THURSTON’S SOLITAIRE TILINGS OF THE
PLANE (*)

by CarLo PETRONIO (in Pisa)(**)

SOMMARIO. - Dato un numero di Pisot 3 e un insieme finito D di inter:
algebrici in Q(B), é possibile rappresentare © numeri complessi in base
B con cifre in D. Se D e ordinato si puo dire quali sono le rappresen-
tazioni preferite, ed esiste un automa a stati finiti che riconosce tali rap-
presentazioni. Questo conduce a tassellazioni del piano tali che tramite
l’espansione di fattore B ogni tegola della tassellazione viene mandata
n una untone di tegole. Questo lavoro espande idee di Thurston.

SUMMARY. - Given a Pisot number 8 and a finite set D of algebraic in-
tegers in Q(B), one can represent complex numbers in base [ using
digits D. If D has an order one can say which representations are pre-
ferred, and there exists a finite state automaton which recognizes such
representations. This leads to tilings of the plane such that under the
B-expansion each tile maps to a union of tiles. This paper expands ideas
of Thurston.

We will describe in this paper a construction due to Bill Thurston
[11] of self-similar tilings of the plane (the name solitaire, not used
in the sequel, is due to him). The basic idea of this construction is
to define representations of complex numbers with respect to a given
base using a given set of digits (just as the positive real numbers
are represented in base 10 with digits 0,1, ...,9). If the base § is a
Pisot number and the digits are algebraic integers in Q(3) then there
exists a finite state automaton which determines what are the “pre-
ferred representations” (in the previous example, both 0.9999 - - - and
1.0000 - - - are representations of 1: this is actually not a good exam-
ple, as in our construction we will have to consider both of them as

(*) Pervenuto in Redazione il 24 settembre 1994.
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preferred representations of 1; but in other examples one really rules
out some representations). Having these “preferred representations”
one can group up complex numbers according to the “integer part”
of their representation; the result is a self-similar tiling of the plane.

Apparently there has been no detailed account in the literature
of this beautiful idea of Thurston, which combines the topology of
the plane with number theory and the theory of automata. On the
other hand (self-similar) tilings (of the plane) are important objects
of interest in classical and modern mathematics (see [8] for a compre-
hensive introduction, then [11] again and [6], [7]; the recent works [2]
and [1] also deal with relations of the theory of tilings with automata
and special algebraic numbers, but from different viewpoints).

With respect to the original paper of Thurston (apart from giving
full proofs of all the results) we will prove that the failure test for
a state of the machine recognizing the preferred representations can
be itself performed by a finite state machine: in the original paper
this failure test was expressed in a somewhat implicit way (and at
first it was not clear to the author how to implement it). This fact
(together with a number of minor results whose scope is to keep
the size of the automata involved in reasonable terms) has enabled
us to write computer programs (using Mathematica) which actually
allow to draw tilings of the plane; we will include at the end of the
paper some pictures produced using these programs. We also prove
the rather surprising fact that the tiling might have fewer tile types
than the number of states of the machine.

In this paper we will assume that the reader is familiar with the
basics of the theory of finite state automata (see e.g. [3] and [5],
and also [4] where the notion of finite state automaton is beautifully
applied to problems in group theory and geometry).

A previous version [10] of this paper (where the reader will find
some proofs and related results omitted here) was written when the
author was visiting the University of Warwick. The author expresses
his sincere gratitude to this institution for its hospitality, and to
the Scuola Normale Superiore di Pisa for financial support. He is
especially grateful to Professor David Epstein for the very many
friendly discussions from which this paper originates. The computing
facilities supplied by SERC to Professor Epstein were essential to this
research. The author wishes to record his thanks for this.
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1. The main construction.

Let € C and D C C be such that || > 1 and #D < oc.
We define a set W(8, D) C C as the set of the points z such that
there exists {d;}32, € D" with the property that the sequence {z;}
recursively defined by

20 = =
{ zip1 = B(z — d;)

is bounded.
The first few results are easily established and we omit their proof

(see [10]).

LemmMa 1.1. If 2e W(B, D) and {d;} € D" is as in the definition
then z =372, d;-3~". Converselyifz =732, d;-f~" for some {d;} €
D" then the sequence defined as above is bounded, so z€ W (3, D).

COROLLARY 1.2. W(B,D) = {3X%20d; - 7" : {d;} € DV}.

LEMMA 1.3. If W C C is compact and W = D+ 3~V W then W
is W(8, D), and conversely W (8, D) satisfies these two properties.

Since § and D are fixed forever we set W = W (3, D).

Let D be endowed with a total order. We define {d;}2, €
DN a strictly preferred sequence (or a strictly preferred represen-
tation of the number 3222, d; - 57%) if for all {d’}32, € D" such that
S0 di - BT =322 dh - 371 we have {d;}32, > {d!}2, with respect
to the lexicographic order on DY induced by the order on D. Of
course every element of W (3, D) admits a unique strictly preferred
representation.

We define {d;}2,€ D" a weakly preferred sequence (or a weakly
preferred representation of the number 252, d; - 57%) if for all k€N
there exist d} ,,d},,...€ D such that the sequence dy, ..., dg, d} .,
d} 1y, ... is strictly preferred.

From now on we shall assume that 3 is a Pisot number, i.e. an
algebraic integer with modulus bigger than 1 whose conjugates (apart
from the number itself and its complex conjugate) have modulus
strictly less than 1.
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In the space Q(8) ® R we fix the canonical basis 1® 1, f ® 1,
..., 3% @1, where d is the degree of 3. We denote by B the multi-
plication by (in this space: we recall that if the minimal polynomial
of 3 is 244+ ag_12% 1+ ...+ ag then B is represented by the matrix

00 --- 0 —ap
1 0 --- 0 —a
0 1 - 0 —ay
0o 0 --- 1 —ad—1

Let us also recall that the minimal polynomial of B is the minimal
polynomial of 3, so the eigenvalues of B are the conjugates of f.
To every eigenvalue v of B we can associate a B-invariant subspace:
the (1-dimensional) eigenspace if v is real, and the (2-dimensional)
span of the real and complex part of a complex eigenvector if v is
not real. We denote by U C Q(8) @ R the unstable space of B (the
B-invariant subspace associated to the eigenvalues 3 and 3) and by
S C Q(B) @R the stable space (the span of the B-invariant subspaces
associated to the other eigenvalues). We denote by 7 the projection
of Q(f) @ R onto S along U. Remark that Br = 7 B.
We denote by v: Q(3) ® R — C the value homomorphism:

-1 ' -1
viY (Wi B0l > yf

LEMMA 1.4. Ker(v) = S.

Proof. Let us consider the complexification Q(8) @ C and the
natural extensions to it of B and v. Since v is a non-zero homomor-
phism it is sufficient to prove that if y is an eigenvector relative to
an eigenvalue ~ different from S then v(y) = 0. It easily follows from
the definition that v(By) = - v(y); so f-v(y) = v -v(y) and the
conclusion is obvious.

We will define now a norm |[|.|| on S. Let us choose in every
1-dimensional eigenspace of #in S a non-zero vector z and in every
2-dimensional B-invariant subspace of S (associated to a non-real
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eigenvalue) a basis {y, z} with respect to which B is expressed as a
similarity (i.e. a scalar multiple of a rotation). We globally have a
basis of S of the form zy, 29, ..., y1, 21, Y2, 22, ...; we define the norm
of a vector Y-, a;zi + 3 : (bjy; + ¢2;) as (X; af +32;(b% + C?))I/Q.

Of course the norm thus defined is not unique, but in the sequel
we will never refer to its construction: we will only use its property
given by the next lemma. Moreover we will see in Section 3 that
the objects we will construct, after a suitable simplification, will not
depend on the norm.

We set:

e = max{|y| : v conjugate of 4, 7 # 4, B}.

LEMMA 1.5. For all ye S we have ||By|| < ¢||y||.

Proof. Inequality ||By|| < ¢||ly|| is true for the elements of the
basis of S used in the definition of the norm, and the conclusion
follows at once. &

From now on we will only deal with Q(f), not with the whole
of Q(#) @ R. We will keep denoting by S, U, B, 7, v the intersection
with (or restriction to) Q(5) = Q(5) @1 of the corresponding objects
in Q(f) ® R.

We will also assume from now on that D is a set of algebraic
integers in Q(F); in particular the elements of D are vectors, not
numbers: the corresponding numbers are obtained by applying the
homomorphism v. Before turning to the construction we are really
interested in we recall a well-known fact (see e.g. [9]):

LEMMA 1.6. The algebraic integers in Q(8) form a lattice.

We define now

o = max{|v(d —d')|:d,d' e D}
7 =max {||r(d - d')|| : d,d' € D}

and F as the set of all algebraic integers y in Q(f) such that

R S 11 EE s
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By 1.4 and 1.7 we have that F is a finite set.

PROPOSITION 1.7. Gliven two sequences {d;},{d.} € DN we have
that they represent the same number if and only if all the elements

of the sequence in Q(3) defined by

{ Yo=20
Yir1 = B(yi — (di — d}))

are in F.

Proof. Two sequences represent the same number if and only if
their difference is a representation of 0 with D — D replacing D; by
Lemma 1.1, this fact is equivalent to boundedness of the sequence
{o(m)}.

If y; € F for all i then of course {v(y;)} is bounded.

For the converse, we first have that the y;’s are certainly alge-
braic integers in Q(). Moreover one can easily see that if {v(y;)} is
bounded then for all ¢

v(yi) =D (dig; — diy )57,
7=0

and hence the first inequality to check, |v(y;)| < o|8]/(|8] — 1),
is easily established. We prove the second inequality,
[|[m(y;)|| < 7e/(1 —¢€), by induction on ¢; the case ¢ = 0 is obvious,

and for the inductive step, using Lemma 1.5, we have
7 (wir)ll <ellm(ya)ll+7) <e(re/(1 —e) +7) =7e/(1 - 2).
The proof is complete. &

Even if it is not strictly necessary now, we rephrase the previous
result in terms of finite state automata. We recall that if M is a ma-
chine its language is denoted by £(M). In the definition of automata
which follow we will use “fail state” as a synonym of “non-accept
state”; but actually all our machines turn out to have prefix-closed
language, so our use of the term “fail” is consistent with the usual
one.
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Let SN be the automaton with states F U {x}, initial state 0,
alphabet D x D, fail state * and transition

(0 (d, ) = |

(Remark that of course £(SN) is prefix-closed.) The following re-
sult, which is immediately deduced from 1.7, means that SN checks
whether two sequences represent the Same Number.

B(y — (d—d")) if y # x and this point is in F

* otherwise.

COROLLARY 1.8. Given {d;},{d.} € D" we have that
DT = dip
=0 =0
if and only if (do, dp) - - - (dx, d},) € L(SN) for all k€N.

We define now the machine WPR which recognizes Weakly Pre-
ferred Representations. The states of WPR are the subsets of F, the
alphabet is D, the initial state is @), the d-arrow from the state F’
leads to

({B(f—(d—d’)): feF,deD}Y| J{-B(d-d): deD,d > d})ﬂf
and a state I is a fail state if W C v(F) + W.

THEOREM 1.9. A sequence {d;}2, € DV is weakly preferred if
and only if for all k €N its finite prefix dy - - - dy is accepted by WPR.

The proof of this result requires the following preliminary fact.
Let us recall that D* denotes the language with alphabet D, that is
the set of all strings (including the empty one) of elements of D.

LEMMA 1.10. In WPR the word dg- - -dy € D* leads from () to

k
{-X Bty 5 oD ey > o,

=0

J
=S BTN - df) € FYj=0, .., k}
=0
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Proof. Denote by F} this set. The proof is by induction on k.
The case k£ = 0 is obvious. So we must check that if F’ is the target
of the dy4q-arrow from Fj then F = Fpyq.

First inclusion: F C Fpqq.

Let f = =% B¥1=i(d; — d') € F}.. Then for any dj .1 €D we have
dl - - 'dﬁgd§c+1 > dg - - dgdy4q; moreover

k+1
B(f = (dpg1 — djpyy)) = = > BM?7(d; — d})
=0
so if B(f—(drs1—d}y,)) €F we have of course B(f —(dpy1—d} ) €

Fiop1.
Let d';c+1 > di41. Then if we set d: = d; for i = 0,...,k we have
dy---didi, > do---dydpyy and

k+1 )
“Bldyss — diy) = — 3 BH7 (di - )
1=0

so if _B(dk+1 - dﬁcﬂ) € F we have —B(dgy1 — dj ;) € Fyy1 (all the
sums — Y 1_o Bt (d; — dl) with j < k give 0, which belongs to F).

Second inclusion: Fyy1 C F.

Let f = — M) B*2-i(d; — d!) € Fypy1, where djy---djid},,, >
do---dpdry1. We have either dfy---d}), > do---dy or djy---dj, =
do---dy and dj | > dpyi. In the former case we have f = B(f' —
(dpy1 — diy)) where f = — S8 BE+1=i(d; — d!) € Fy; in the latter
case we have f = —B(dp41 — d?H_l) where d§c+1 > dg4q. In both
cases f € I’ and the proof is complete. &

The following result immediately implies 1.9.

ProprosiTiON 1.11. A word dy---dy € D* is not accepted by
WPR if and only if it admits no strictly preferred extension.

Proof. Let dg - - -dj, lead from () to the state F' (given by 1.10).
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For the sake of simplicity in this proof we will say a point z of
W is (or is not) written in its strictly preferred representation if a
certain representation of z is thought to be fixed or evident from the
context.

Assume that F' is a fail state and, by contradiction, that there
exist z,z’ € W such that

k
Z,U ﬁ‘}'ﬁkl/

1=0

is a strictly preferred representation (of course 2’ itself must be writ-
ten in its strictly preferred representation). Since W C v(F) + W
there exists z” € W and a word dj - - - dj}, bigger than dg---dj such
that

Z == Tho(v(ds) - o(d)BFH 4 2"
ISy 4 g

and whatever representation of 2" we choose, this is a representation
of z bigger than the previous one, This is a contradiction.

Assume that dp---dp has no strictly preferred extensions. For
z €W we have that

k
Z,U ﬁ ‘I’ﬁkl

=0

is not written in its strictly preferred representation, whatever rep-
resentation of z we choose. In particular if we choose the strictly
preferred representation of z we have that a lexicographically bigger
representation of 2z’ must be bigger within the first k£ + 1 terms. So
there exist df,---dj, > do- - -dj, and z"” €W such that

k k
Zv ﬁ +ﬁk1 Zvd/ﬁ +ﬁk1”
=0

=0

By 1.7 for j =0, ..., k we have

_ZBJ-H z d’) ya
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so f =8 B¥1=i(d; — d') belongs to F; by direct calculation we

have z = v(f) + 2”. We have proved that W C v(F) + W, i.e. that

I is a fail state. &
The following fact is easily deduced from the previous result.

COROLLARY 1.12. The language of WPR is prefiz-closed.

We will see in Section 3 that a purely abstract manipulation of
the automaton SN naturally leads to a machine which differs from
WPR only for having a different (actually, much smaller) set of accept
states. This is one of the reasons for having introduced the machine

SN.

The only part of the construction of WPR which is not directly
implementable, according to the above description, is the failure con-
dition for the states. We will now automize this fail test; namely we
will prove that for a state F' of WPR there exists a finite state au-
tomaton such that F is a fail state if and only if the automaton
accepts all the words. In Section 3 we shall describe various strate-
gies which can be used to keep the size of the automata involved in
the construction as reasonable as possible.

We recall that the states of WPR are the subsets of F and that
a state F'is fail if and only if W C F'+ W (by simplicity from now
on we will omit explicit mention of the value function v).

The basic instrument for checking the failure condition W C
F+ W will be an automaton which can check equalities of the form

Yo =f+ Y dip
1=0

1=0

We recall that we have defined a machine SN which checks when two
sequences represent the same number; since in the previous formula
we have the perturbing element f the machine SN is not the right
one, but a slightly different machine does the job: we will actually
show that it is enough to change the start state.

We recall that an accessible state of WPR is a set of accessible
accept states of SN. If f is an accessible accept state of SN (and
hence an algebraic integer in Q(f3)) we define the machine SN(f)
exactly as SN but using f instead of 0 as start state. The following



THURSTON’S SOLITAIRE TILINGS OF THE PLANE 271

result proves that SN(f) checks whether two sequences represent the
Same Number apart from an initial perturbation f.

ProposITION 1.13. Given {d;},{d!} € DY we have that
Yodipt=f+) dip
=0 =0

if and only if (do, dy) - - - (dg, d},) € L(SN(f)) for all keN.

Proof. Since f is an accessible state of SN it can be written as

-1
- Z B_Z(dl - d;)7

i=—p

so equality S22, d;37" = f+ .52, d.B37" is equivalent to equality

Do diyfT = di 5
=0 =0
and the conclusion easily follows from the properties of SN. &

The following proposition means that for any accessible state F
of WPR there exists a machine CF(#) by means of which one can
Check whether the state F' is Fail or not.

ProprosiTION 1.14. Let I be an accessible state of WPR. Let
CF(F) be the machine defined as follows: the states are the subsets
of F, the start state is F, the only fail state is (), the alphabet is D
and the d-arrow from a state G leads to

{B(g—(d—d")): geG,deD}NF.
Then I is a fail state of WPR if and only if CF(F) accepts all the

words.

Proof. We can rephrase the fail condition W C F + W in the
following terms: for all {d;} € D" there exist {d;} € D" and f e F

such that - -
D difTH =S+ diBT
1=0

1=0
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i.e., using 1.13, (do, dj) - - - (dg, d},) € L(SN(f)) for all keN.

By definition, the state G to which a word dg---dj leads in
CF(F) is obtained as follows: as f varies in F' and dj, - - - dj, varies in
D**! we consider the state to which the word (dg,d}) - - (dg, d})
leads in SN(f); then G is the set of all such states which are accept.

This implies immediately that if F' is a fail state then CF(F)
accepts all the words.

Let us prove the converse. Let {d;} € D": for all & we can
find f*€ I and df - - -d¥ such that (do,df) - - - (dg, df) is accepted by
SN(f*). We can extract a subsequence n ++ k,, and assume that f»
is constant (equal to f). Then by a diagonal extraction we can also
assume that d.f" is constant for n > i (equal to d}). Then all the
prefixes of the word (dy, d)(dy,d}) - -- are accepted by SN(f), and

the conclusion follows at once. &

Remark 1.15. The need of extracting subsequences in the proof
of the previous result essentially comes from the fact that given {d;}
the predicates Vk and 3{d’} interchange their positions when we pass
through the machine.

Since the aim of this construction is to actually produce computer
programs which recognize weakly preferred sequences, it is worth
stating the following:

Remark 1.16. The states of the machine SN are defined as the
algebraic integers in Q(3) inside a certain “box” around the origin.
To find all of them we would need a basis for the lattice of algebraic
integers in Q(8). However, for the machines WPR and CF(F) we
are only interested in the accessible states of SN. By the very ex-
pression of the transition function of SN, once the digits are chosen
as algebraic integers in Q(f3), starting from 0 we automatically get
algebraic integers in Q(f), and then we only have to check if they
are in the box or not.

We have now that the construction of the machine WPR is es-
sentially directly implementable. However one can see that even in
simple examples the number of accessible states of the machine SN
can be rather big. This implies that the a priori bounds for the
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number of states of the machines WPR and CF(F’) can be extremely
big. In Section 3 we will describe some strategies which can be used
to try to keep the size of these automata in reasonable terms.

2. The associated tilings.

We will see now how to associate tilings of the plane to the above
construction. First of all we recall that a self-similar tiling of C
with expansion v (a complex number with modulus bigger than 1)
is given by a family 7 of subsets of C with the following properties
and additional structures:

1. 7T is alocally finite covering of C.

2. Every element of 7 is compact and it is the closure of its
interior.

3. The interiors of two different elements of 7 are disjoint.

4. Every element of 7 is given a label, in such a way that two

elements of 7 having the same label are translates of each
other, and the labels are globally finitely many.

5. The image of every element of 7 under the multiplication by
7 is a (necessarily unique) union of elements of T (subdivision

property).

6. Two elements of 7 having the same label subdivide in the
same way, i.e. if T,T7'€T have the same label, T/ = T +v and
YT = UA{T:}, vT" = U;T] then {T]} = {T; +yv}.

Given aword d_,, - - -d_; € D* we define Tyg_pd_y a8 the set of all
complex numbers of the form Z;’i_p dzﬂ_i whered_, ---d_1dodyd;y - --
is a weakly preferred sequence (remark that this set is always defined,
though it might be empty). We define the label of this set as the
state of WPR to which the word leads from (). Remark that by the
properties of WPR the label of this set is a fail state if and only if
the set is empty (in the sequel we will also reprove this fact in a
more direct way). We will use these Tq_,-..d_,’s as tiles for tilings of
C. We first deal with the essential topological properties, which will
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be deduced from a very explicit description which has independent
interest.

LEMMA 2.1. If W is a neighbourhood of 0 then it is the closure
of its interior.

Proof. Let W contain a disc of radius r. If z = 322, d;87 € W
then for all £ > 0 the point z; = Zf:o d; 37" has distance at most
|B|7¢+D) . diam (W) from z (remark that we may have z; ¢ W).
Moreover within distance |3|~(+1) . diam (W) from z} there is a disc
of radius |ﬁ|_(k+1)fr completely contained in W, and hence a point
of the interior of W. This implies the conclusion. &

Remark 2.2. The tilings we will describe will always require that
W is a neighbourhood of 0. In particular 3 cannot be real; for,
if 3 is real, then also the elements of D must have real value, so
W is contained in R. In this case one could consider the condition
that W be a neighbourhood of 0 in R, and prove results completey
analogous to those we prove here for tilings of R instead of C. We
will not explicitly mention this generalization.

Remark 2.3. It is not hard to see that if § is not real then it is
always possible to choose D in such a way that W is a neighbourhood

of 0 (see [10]).
LEMMA 2.4. Ty_ ..q_, is a compact subset of the plane.

Proof. Consider a sequence

-1 00
Te= Y diffT 4> dFpT
i=—p 1=0
in Ty_,...q_,; a diagonal extraction allows us to assume that d,f»“ is
constant (equal to d;) for k > 4. Then of course z; converges to
e _p d; 37" which is a point of Ty_,..q_,. &
For a word d_,, - - -d_; € D* we define now T,:’l_p._d_1 as the set of

points of the form Z;’i_p dzﬂ_i where d_,, - --d_qdod; - - - is a strictly
preferred sequence.
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, . .
LEMMA 2.5. Td_pmd_l is dense in Ty_,..q_,-

Proof. If x =372 d;~" and d_p---dody ---is weakly preferred
then for k > 0ifd_,---dp-- 'dkdk+1dk+2 - - - is strictly preferred then
the point Zf:_p d;B3 + Yokt d; 37" has distance from 2 bounded
by a constant which tends to 0 as £ tends to oco. &

For a word d_;, -+ -d_; we define now 77", =~ as the following
subset of C:

-1 -1
(Z diﬂ_Z—I-W) \ U (Z d;ﬂ_z-FW) :
==p d'd €D, \i=7P

d e d >d_ped_y

" _ /
Lemma 2.6. T 5 =Tq_..q_,-

Proof. Let d_, - --dody - - - be strictly preferred; of course > 72 _

d; 3~ belongs to Zi—:l_p d;3~* + W; moreover it cannot belong to

any Zi_:l_p d;3=" + W with d’_,---d"_| > d_,---d_; for otherwise
d_p---dod; --- would not be strictly preferred.

Conversely let = = 3772 d;3~ €Ty ., , and assume that

—p —1
dody - - - alone is strictly preferred. Assume by contradiction that
d_p---dod; - -+ is not strictly preferred: then a bigger representation
must be bigger within the first p terms; it easily follows that z belongs
to some Zi_:l_p d'37* + W with d’_p coedly >d_p---d_y, which is a
contradiction. &

The following result, which is easily deduced from 2.5 and 2.6,
gives a description of the tiles which does not explicitly involve the

notion of preferred representation.

COROLLARY 2.7. Ty_,...a_, is the closure of Tc/l/_p~~~d_1-

ProrosiTiON 2.8. If W is a neighbourhood of 0 for any word
d_p---d_y the set Ty_,...q_, is the closure of its interior.
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Proof. Let us omit the subscripts d_,---d_;. Since T is the
closure of 7" of course it is sufficient to prove that the interior of 7"
is dense in T". In fact, let 2 = Z,L__p d;f7" +weT"; we can find
€ > 0 such that

—1
dist (;« > dip +W) > e
i=—p
for all words d’,---d", bigger than d_,---d_;. Since w € W and
W is the closure of its interior for all n > 0 we can find w, in the
interior of W such that |w—w,| < min{1/n,e/2}. Let é,, > 0 be such
that 4, < £/2 and the disc of radius §, centred at w, is contained
in W Then it is easily checked that the disc of radius 4, centred at

Z__p d; 37" + w, is contained in 7", and hence Z,L__p d;37" + w,

is in the interior of T". The conclusion follows at once. &

ProprosITION 2.9. Ifd_,---d_; < d’_p---d’_l then Ty_,...q_,
does not intersect the interior of Ty .. 4z X
Ll

Proof. The interior of Td/ ~d 1S contained in the interior of

ZZ__p d.p= ' + W, which, by the characterization given in 2.6 and
2.7, of course does not meet Ty_,...q_,- &

COROLLARY 2.10. Ifd_p---d_y # d_,---d_y then Ty_,..q4_,
and Td’_p~~~d’_1 have disjoint intemor

It is remarkable that the proofs of 2.8 and 2.10 follow from 2.7
by purely topological methods.

The description of the tile Ty_,...4_, we have obtained in 2.7 gives
us a better insight to the construction of the machine WPR.

ProPOSITION 2.11. Let I be the state to which a word d_, ---d_;
leads in WPR; then we have that Ty_,...q_, is the closure of

S 6 (W (W),

i=—p

Proof. TFirst of all we easily have from 2.7 that Ty_,...q_, is the
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closure of

-1 -1
S dipTt + [ W U (— > (di—di)s~ —I-W)
i==p d'_,..d’_ €D, ==p

d’_p~~~d’_1>d_p~~~d_1

and it is not hard to see that

-1 )
{— o(di—d)pTt d’_p---d’_1>d_p---d_1}3F3

i=—p

-1 )
D { - Y (di—d)pt o ddly > d oy d

vo(- 2 a-arn) o)

which implies the conclusion at once. &

We will construct in Section 3 a machine WPR; which is a sort
of optimized version of WPR. It is worth remarking soon this fact,
whose proof will be a straight-forward consequence of the properties

of WPR;:

Remark 2.12. If F is the state of the machine WPR; to which a
word d_, - --d_; leads from ), then we have exactly

-1
F:{— N (di—d)pT e dl > Ay doy,

i=—p

wn (— i (d; — d;)ﬂ—ww) # (z)} :

i=—p

We start now the description of the tilings. We define 7, as
the set of all non-empty sets of the form T;_,..q_,. Remark that

To = {W}. We also define 7 as the union of all the 7,’s.
By 2.8 and 2.10 we easily have the following;:

CoRrOLLARY 2.13. If W is a neighbourhood of 0 then 7T, is a
tiling of the region it covers.
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ProrosiTION 2.14.
1. The different labels of the elements of T are finitely many.
2. Two elements of T having the same label differ by a translation.

3. If T €7, then BT is a union of elements of T,41 (subdivision
pmperty)

4. Two elements of T having the same label subdivide in the same
way; namely, if T €T, and S €T have the same label and veC
is such that S =T + v, the subdivisions

AT =J. T {1} C Ty Bs=J. 8 {8} CTin

are such that {S;} = {T; + Bv}, and the natural bijection be-
tween these sets respects the labeling.

Proof.

1. This is obvious: the labels are states of the machine WPR.

2. Let us define (for further purpose as well) for an accessible ac-
cept state F of WPR the set Mp C C as the set of all sums 352, d; 37"
where {d;}:2, is such that all its prefixes lead in WPR from F to an
accept state. Then if Ty_ .4, has label I we simply have

-1
Ti_pydy = Y diB~" + Mp

i=—p

which implies the conclusion at once.
3. If Ty_,...q_, haslabel FF and a4, ..., a, are the letters accepted
from F in WPR then we easily have

n
BLa_ iy = \J Ta_pd_sa,
j=1

and of course this is a union of elements of 7,4;.
4. Let T =Ty .4, and S = Td; d both have label F,
and let aq, ..., a, be the letters accepted from F in WPR; denote the
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states to which these letters lead by [, ..., I}, respectively. We have
asin 2

-1 -1
T = Z d;3~" + Mp S = Z d\3~" + Mp

i=—p i=—k
and then we have S =T 4 v with v = Z;:l_k dip=t — Zi_:l_p dif7";
the subdivision rules are

BT = U (s f} dif~ + Ba; + Mp, )
j=1

i=—p

n -1
ps = U (8 X dip™ + Ba; + Mr,)
7=1 i=—k
and the proof is complete. &

According to this result, the obvious idea to obtain self-similar
tilings of the plane from this construction is just to put all the various
tilings 7, together; in general we cannot do this directly, as two
different 7,’s may disagree on some region. The following result gives
a very natural condition under which the different 7,’s do agree; this
case is the one we are really interested in: however we shall show
below how to obtain self-similar tilings in the general situation.

ProposiTION 2.15. If 0€ D is the biggest element of D then for
allp > 07T, C Tpt1; hence if W is a neighbourhood of 0 the union T
of all the T,’s is a self-similar tiling of the plane with expansion 3.

Proof. The 0-transition from ¢ in WPR leads to 0 again; this im-
plies that a tile T;_,...q_, €7, can be naturally identified (respecting
the labeling) with the tile Tod_p-d_, € Tp+1. All the properties of
the definition of a self-similar tiling easily follow from 2.8, 2.10 and
2.14 (only local-finiteness requires an easy argument which we leave
to the reader). &

We can show now how to obtain self-similar tilings of the plane
also in the general case.
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ProprosITION 2.16. Let W be a neighbourhood of 0. Let p, k€N,
k #0, T €T, be such that the subdivision of BT into elements of
Tp+k contains a set T+v with the same label as T which is completely
contained in the interior of 3*T; define u as (1— 3*)"'v. Forn >0
express 37T as a union of elements of Totkn, and translate all these
elements by the vector 3™ u; denote by U, the resulting family of
subsets of C. Then U, C U,41 and the union of the U, ’s naturally
defines a self-similar tiling of C with expansion (3*.

Proof. This fact is essentially straight-forward. The translation
is just defined in such a way that U,, C U,+1, and all the properties
of a self-similar tiling are easily verified. The condition that T 4 v is
contained in the interior of B*T easily implies that 0 is in the interior
of T4 w, which implies that the tiling covers C. &

ProrosiTiON 2.17. If W is a neighbourhood of 0 there always
exist p, k and T satisfying the assumptions of 2.16.

Proof. The proof is carried out by contradiction.

Let us denote by é§ the maximal diameter of the tiles (there are
finitely many up to translation). Let us choose € > 0 such that all
the tiles contain an open ball of radius £ (again, we are using the
fact that the tiles are finitely many up to translation, together with
the fact that they have non-empty interior). We can choose k& > 1
such that 28|3|7% < . For any tile T we define its “core” as

c(T)={zeT : dist(z,0T) > 25|ﬂ|_k}

which, by the choice of k, is non-empty. Moreover we easily have
that for h > k the following holds:

1. If a tile in the subdivision of 3"T intersects 3"c(T) then it is
contained in the interior of B"7.

2. There exist tiles 7" in the subdivision of 8*T such that 7’ C
B¢(T) (to prove this, let = € T be the center of a e-ball con-
tained in T, and choose T’ such that 3"z €T").

For the conclusion of the proof, it is convenient to contract the
“p-generation” tiles by the factor 7% to define tilings always of the
set W; namely, we define 7, as {#7PT : T €7T,}; the fact that for all
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p’s this is a tiling of W is obvious. Remark that now the subdivision
rule just means that any element of ’7;, is a union of elements of 7;“.
If S = 37PT €7, we define ¢(S) as 3~P¢(T), and the label of S as the
label of T' (remark that now tiles with the same label are similar but
not obtained from each other by a translation). The contradiction
hypothesis now implies that if S € 7; and h > k then no element of
Tp4n intersecting ¢(S) has the same label of S. (This explains why
we have contracted the tilings; in fact we have now that if S’ € 7;4_1 is
contained, as a set, in S € 7;, then 3715’ € 7,41 is in the subdivision
of BPS€T,.)

Let us define S = W € 75. For h > k no element of 7}, inter-
secting ¢(Sp) has the same label of Sg. Let us choose Sy € T& such
that S C ¢(S0), which implies that S; has not the same label as Sy.
Now any tile in 7, with A > 2k which intersects ¢(S1) must have
label different from Sy and S;. We can choose Sy € T35 such that
Sy C ¢(S1), and similarly continue. The tiles {S;} thus defined all
have different labels, and this is a contradiction. &

We conclude this section with a remark concerning the definition
of self-similar tiling. To get rid of some pathologies which may oc-
cur (e.g. tilings of C by squares of two sizes with irrational ratio)
Thurston suggests to assume that the tiling is quasi-homogeneous
in the following sense: for z € C and r > 0 define the (z,r)-local
arrangement as the pattern (types and relative posititions) of the
tiles which intersect the disc of radius r at z. The tiling is called
quasi-homogeneous if for all r > 0 there exists R > 0 satisfying the
following property: given any z,y € C there exists w € C such that
|y — w| < R and the (z,7) and (w, r)-local arrangements are identi-
cal. Heuristically this means that all the r-local arrangements occur
more or less uniformly all over C.

The tilings obtained by the construction we have described do
not satisfy in general this quasi-homogeneity property, and this is
the reason for not having included it in the definition of self-similar
tiling. On the other hand we have that by definition our tilings are
obtained by successive expansion and subdivision from a single tile,
so in particular all local arrangements have an ancestor which is a
single tile (a property which Rick Kenyon calls purity in [6] and [7],
and which allows anyway to get rid of some unpleasant special cases).

So, for an easy example of the non-quasi-homogeneity of a tiling
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obtained as in 2.5, consider the base § = #v/2 and the digits D =
{=1,1,0} (in increasing order). It is easily proved that W (3, D) =
[~2,2] x [-v/2,v/2]. Using 2.7 one can see that the resulting tiling
of C is as represented in Fig. 1. In particular the base tile W occurs
only once, and hence of course the tiling is not quasi-homogeneous.

Figure 1. A non-quasi-homogeneous self-similar tiling of the plane

3. Shortcuts and related ideas.

In this section we present miscellaneous facts related to the above
construction, and methods to make the implementation of the ma-
chine WPR more effective.

A. Interchanging the predicates for the fail test.

It is easily seen that the machine CF(F) defined in 1.14 is ob-
tained by first applying the “or” predicate to the machines SN(f)
as f € F (i.e. taking the machine whose language is the union of
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the languages of these SN(f)’s) and then applying the “there exists”
predicate to the second letter. (Remark however that the general
abstract method for performing these two steps leads to a machine
more complicated than CF(F’): we have exploited the fact that the
starting machines SN(f) are very much related to each other.) On
the other hand, this abstract description of CF(F’) starting from the
SN(f)’s implies that if we apply the predicates “or” and “there ex-
ists” in the reverse order we still get a machine which checks the
failure condition.

We explicit this construction and then explain why it might be
useful.

If fis an accessible state of SN we define the machine ESN(f) by
applying the “there exists” predicate to the second letter in SN(f).
Namely by definition

L(ESN(f)) = {do---dy: keN,3d), ..., d, s.t.
(do, dp) -+ - (di, d1,) € L(SN())}-

Now, if F is an accessible state of WPR, let NCF(F') be the ma-
chine whose language is the union of the languages of the ESN(f)’s as
f varies in F. As we have remarked, this NCF(F) is a New machine
which Check whether F’ is a Fail state or not:

ProposITION 3.1. F' C F is a fail state if and only if C(NCF(f))
= D*.

The calculus of predicates can be quite easily explicitly carried
out in the construction of NCF(F'), and it leads to the following
result. If "' = {fi,..., f,} is an accessible state of WPR then NCF(F’)
is the machine with states (p(FU{*}))", initial state ({f1}, ..., {/p}),
single fail state ({},...,{*}), alphabet D and transition as follows:
the arrow d leads from (A4, ..., Ap) to (Af, ..., A}), where

Al ={T(a,d,d") : a€ A;,d' € D}

T(a,d,d) = {B(a — (d—d")) if a # * and this point is in F

* otherwise.

It is quite evident that the machine thus described is generally bigger
than CF(F). Let us remark however that since the passage from
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the ESN(f)’s to NCF(F) is purely abstract, we must not think that
this is “the” machine NCF(F): we can replace every ESN(f) by an
equivalent machine, and we still get a machine which checks if I is
fail.

This is the reason why this strategy for checking the fail test
may turn out to be useful: before taking the union machine one can
minimize the ESN(f)’s. Moreover it seems to be “experimentally”
true that the machines ESN(f) are small enough to be minimized in
reasonable time and that their minimization leads to an important
reduction in the number of states.

B. Cutting the dead branches.

In SN there may be “dead branches”, i.e. non-fail states from
which one is sure to fail when he reads a long enough word. Of course
we can cut these dead branches without affecting the truth of 1.8.
Let us denote by SN; the machine thus obtained (more precisely, one
should say that the dead branches and their arrows are all merged
with the fail state *; of course one can easily describe algorithms to
do this). Let F; be the set of all non-fail states of SN;.

ProprosiTION 3.2. Let WPR; be the machine constructed exactly
in the same way as WPR with Fy replacing F. Then WPRy recognizes
weakly preferred representations (in the sense of 1.9).

Proof. The scheme of the argument is exactly as in the proof
of Theorem 1.9. First of all one proves for WPR; an analogue of
Lemma 1.10 which describes the state at which the machine is after
reading a word; we only have to replace F by F; and the proof is
exactly the same.

The proof that a word leading to a fail state admits no strictly
preferred extension is unchanged.

The converse is proved by a similar argument using the fact that
if {d;} and {d!} represent the same number then

k
_ Z B(’““—f)(dj _ d;)
7=0

is the state in which SN is after having read a prefix of an infinite
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word all the prefixes of which are accepted; so it is a state of SNy,
i.e. an element of Fj. &

Using this same idea of cutting the dead branches we have now
a simple method which could allow simplifications in the machine
NCF(F) we have introduced in the previous paragraph. In fact if for
all the machines SN(f) we cut the dead branches (and denote the
resulting machines by SN(f)1), then of course 1.13 is still true, so
by applying the “there exists” predicate to these machines and then
taking the union as f € F' we obtain a new machine which checks the
failure condition for . And this machine is potentially smaller than
NCF(F).

We can prove now that cutting the dead branches from the
SN(f)’s leads to minimized machines, so any further simplification
of NCF(F') can be performed only after having applied the “there
exists” predicate.

LEMMA 3.3. The machine SN(f); is the minimal machine which
accepts its language.

Proof. Of course all the states of SN(f); are accessible. Ac-
cording to the well-known characterization of minimal machines, it
is sufficient to show that if starting from two states f; and f; the
same words are accepted then f; = f5. Since f; and f are accessible
non-fail states of SNy, the words accepted from them in SN(f); are
the same as the words accepted from them in SNy. By definition of
SN; we can find an infinite sequence {(d;,d’)}$2, all the prefixes of
which are accepted from f; (and hence from f;); this implies that

o(f) = o) = = Y (i — )5
1=0
and hence f; = f5. &

C. Changing the norm.

Let us recall that the construction of the machine SN was based
on the determination of a certain set F of algebraic integers in Q(f),
which in turn required the definition of a norm ||.|| on the stable
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space S C Q(p) satisfying a certain property (namely that B is a
contraction in S with respect to this norm). Of course the choice
of the norm is not unique, so the machine SN is not unique. But
it easily follows from its description that the machine SN is indeed
uniquely associated to # and D. A more accurate choice of the norm
can allow us to replace the set F by a smaller one, and then to
replace SN by a smaller machine which still satisfies 1.8, but after
cutting the dead branches we will always get SN;. Of course it is
always nicer to cut the dead branches from a small machine than
from a big one, so it can be of some use anyway to choose “better”
norms. It is not difficult to devise methods to do this —see [10] for
details.

D. Geometric shortcuts for the fail test.

Some very simple geometric conditions under which one can im-
mediately answer to the fail test are deduced from the next result,
whose proof is immediate.

ProPOSITION 3.4. Let K be a non-empty compact subset of C.
1. If ueC and K C u+ K then u=0.
2. Ifu,veC ugR_-vand K C (u+K)U(v+ K) thenu-v=0.

3. If U C C and there exists ug € C such that (u|ug) > 0 for all
ue U (where (.|.) is the standard scalar product in R? = C),
then K ¢ U+ K.

Some sufficient conditions, and some necessary ones, for a state
to be fail are deduced from the fact that W can be approximated
by taking finite sums up to a certain level, and the accuracy of this
approximation can be controlled. We omit explicit statements and
refer the reader to [10].

E. A related construction

We mention here an idea which unfortunately (and quite surpris-
ingly) does not work, but nonetheless gives a better insight to the
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weakly preferred representations acceptor. We first quickly recall
that we have constructed an automaton SNy with alphabet D x D
which recognizes if two sequences represent the same number in the
following precise sense:

o given {d;},{d!} € D" we have >, d;37" = S22, d!37" if and
only if for all k€N the word (do, df)) - - - (d, d}.) is accepted by
SNy;

e if a word (do, dp) - - - (dg, d},) is accepted by SNy then there exist
extensions {d;}, {d}} € DY such that S°72,d;37" = Y52, di3~".

Moreover the machine SNy is obtained from SN by a general abstract
method (cutting the dead branches). Now, starting from SNy, one
could hope to construct an automaton recognizing weakly preferred
representations by means of purely abstract operations on automata.
We describe the idea and why it does not work.

Let M be the machine obtained starting from SNy in the following
way:

e let LEX be the machine with alphabet D x D which recognizes
strict lexicographic inequality, and apply the predicate “and”
to SNy and LEX;

e apply the predicate “there exists” to the second letter in the
previous machine;

e apply the predicate “not” to the previous machine.

The machine M accepts a word if there exists no lexicographically
bigger word such that the pair is accepted by SNy; since SNy checks
if two strings represent the same number, one may conjecture that
M recognizes weakly preferred representations, i.e. that M accepts a
word if and only if it has strictly preferred extensions; actually only
one of these implications is true (the proof is easy).

LEMMA 3.5. If a word admits no strictly preferred extensions
then it is not accepted by M.

EXAMPLE 3.6. Let § = 2 and D = {-1,1,0} (in this order).
Of course 1111 --- is a strictly preferred sequence; but 1 < 0 and
the extensions 1(—1)(—1)(—1)--- and 0000 --- represent the same
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number, so 1 is not accepted by M. A wvariation on this argument
proves that no word containing a 1 is accepted by M. Similarly one
can see that no word containing a —1 is accepled.

The following result shows that (as in the previous example) the
words accepted by M are always dramatically less than the prefixes of
the strictly preferred sequences. For the proof the reader is referred
to [10].

ProposiTiON 3.7. The machine M coincides with the machine
WPR,, with the only difference that the initial state of WPRy is the
unique accept state for M.

F. Minimal machine vs. minimal tiling.

In Section 4 the reader will find some pictures which illustrate
tilings arising from the construction described above. For some of
these examples, using the various strategies described in this Section,
we have completely computed the machine WPR; and we have min-
imized it. The number of states of the minimized machine tends to
be quite big (for instance in the first example there are 101 states).
Therefore one would expect the combinatorial structure of the self-
similar tiling to be rather complicated. Actually, the author’s first
conjecture was that, knowing the base and the digits, the language
L(WPR;) could be recovered directly from the self-similar structure
of the tiling: in particular the minimal number of tile types neces-
sary to describe the combinatorial structure of the tiling would have
been equal to the number of accept states of the minimized version
of WPR;. Surprisingly enough this is not the case, as the following
result shows:

PROPOSITION 3.8. Let # = iv/2, D = {—1,1,0} be the example
considered at the end of Section 2. Then 4 tile types are sufficient
to describe the self-similar structure of the resulting tiling, whereas
the minimized version of WPRy involves 9 accept states (plus the fail
state).

Proof. The first assertion is obvious: there are 4 tile shapes in
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Fig. 1, and one easily sees that tiles of the same shape subdivide in
the same way.

For the second assertion we explicitly show in Fig. 2 the min-
imized version of WPR; (all missing arrows lead to the fail state,
which is not shown). We have symbolically represented the states
by the tiles they give rise to, which also explains why there are 9
types rather than only 4. Every tile has been equipped by its “capi-
tal”, whose meaning is the following: pick a state/tile T'; first think
of T as a tile and choose its position in C so that its capital is 0,
and call Ty the subset of C you get; now think of T as a state and
consider the set of complex numbers having a representation which
is accepted starting from 7T'; what you get is Tj again.

Figure 2. A minimal weakly preferred representation acceptor

Since in Fig. 2 the 9 patterns (tile,capital) are all different from
each other one sees that the machine cannot be minimized (it is also
very easy to check this directly). &
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4. Examples.

We show here some pictures of tilings obtained with the method
described above.

For every picture we mention the Pisot number 3 used, the min-
imal polynomial p(z) of § and the set D of digits in vector form (we
write the elements of D in increasing order).

We always show the tiles of first and second generation: the black
tile is W and the whole picture illustrates its subdivision rule.

The phrase “easy fail test” means that (at least for the states
which have been examined to produced the figure) only the states
containing 0 are fail.

Figure 3

B = 1.766 + 1.202827 p(z) =2 - 222 + 22 4+ 1
D ={(1,0,0),(0,-1,0),(-1,0,0), (0,0,0)}
Easy fail test.
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Figure 4

~

766 + 1.202827 p(z) =2 - 222 + 22+ 1
1

B,
D ={(1,0,0),(0,-1,0), (1,0,1), (~1,0,0), (0,0,0)}

Figure 5

=iV2 p(z) =22+ 2
D ={(1,0),(0,-1),(-1,0),(0,0)}
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Figure 6

>~ 1.766 + 1.20282¢ p(z) =2 - 222 + 22+ 1
={(1,0,0),(0,-1,0),(1,0,-1),(0,0,0)}

B
D
Easy fail test.



THURSTON’S SOLITAIRE TILINGS OF THE PLANE 293

Figure 7

B=1i/3 p(z) =22 +3
D ={(1,0),(1/2,1/2),(3/2,-1/2),(0,0)}

Easy fail test.
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Figure 8

B = —0.696323 + 1.43595¢ pz) =23+ 22 +22 -1
D= :

{(-1,1,0),(0,0,-1),(—1,0,0), ( 7‘ZE),())}
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