch1(zy) and C), , (yz)] cannot be omitted in Theorem 1.
Let
a b
R= 0 a®
0 0

a,b,c € GF(5)

QOO

For all pairs of elements z,y € R, we can find n = n(z,y) =
n'(y,z) = n > 1 such that R satisfies all the hypotheses of theo-
rem 1 except the condition [C] 4, (zy) and C7, ,(yz)] and R is not
commutative. For example choose

2 4 3 1 2 4
2= 0 4 0|,y=]0 1 0] andn=n"=4
0 0 2 0 0 1

then the foregoing fact can easily be verified. Similar verifications
are also true for other choices of elements z,y and n = n(z,y) =
n'(y,z)=n">1.

ExXAMPLE 3. Let R be as in example 1 but with entries in GF(3),
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and let
2 20 1 2 2
zx=|0 2 1 ],y=| 0 1 2
0 0 2 0 0 1

and for this pair of z,y choose n = n’ = 2. This shows that the
condition P’(n) is indispensable in theorem 1, and similarly for other
choices of elements of z,y and n = n(z,y) = n'(y,z) = n’ > 1 we
can easily verify the indispensability of P'(n).

REMARK. The rings in the above examples are with unity hence
s-unital too.

a b ¢
ExXAMPLE 4. Let R = 0 a d ||abec,deGF(3);, and

0 0 a
let n = 4. Then R satisfies all the hypotheses of theorem 2 except
the hypothesis; “N is commutative”. However the ring R is not
commutative. This shows that the said hypothesis is essential in

Theroem 2.

ExaMPLE 5. Let

a b ¢
R = 0 a* 0 ||a,b,cc GF(5)} ,
0 0 a

and let » = 2. Then R satisfies all the hypotheses of theorem 2
except the condition P (Z) and R is not commutative. This shows
that condition Py, (Z) can not be dropped in Theorem 2.

EXAMPLE 6. Let
b
a2

a
R= 0 a,b,ce GF(3) ; ,
0

QOO

0

and let n = 5. Then R satisfies all the conditions except C'((n+1)n)
yet R is non-commutative. Thus we cannot drop this condition.

Infact with n = 5, R satisfies all the hypotheses but the commu-
tators are n-torsion free yet R is not-commutative.
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With n = 6, R satisfies all the hypotheses but the commutators

are (n + 1)-torsion free, yet R is not commutative. This shows that
the condition C'((n 4 1)n) cannot be substituted by either C'(n) or
C(n+1) in theorem 2. This shows that the condition C'((n+ 1)n)
is essential in theorem 2.
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