A NOTE ON TRACE EQUIVALENCE IN PSL(2,Z) (*)

by CHARLES TRAINA (in Jamaica)(**)

This paper is dedicated to the memory of Wilhelm Magnus,
the author’s teacher, mentor and friend.

SOMMARIO. - In questo lavoro si mostra che in SL(2,Z) ¢é possibile costru-
wre una successione di matrict per le quali tanto la successione delle
tracce quanto la corrispondente successione dei numert della classe di
contugio divergono ad infinito. Questa indagine é motwata da un pro-
blema proposto da Wilhelm Magnus. Si osserva inoltre che tale pro-
prietd sussiste anche in PSL(2,7).

SUMMARY. - We show that in SL(2,Z) one can construct a sequence of
matrices for which their sequence of trace values tends to infinity, and
the corresponding sequence of conjugacy class numbers also tends to
wnfinity. This is motivated by a problem suggested by Wilhelm Magnus.
We observe that this result holds also in PSL(2,7).

1. Introduction.

In 1986 W. Magnus, in a letter to this author, considered the
following problem for elements of SL.(2,7), the homogeneous modular
group:
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. . b
Let t denote the trace of a given matrix M = [ CcL d

Let s(t) denote the number of distinct conjugacy classes of ele-
ments of SL(2,7) that have the same trace t. Determine the number
s(t) for this given ¢.

] of SL(2,Z).

The approach to this problem, as suggested by him, was to prove
that for a particular sequence {t,} of values of the trace the corre-
sponding sequence of conjugacy class numbers {s(¢,)} tends to 4oc.
It is the purpose of this note to show that this is indeed the case.

We note that R. Horowitz [1] discovered that in a free group
on two generators, Iy, = (a,b), there exists pairs of words Wi(a,b),
Wy (a,b) such that W, and Wi are not conjugate within F,, and
yet have the property that trace Wy (A, B)= trace W5(A, B) for any
mapping a — A, b— B, where A, B € GL(2,7).

Theorem 8.1 of [1] shows that s(¢) is finite for any value of the
trace ¢.

We will be consistent with the notation and terminology found
e.g. in [3,4].

2. Construction of the Sequence.

We observe that SL(2,Z), the homogeneous modular group, is

generated by
11 10

where (P71QP™1)2 = (P71Q)?, (P'QP ) = I

The following observations are immediate consequences of this
presentation. Their proofs can be found in [5].

Let W = P™Q™ ...P*" Q™ n;. m; € N;¢=1,2,...k, be a
positive word in P and @, of SL(2,7); (i.e., a matrix all of whose

entries are positive). The number £ is called the syllable length of
the word W, and the number L = Y% (n; +m;) is the length of W,

1. Two positive words W and W' in P and Q of different syllable
lengths can never be conjugate in GL(2,Z).
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2. In GL(2,Z), P and @ are conjugate, since P = XQX ~! where
, 0 1
SO
3. Two matrices M and M’ from SL(2,Z) can be conjugate in
GL(2,7) only if they have the same syllable lengths and if the
sets of exponents {n;}, {m;} on P, Q) respectively, coincide

apart from their rearrangement. Since P and ) are conjugate,
we can exchange the exponents n; on P with the m; on Q.

We note that since PSL(2,Z) is the quotient group of SL(2,Z)
modulo its center {41}, we obtain an equivalence relation in PSL(2,7)
by declaring Wy, Wy in SL(2,Z) to be trace equivalent iff trace (W)
= trace (W3).

The desired sequence will then be obtained from the above obser-
vations and as a consequence of the following result communicated
by T. Jorgensen.

LEMMA. Let M = [ (é Z ] be a matriz in SL(2,Z). The greatest

common divisor of {a — d, b, c} is a conjugacy invariant for M in

SL(2,7).

a b

Proof. Let M = d

€ SL(2,7), and let
§=g.cdf{a—d b, c}.

It suffices to show that § is invariant when we conjugate M by
the generators P, @ of SL(2,7). Now,

PQMQ™' P = [‘f Z]
where r =2a+c—2b—d,y=-2a—c+4b+2d, z=a+c—b—d,
w=—a—c+2b+ 2d.

Let u = g.c.d{z — w,y,z}. Then,

t—w = 3(a—d)+ 2c—4b, hence §|(z —w) ,
y = —2(a—d)—c+4b, hence d|y ,
z (¢ —d) 4+ c—b, hence §|z .
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Therefore, §|p (1).

Now, b= (z — w) + y — z, so ulb,
a—d=3b—y— zso pl(a—d),

c=(a—d)+ (z — w)+y, so ulc.

Therefore, p|é  (2).
It follows from (1) and (2) that p = 4.
This completes the proof.

To obtain our sequence of trace values, we define a sequence of
matrices from SL(2,Z) as follows:
For each n € N,

9i 1 ],220,1,2,...,71.

W(Qn—i’ 22) — PZ"_iQZi — l

For each n € N, i = 0,1,2,...,n, trace [W(2"7",29)] = ¢, = 2 +
2". Let s(t,) denote the number of distinct conjugacy classes of
matrices in SL(2,7) that have trace ¢,,. By the Lemma, we see that
for each n € N, and 7 = 0,1,2,...,n we will obtain a family that
includes nonconjugate matrices having trace ¢,,. The number of such
nonconjugate matrices corresponds to the number of distinct values
of the g.c.d. {27,277 2!} as i varies from 0 to 7.

Let R(n) denote this number, and let d(n) denote the number
of positive divisors of 2”. The number d(n) is too large a value for
R(n), since we can exchange exponents on P and (). A counting
argument gives

1d(n), if d(n) is even ,
R(n) =
[3d(m)] +1, if d(n) is odd .

We observe that R(n) gives a count only for words in P and @ of
syllable length one. Therefore, s(t,) > R(n) for n = 1,2,3,.... As
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n — +00, t, = 2+ 2" — +00, and consequently d(n) — 400, hence
R(n) — 4o0. Hence, lim,,_,, sup s(t,) = +oo.

Thus we see that the number of distinct conjugacy classes of
elements of SL(2,Z) having trace ¢, becomes large as ¢, becomes

large, as we were to show.
We observe that this result holds also in PSL(2,Z).
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