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SOMMARIO. - Nel presente lavoro viene esposta in dettaglio la stratifi-
cazione canonica per “tipo di orbita” delle G-varieta e der relativi spazi
di orbite, compresa la prova della regolarita nel senso di Whitney. In
quest’ambito viene pure inserita la stratificazione per “tipo d’orbita nor-
male”, mostrandone la relazione con la precedente.

SUMMARY. - In the present paper the canonical stratification of G-mani-
folds and related orbit spaces by means of the notion of “orbit type” is
described in detail, included the proof of Whitney regularity. The notion
of stratification by “normal orbit type” is considered in this frame as
well, showing its relationship with the former one.

Introduction.

It is a well known fact that the orbit space M/G of a smooth
action of a compact Lie group G on a smooth manifold M is not
in general a manifold. Anyway M/G turns out to be a stratified
space, i.e. a topological space endowed with a partition into smooth
locally closed manifolds enjoying good properties of incidence. The
partition is the stratification and its parts are the strata. A wide
class of “singular spaces” admits stratifications (a list of examples is

Lavoro svolto nel’lambito del GNSAGA del CNR con contributo MURST fondi
40%.

(*) Pervenuto in Redazione 1’11 luglio 1994.

(**) Indirizzo dell’Autore: Dipartimento di Matematica, Universita di Pisa, Via
F. Buonarroti 2, 56127 Pisa (Italia).



212 MASSIMO FERRAROTTI

given in Section 1); as matter of fact, stratifications turned out to
be one of the most powerful tools to investigate on spaces bearing
singularities since they were introduced by Whitney, Thom, Mather
in the Sixties.

Among the various questions concerning stratifications, one of the
most interesting is the existence of “canonical” stratifications for a
certain class of spaces. In the case of orbit spaces, one has a canonical
stratification obtained by means of the conjugation classes of isotropy
groups, which is usually called “stratification by orbit types”. More
precisely, M can be stratified by taking the connected components
of the subsets of points whose isotropy group are conjugated: these
are invariant submanifolds which induce a stratification on M/G.
Another remarkable property of the stratification by orbit types is
that it is regular in the sense of Whitney: hence it admits a family of
controlled tubes, which implies local topological triviality along the
strata. Since we may take these tubes G-invariant, we get a family
of controlled tubes for M/G too. The stratification by orbit types
has been used in many occasions (e.g. [AS], [B1], [B2], [D1], [D2],
[HS], [L], [LS], [MS]) and the subject was described in extent, also
proving Whitney regularity, in some thesis ([Le], [S], [Sj]). Part of
the stratification axioms are checked in [Br], in the frame of “locally
smooth actions” and without considering the idea of stratified space.

The present paper has its origin in a seminar held by the au-
thor at the Department of Mathematics “U.Dini” of the University
of Florence in January ’94 with the aim of exposing in a detailed way
the stratification by orbit types. Section 1 contains basic definitions
of stratified spaces. Section 2 is concerned with the essential tools
needed to build the stratification by orbit type , such as isotropy
type, linear tubes and Slice Theorem. All these subjects can be
found in classical references for G-manifolds, such as [P], [Br] and
the recent [O], so proofs are mostly omitted with exception of some
remarks on the relationship between “orbit type” and “normal orbit
type” (see [J], [D1]) which I could not find in the current literature.
An example shows that just taking the partition by orbit types one
does not get “strata”, in the sense of equidimensional manifolds: so
connected components are needed and the strata by normal orbit
types are just collections of components. In Section 3 the strati-
fication theorem is proved essentially reorganizing and completing
the material contained in [Br]. Finally, in Section 4 stratification by
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orbit types is shown to be Whitney regular and an outline on the
existence of controlled tubes is given.

The seminar above was part of a cycle of seminars on smooth ac-
tions of Lie groups inspired and organized by prof. Franco Tricerri.
Just while writing down these pages | was informed that prof. Tricerri
and all his family were victims of a tragic air disaster. | dedicate to
them this paper in order to remember, together with his family, an
outstanding mathematician and a dearest friend.

1. Stratified spaces.

In this section some basic notions on stratifications are intro-
duced. Let W be a locally compact Hausdorff topological space with
countable basis. In all the paper, “smooth” will mean “C'*”.

DEFINITION 1.1. A stratification on W is a partition 3 of W in
locally closed sets such that:

a) Any X € X is a smooth, finite-dimensional manifold with-
out boundary;

b)  (Local finiteness) ¥ is locally finite;
¢) (Frontier) If X,Y belong to X and XNY # 0, then X CY;

d) (Dimension) If X,Y belong to X2 and X CY,X #Y then
dimX < dimY .

The elements of 3 are called the strata. Of course one may add
other properties, for instance that the strata are connected; this will
be our case.

The couple (W, %) will be called a stratified space. We shall al-
ways assume that dimW = sup{dimX; X € ¥} < oco. The subspace
W = {X € ¥;dimX < k} carries naturally a stratification and it
is called the k-skeleton of (W, ) . The family {WW*} forms a filtration
of W which is said to be the dimensional filtration. In particular, if
dimW = m, we have that W™ \ W™~! is open in W; it can be seen
as the “nonsingular” part of W.

Stratifications were introduced by Whitney to study the struc-
ture of algebraic varieties; afterwards Thom and Mather gave more
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general definitions and deepened the knowledge of this subject which
is fundamental in the study of singularities (see [W], [T], [M1], [M2],
[V]). We give here some examples of important classes of spaces ad-
mitting stratifications.

i) Manifolds with boundary ( X = {IntM,0M} );

ii) Cell-complexes ( X = {cells} );

iii) Manifolds with corners;

iv) Algebraic varieties and analytic spaces (on R or C');
v) Semi-algebraic/analytic sets and subanalytic sets;

vi) If W is manifold endowed with a smooth symmetric 2-tensor
g, then the sets W, = {z € W;rk(d.g) = r} give rise to a
stratification.

The existence of stratifications (with fine “incidence” properties,
see Section 4) is crucial in the study of classes iv), v) and vi).

In many cases, the existence of a stratification for a certain class
of spaces is proved by showing that there is an open subset of the
space to be stratified which is a manifold and such that the com-
plement is in the same class of the space but with lower dimension.
Then the result follows by induction. The proof for G-manifolds and
for their orbit spaces is not of this kind, though the existence of a
open, dense, G-invariant subset of W which is a manifold is proven
(Principal Orbit Theorem, Section 2)

We see from vi) that a smooth manifold can have stratifications
more interesting than the one formed by itself alone! This will be
the case of G-manifolds , as we shall see. In general , if our stratified
space W is a subspace of a smooth manifold M, one asks that the
strata are regular (that is regularly embedded) submanifolds of M.

As usual, we have a notion of “stratified” also for maps.

DerFINITION 1.2. A map f : (W, X) — (W' Y) between two
stratified spaces is said to be stratified if for any X € X there is
Xy € ¥ such that f(X) C Xy and f|x is smooth. In particular, if
f is an homeomorphism and f~! is stratified, then we say that f is
an isomorphism of stratifications.
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2. Actions of compact groups and orbit spaces.

We recall here, mostly without proofs, some basic facts which
will be needed later. Main references will be [Br], [P]. From now
on M will be a locally compact, Hausdorff, m-dimensional smooth
manifold without boundary and with countable basis.

If G is a Lie group (with unit €) and if we assign a smooth action
of Gon M, u:G x M — M, the triple (M, G, ) will be said a G-
manifold. In general y will be understood and we shall write (M, G)
and gz for (M, G, u) and pu(g, z) respectively.

If M is a (euclidean) vector space and G acts linearly (orthogo-
nally) on G, (M, G) will be said a (orthogonal) G-module.

We shall identify an element g of G with the diffeomorphism
(automorphism) of M that ¢ induces via p.

Let (N, ) another G-manifold. A smooth map ¢ : M — N is
G-equivariant if gpo(z) = ¢(gz) for any z € M and g € G. If ¢
is a diffeomorphism, ¢! is clearly G-equivariant and ¢ is called a
G -equivalence.

If H is a closed subgroup of G, then GG/H is considered a
G-manifold with the canonical action g(aH) = gaH, for g,a € G.

As usual, for z € M:

— (. is the isotropy group of z. GG, is a closed sugroup of G.

— IfACMand HCG,then HA = {ha;h € H,a € A}; Ais
H-invariant if HA = A. In particular, Gz is the orbit of z.

— MY is the fized point set ; if (M,G) is a G-module, M is
a vector subspace.

The orbits define a partition of M in equivalence classes and the
associated quotient space is called the orbit space and is denoted
with M/G. The quotient map 7 : M — M/G is an open map which
is called the orbit map.

If G is taken compact, we have many important properties which
we condense in the following proposition (see [Br], Chap. I, VI):

ProposiTION 2.1. Let (M,G) be a G-manifold with G compact.
Then:
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a) M/G is a Hausdorff, locally compact space with countable
basis and ™ is a proper map (in particular it is a closed

map).

b)  For any x € M, its orbit Gz is a compact, G-invariant
regular submanifold of M which is G-equivalent to G /G,
as G-manifold.

From now on we shall assume that G is compact. To indicate
that H is a compact subgroup of G we shall write H < G. Moreover
we shall conventionally set m(A) = A* for AC M.

We introduce now the notions of isotropy type and orbit type.

DeriNITION 2.1. If H K < G, we say that H and K have the
same isotropy type if they are conjugated, that is if there is g € &
such that K = gHg™'. We denote the isotropy equivalence class of
H by (H) . Then the set Z(G) = {(H); H < G} is a poset with the

partial order
(K) < (H) < 3g € G such that gHg™' C K

that is H is conjugated to a subgroup of K. The mazximal element is
(e) while the minimal one is (G). We have ([Br], p.41):

ProposiTION 2.2. Let H, K < G. Then

a) (K) < (H) iff there is a G-equivariant submersion from
G/H toG/K. In particular G/H and G /K are G-equivalent
if (K) = (H).

b) If Eq(G/H) is the group of self G-equivalences of G/H,
then Fq(G/H) is canonically isomorphic to N(H)/H, where
N(H) is the normalizer of H in G.

The G-equivalence class of G/H is called its orbit type. By the
proposition above, G/H and G/ K have the same orbit type iff (H) =
(K). Let us consider now an H-module (V,H) and a K-module

(W,K). If K = gHg™', W becomes naturally an H-module with
the action hw = u(h, w) = ghg™'w for h € H and w € W.



G-MANIFOLDS AND STRATIFICATIONS 217

DEeFINITION 2.2. (V, H) and (W, K) are equivalent (and we write
(V,H) ~ (W,K)) if (H) = (K) and (V,H) and (W,H) are H-
equivalent by a linear isomorphism.

Let us go back to our G-manifold (M, G). Then , if 2 € M and
y € Gz, (G3) = (Gy) and G /G, G /G, have the same orbit type. If

we set
I(G,M)=A{(H) € I(G); 3z € M such that (H) = (G,)}
we may define for (H) € Z(G, M)
Mgy ={z€ M;(H)=(G.)} .

The family I'nr,e = {Mgy; (H) € Z(G, M)} is a partition of M in
invariant subsets which induces a partition I';; = {M(*H)} of M*.

If = € M), we denote with N, the quotient vector space
T,(M)/T;(Gz). Then N, is naturally a G,-module with the ac-
tion gv = dyg(v) . We call (N;, Gy) the linear slice at z. By
previous arguments we can consider N, as a H-module. It has to
be pointed out that, for z,y € Mgy, (Nz, G), (Ny, G,) are not in
general equivalent, as shown in this example.

ExaMPLE A. If n > 1, let S™ be the standard n-sphere in R"+!
and let f :.5" — 5" be the diffeomorphism of S™ with itself given by
the restriction of the map (2o, ..., Zn_1,Zn) = (2o, ooy Tn1, —Tp).
Since f% = Id, f defines an action of Z; on S™, and since f(—z) =
—f(z) for any z € S™, we have an induced action of Z; on RP™.
Let RP" = M and Z; = Gj then M) = MY has two components
of different dimensions, that is M“ = {p(e,)} U p(S™ N {z, = 0}) ,
where p : S — RP™ is the quotient map. Hence, if € p(S"N{z, =
0}) and & = p(e,), the G-modules (N¢, G) and (N, G) cannot be
equivalent. In fact, G acts on N¢ as {I, —I} on R", while the action
of G on N, is the same of the one of {I,J}, where J is the matrix

< I, 0n—1,1>
01,1 -1
and the actions on R"™ are the standard ones given by multiplication.

Anyway, if y = gz, 9 € G, then the linear isomorphism between N,

and N, induced by d,g gives a linear H-equivalence.
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If (G) € Z(G, M) then Mg = M%; in particular, if (M,G) is
a G-module, Gy = G, hence (G) € Z(G, M). Then we get directly

from definitions that

ProposiTION 2.3. If (M,G) is a G-module and z,y € MY,
(Ng, Gy) and (N, Gy) are equivalent.

Let H < G and let (V, H) be an H-module . Then the orbit space
of the action on G x V given by h(g,v) = (gh~!, hv) is denoted with
G xg V and is called the twisted product of G with (V, H). The
equivalence class of (g,v) in G xg V is indicated with [g,v]. In
general, if AC G and BCV,weset H(AX B) = A xg B.

We have (see e.g. [KN]):

PRrROPOSITION 2.4. G xgV is a G-manifold with the action given
by alg,v] = [ag,v]. Moreover the map

pGxH‘/%G/H,p([g,U])IgH

is G-invariant and defines a fiber bundle with fiber V (the G-fiber
bundle associated to the G-principal bundle G — G /H with fiber V).

The useful properties stated in the following lemma are easily

checked:

LEMMA 2.1. Let [g,v] € G xgV and (K) € Z(G,G xg V) .
Then:

a) (H)<(K);

b) Gy = gHug™';

) (GxuV)k)y=Gxnm Vi
d) (GxgV)m=G/HxVT.

Let us see that equivalence of modules implies G-equivalence be-
tween the relative twisted products:

LemMma 2.2, If (V,H) and (W, K) are equivalent then G xg V
and G x g W are G-equivalent.
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Proof. Let K = aHa ' for an « € G and let L : V — W be
a linear H-equivalence. Then o : G xg W — G xg W given by
a(lg,w]) = [ga,w] and B : G xg W — G xg V given by (([g,w]) =
[g, L= (w)] are G-equivalences; so 3o« is the G-equivalence we were

looking for. &

The fundamental tool to study orbit spaces is the well known

(see e.g. [P], [Br], [O])

Stice THEOREM. Let (M, G) be a G-manifold, with G compact.
Then for any x € M there is a G-equivalence

d:G xg, Ny = T,

where T is a G-invariant open neighbourhood of Gx in M.

By Lemma 2.2, we may define a linear tube at the orbit Gz as
a G-equivalence ® : G xg V — T, where T is a G-invariant neigh-
bourhood of Gz in M and (V, H) is equivalent to (N, G).

We have the following corollaries:

COROLLARY 2.1. T™ is homeomorphic to V/H.

CoROLLARY 2.2. The elements of I'n and Ty o are locally
connected.

Proof. If ® : G xyg V — T is a linear tube at Gz, by Lemma
2.1d)
(G xu V)an) =®(G/Hx VT =MmnT.

Next propositions are consequences of the Slice Theorem.

ProposiTION 2.5. ([Br] p.182 and Corollary 2.2) The elements
of U'mg and Uy o are locally closed in M, M* as well as their
connected components.

LEmmMmA 2.3. If (H) € I(G, M) and X is a connected component
of M(*H), then 7=1(X) is union of connected components {X;};cr of
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Mgy such that X7 = X for any 1.

Proof. It is immediate that any connected component of M

~

which meets 77!(X) is in fact contained in 77!(X); hence 77!1(X) =
LI Xi, being X; connected components of M.

Since (M) N A)* = M(*H) N A* for any A C M, we get from
Proposition 2.1 that 7T|M(H) is open and closed (for the induced topol-
ogy). By Corollary 2.2, the X; are open and closed in Mgy, then
any X7 is open and closed in M. This gives X} = X. &

PropPosITION 2.6. Let (H) € Z(G, M) and let x,y € M(g). If
7(z) and 7(y) belongs to the same connected component of M(*H),

then (N, Gy) and (N, G,) are equivalent.

Proof. Let X be the connected component containing m(z) and
7(y). Then, by Lemma 2.3, #=1(X) = || X;, being X; connected
components of Mz). We define an equivalence relationship on
77 1(X): “p~ ¢” iff p and q belong to the same connected component
of Mgy and (Ny,Gy) , (N, Gy) are equivalent. Then each equiv-
alence class is open by Slice Theorem, Proposition 2.3 and Lemma
2.2 and it is contained in an Xj; hence it has to coincide with Xj.
If 2 € X;, y € X;, since 7(X;) = X, there is z € X; such that
7(z) = w(2). Then (Ng, Gy) ~ (N,,G,) ~ (Ny, Gy). &

It can be checked with some computations that (N, G;) and
(Ny,Gy) are equivalent if and only if they are in the same “normal
orbit type” (see [J], [D1]). Then Proposition 2.6 above shows that
“normal orbit types” strata are just collections of connected compo-
nents of the Mg.

One of the most important consequences of the Slice Theorem is
the

PrINcIPAL ORBIT THEOREM. (see [Br]) If (M, G) is a G-manifold
with G compact, then there is (U) € Z(G, M) such that:
2) (U)> (H) for any (H) € (G, M);

b) My and M(*U) are open and dense in M and M™* respec-
tively;
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c) If M* is connected, then M(*U) is connected too.

(U) is said to be the principal isotropy type and the corresponding
orbits are the principal orbits . An orbit which is not principal is said
to be singular.

From Slice Theorem and Lemma 2.1 we have

ProprosiTiON 2.7. Let ® : G xg V — T be a linear tube at Gx.
Then

a) Ifz €T and z = ®([g,v]), then (Gz) = (Hy,);

b) Gz is principal iff H acts trivially on V.

3. Stratifications of M and M/G.

We want to show in this section that the connected components
of the elements of I'as ¢ and 1},  form stratifications of M and M*
respectively. We define

Yma =
= {X; X is a connected component of Mg for (H) € Z(G, M)}

and
Y=
= {X; X is a connected component of M) for (H) € Z(G, M)}.
Then X and X3, o are respectively partitions of M and M* in
locally closed sets (Proposition 2.5) and we have to check the axioms
for a stratification.

The following theorem gives the differentiable structure on our
strata.

THEOREM 3.1. Any X € X is a regular submanifold of M.
Moreover , if X € X3, 5 and X C M(*H) ,then 771 (X) = X isa
smooth fiber bundle with fiber G/H and structural group N(H)/H.

Proof. Let z € My and set H = G,. f @ :GxpgV = Tisa
linear tube at Gz, as in Corollary 2.2, ®(G/H x V) = MmnT.
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Being G/H x VH smooth and @ a diffeomorphism, Mgy is locally
a regular submanifold of M. Since dimension is locally constant,
each connected component of Mgy is a regular submanifold. By

Corollary 2.1, there is an homeomorphism ®* : VH — M(*H) nT*
such that the diagram

P
G/HXVH — M(H)QT

! =

v — MG NT*
@*
commutes.

Then each M(*H) is locally a topological manifold , which gives
that its connected components are topological manifolds and 7T|M(H)
is locally trivial.

Let now X be the stratum of X3, ; containing 7(z) and let y €
M, m(y) € X. Then Proposition 2.6 and Lemma 2.2 give that Gx gV
and G Xg, Ny are G-equivalent, so we can take a linear tube at Gy of
the form @ : Gx gV —T'. WTNT' # 0, theset A = Mz)NTNT" is
a nonempty invariant open subset of Mgy . Let O 1(A)=G/HxW
and ®'~1(A) = G/H x W' where W and W' are open subsets of V.

Then we get the commutative array

o 1od’
G/H x W' — G/H x W

! !

w' — w
(I)*—l o (I)/*

where ®~! o &' is a G-equivalence of the form
&' od(gH,v) = (8(gH),®* ! 0 ®™(v))

with 6 € Eq(G/H) . Now ®*~! o ®" is clearly a diffeomorphism and
our theorem follows from Proposition 2.2 b). &
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We can now give a stronger version of Lemma 2.3.

COROLLARY 3.1. If X is a connected component of M(*H) and k

is the number of connected components of G/H , then 7=1(X) is the
union of k connected components of Mgy. Moreover if Y is one of
these components, then my : Y — X is a smooth fiber bundle with
fiber a connected component of G/H .

We turn now to local finiteness.

THEOREM 3.2. Xnpg and Xy o are locally finite in M and M~
respectively.

Proof. We use induction on m = dimM. If m = 0 the theorem
is obvious. Let us assume that m > 0 and that our statement holds
for any (M’',G') with dimM' < m.

Let z € M;thenz € Mg fora (K) € Z(G, M) . Asusual we put
(G, = K and we consider a linear tube ® : G xxg V — T at Gz such
that ®([e, 0]) = z. Then T'N Mgy = 0 for (H) < (K) by Lemma 2.1
a). Let us fix a K-invariant scalar product on V and set W = (VX)L
Then (W, K) is an orthogonal K-module such that W) = {0} and
(VE xW, K) with the action pu(a, (v,w)) = a(v,w) = (v, aw),a € K,
is K-equivalent to (V, K) by the map ¥((v,w)) = v+ w. If S is the
unit sphere in W with center in the origin, (S, K) is a K-manifold
with dimS < m. From our inductive hypothesis and compactness of
S, we get that Xg i (and, a fortiori, I's i) is finite. Now, due to the
linearity of the action on V, for any v € V and A # 0, K, = K,.
Then Z(K,V) = Z(K,5) U (K) and V() = (co(Siry) x V) for
(H) > (K), where c(e) denotes the cone with vertex 0 over a set
and c,(e) = c(e) \ {0}. Moreover, if Y is a connected component of
Vi, then Y = 9 (eo(Z) x VE), where Z is a connected component
of S(gr). The above arguments prove that:

1) T meets only a finite number of elements of ['ys g, that is ['yr g
is locally finite in M;
2) Yy i is finite.

Let now A = ®(Go xg V) , where (G, is the connected component
of e in GG; A is an open connected neighbourhood of z in T and, by
1), we reach our goal if we prove that, for each (H) € Z(G, M) with
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(H) > (K) , A meets only finitely many connected components of
Migpy. 1f such an (H) is fixed, let X be a connected component of
My such that X N A # 0 and let y € X N A. Then y = ®([g,v])
with g € G, and v € V{g); let Y be the connected component of v
in V(). Then (G, Xk Y) is connected , contained in Mgy N A
and meets X. Hence ®(G, Xxg Y) C X N A and X is the unique
connected component of Mgy with this property. So the number of
connected components of My which meet A is less or equal to the
number of connected components of V{zy), which is finite by 2). Now
Lemma 2.3 shows directly that EEKMG) is locally finite in M*. <

As a byproduct of this proof we get

ProrposiTION 3.1. If (M, ) is an orthogonal G-module, ¥p.c
and X3,  are finite.

We show now the frontier property.

THEOREM 3.3. If X, Y belong to X, or to X} o and XNY #
0, then X C Y.

Proof. We begin with Y76 Let X C Mgy, Y C Mz and let
Z=XNY.IfzeZandif ®:G xxgV — T is a linear tube at Gz,
then TN Mgy # 0; hence (K) < (H). If (K) = (H), then X =Y
trivially. Solet (K) < (H). The set Z is closed in X, so, if we prove
that it is open as well, we get X = Z, that is X C Y. For a fixed
x € Z, assume that the linear tube at Gz is such that ®([e, 0]) = z.
Then D = ®(G,/K x V) is a connected open neighbourhood of z
in X NT. We show that D C Z.

Let z € D; since # € Y, there is a sequence {y,} C Y such that
yn — = and y, € YNT for n big enough. Then we may assume that,
for any n, y, = ®([gn, v,]) with ¢, —» €,v, = 0 and (K,,) = (H). If
z = ®([g,v]) with ¢ € G, and v € Vit is immediate to check that
K,, = K,,4+v. Therefore z, = ®([ggn, v + v,]) defines a sequence
in Mgy converging to z; so z € M(H). To go on with our proof,
we observe that , for any £ € R and n, K, 44 = K,,. Then, if we
take an arc v : [0, 1] = G, connecting e with g, for any n, the arc
@([7(t)gn, v + tv]) has support in M) and connects y, with z,,

hence {z,} C Y , which gives z € Y.
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As for X3/ o, the result is easily deduced from the above proof
and Corollary 3.1. &

The last step is to show the dimension property.

THEOREM 3.4. If XY belong to Xy or to Xy o and X C
Y,X £ Y then dimX < dimY. Moreover, if X,Y € Ym,g with
X C My, Y C Mpyyanddim(G/H) > dim(G/K), then dimX <
dimY — 1.

Proof. Let X,Y € Y with X CY, X #Y and X C Mk,
Y C My ; then (K) < (H). If 2z € X and if & : G xg V —
T is a linear tube at Gz such that ®([e, 0]) = z, then X NT =
®(G,/K x VE) (Corollary 3.1). In order to compute dimensions,
we may assume that Y N T is connected and more precisely that
Y NT = ®(Gs xg Z), where Z is a connected component of V).
Then

dimX = dim(G/K) + dimV® = dim(G/K) 4+ dimX*

dimY = dim(G/H)+ dim(Z/K) = dim(G/H)+ dimY™ .

Since any element of X3, - is of the form X* for some X € Xy g,
our thesis will be fully proved if we show that (Corollary 3.1):

dimV® < dim(Z/K) = dimZ — dim(K/H) .

Since (K) < (U) , VK # V| by Proposition 2.7 b). Let us fix a
K-invariant scalar product on V and let us set W = (VE)L; then,
as in Theorem 3.2 proof, (V, K) is K-equivalent to the the K-module
(VEXxW, K) by the map v, and we can write Z = (VK x L), where
L is a connected component of Wy . So we are reduced to prove
that dimL > dim(K/H). Now, by Corollary 3.1, = : L. - L/K
is a fiber bundle with fiber K/H, hence dimlL > dim(K/H). If
dimL = dim(K/H), we had dim(L/K) = 0, that is L/K should be
a point. Since 7(0) € L/K \ L/K , this is absurd. &

We can now enounce the final statement which follows from Theo-
rems 3.1, 3.2, 3.3 and 3.4.
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THEOREM 3.5. (M, YXn,G) and (M*,33; o) are stratified spaces
and 7 : M — M* is a continuous stratified map. If dim(G/U) = d,
then dimM* = m — d.

We see that, is our case, the “nonsingular” parts are given by
principal orbits, that is M) and M(*U). We may observe that, if we
set

M(V,H) ={z € M; (‘szGz) ~ (Vv H)}

for any H-module (V,H), the family of the My gy which are not
empty forms a stratification of M whose strata are union of elements
of ¥um,g. Analogously, we can stratify M* by means of M(*V,H)'
These are the statifications by “normal orbit type” used in [Le],
[D1] and [D2]. We remark that, as in [D1], it is possible to show
directly that the My z) are smooth manifolds with dimMy gy =
dimG/H + dimV™ and to deduce in this way that they are union of
elements of ¥ps .

As a final consideration, we give an example which shows that,
in general, ['y7,¢ and FMG do not fulfil Theorem 3.3 and that the
dimensional filtration of EM G (or EM ) is not compatible with ['ys ¢

(or FM,G)

ExaMPLE B. In the same situation of Example A, let us set f =
f1 and let f5 : S™ — S™ be the diffeomorphism of 5™ with itself given
by the restriction of the map (zg, ....2n—1,Zn) = (T0, cvr, —Tp—1, Tp).
Then we have the abelian group G = {Id, fi, f2, f3 = f1 o fa} (the
Klein group) which acts on S™. The nontrivial subgroups of G are
H; ={Id, f;} for i = 1,2,3; they are all isomorphic to Z; and con-
jugated only to themselves in force of the abelianity. Asin Example
A, we have an induced action on M = RP™. It easy to check that
(4G, M) ={(/d), (H1), (H3),(G)} and that

Migy = {plen)} U {p(en-1)} U p(Si),

(Hl) = P(S(,)) \{p(en-1)},
Mm,) = p(S(,) )\{p(en)}
where

S(G) =S5"N {;ﬁn_l =Ty = 0}

S(Hl) =5"N {xn_l 75 0,z, = 0},

S(H2)_Snﬂ{$n7£0 Tp— 120}

Then Mgy N Mg,y # 0 but Mgy € My, fori=1, 2.
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Moreover dimM g,y = dimM g,y though Hy and H; are not conju-
gated.

4. Whitney regularity of X/ .

In this final section we prove that X7 g is a regular stratification
in the sense of Whitney: this has many consequences, for instance
local topological triviality along the strata and the existence of sys-
tem of controlled tubes. We give in advance some definitions. Main
references are [W], [GWPL], [M1] and [M2] for generalities on Whit-
ney regularity and [Le], [S] and [Sj] for the regularity of ¥js ¢ and
the existence of systems of G-invariant tubular neighbourhoods.

DerFINITION 4.1. Let X, Y C R™ be locally closed regular sub-
manifolds. We say that the pair (X,Y) is Whitney regular (or (b)-
reqular) at v € X NY if, for all sequences {z,} C X, {y,} C Y such
that

1) limz, =limy, =z,
2) T,,.(Y) converges to T" in G(dimY,m),

3) 22U converges to A in S™T
|l'n_l/n|

we have A C T.

DEFINITION 4.2. Let M be a smooth m-dimensional manifold
and let X, Y C M be locally closed regular submanifolds. We say
that the pair (X,Y) is Whitney regular at z € X NY if there is a
local chart (U, ¢) of M in z such that the pair (¢(X NU),o(Y NU))
is Whitney regular at ¢(z) in R™.

The pair (X,Y) is said to be Whitney regular if it is Whitney
regular at any point of X NY. Moreover a stratification ¥ of a
locally closed subset of M is said to be Whitney regular if any pair
(X,Y) with X, Y € ¥ is Whitney regular.

All the examples at page 2 admit Whitney regular stratifications
(i), ii), iii) after a suitable embedding).
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Of course, X NY = () implies Whitney regularity trivially. On
the other hand, in a stratification, X NY # () is equivalent to X C Y.
The following proposition makes Definition 4.2 intrinsic:

ProrosiTioN 4.1. If f: M — N is a diffeomorphism between
two manifolds and (X,Y) is a Whitney regular pair of submanifolds
at x € M, then the pair of submanifolds (f(X), f(Y)) in N is Whit-
ney reqular at f(z).

In what follows we shall need the next fact which is easy to check.

ProposiTION 4.2. If M is a manifold and (X,Y) is a Whitney
regular pair of submanifolds of M then, for any manifold N, (X x N,
Y X N) is a Whitney regular pair of submanifolds of M x N.

We show now that the stratification we defined in Section 3 for
a G-manifold is Whitney regular in the above sense.

THEOREM 4.1. If (M, ) is a G-manifold, the stratification ¥p,q
is Whitney regular.

Proof. By Proposition 4.1 and the Slice Theorem, it is enough to
prove that for any K-module (V, K), K < G, the pair (G/K x V&,
G xx V(i) is Whitney regular for any (H) € Z(G,G xx V), (H) >
(K). Let dimG/K = d and let x : U — G/K be a local smooth
parametrization of G/K, where U is a open in R?. Then a local
parametrization ¥ : U x V — G Xg V of G xXg V is defined as
follows :

Y((& U)) = [a£7 v]

where ag K = x(§).
Then it easy to check that, for any (H) € Z(G,G xx V),

(G xx Vi) XU x V) =X(U X Vi) -

Thus, by Proposition 4.1 and Proposition 4.2, we are reduced to
prove that the pair (VK, V(H)) is Whitney regular in V. Now, as in
Theorem 3.2 proof, if we fix a K-invariant scalar product on V and
if we set W = (VE)L (V| K) is K-equivalent to the the K-module
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(VE x W, K) by the map ®. Then it will be enough to prove that
the pair ({0}, W) is Whitney regular in W. But we know that
Wiry = ¢o(S(ay), where S is the unit sphere in W, and Whitney
regularity condition is immediately checked for the pair ({0}, ¢o(X)),
with X regular submanifold of W such that 0 ¢ X (we identify W
with an euclidean space R"). &

It can be proved that if the pair (X,Y') is Whitney regular and
formed by connected manifolds, then dimX < dimY; hence first
part of Theorem 3.4 is direct consequence of Theorem 4.1.

DEFINITION 4.3. Let X be a G-invariant submanifold of M; a
triple (U, m, p), where:

a) U is a G-invariant neighbourhood of X in M,

by 7 :U — X is a G-equivariant map and p : U — RT is
a G-invariant function such that ©|x = Id, p3'(0) = X
and (7,p): U = X x Rt is a submersion, is said to be a
G-invariant tubular neighbourhood of X .

Whitney regularity condition implies the existence of a family of
tubular neighbourhoods of the strata which are “compatible” each
other. In our case this tubular neighbourhoods can be taken G-
invariant. More precisely we have :

THEOREM 4.2. To any X € Yn,g we may associate a G-
invariant tubular neighbourhood (Ux,7x, px) such that:

a) If X CY, the map (rx,px)ly : UxNY = X x Rt is a
submersion,

b) UxnNUy £0iff X=Y,XCY orY CX,

c) IfXC Y, then mxomy = mx and px omy = px where both
sides of these equations are defined.

Theorem 4.2 proof is essentially the same as in the general case
of a Whitney regular stratification (see [GWPL], [M2]), up to verify
G-invariance. We just recall two key lemmas.
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LEMMA 4.1. Any X € Yp g admits a G-invariant tubular neigh-
bourhood in M.

Proof. Just fix a G-invariant Riemannian metric (see e.g. [Br])
and take the image through the exponential map of a suitable neigh-
bourhood of the zero section of the normal bundle of X in T'M.

¢

LEMMA 4.2. Let M and N be G-manifolds, f : M — N a G-
equivariant map and X a G-invariant submanifold of M such that
flx is a submersion. Let A C B be relatively open G-invariant sub-
sets of X such that ANX C B. If (Ug, 7B, pB) is a G-invariant tubu-
lar neighbourhood of B, then there is a G-invariant tubular neigh-

bourhood (U, w, p) of X such that
(Ua 7T7P)|B = (UB7 ﬂ-vaB) .

Lemma 4.2 is proved as its not invariant correspondent in [GWPL]
(Theorem (1.6) at page 39) up to take a Riemannian metric and a
partition of the unity which are G-invariant.

The family {(Ux,7x,px); X € X} is called a system of con-
trolled tubular neighbourhoods for X1 . In our case, the fact that the
tubular neighbourhoods are G-invariant allows to induce an analo-
gous structure on M™ associating to each X™* in X}, - the triple
(Ux,mxx*, px+), where mx«(§) = m(nx(z)) and px+(§) = px(z) for
& = m(z). Tt is immediate that mx« and px« are stratified maps (re-
call Definition 1.2 and Theorem 3.1) and that properties a), b) and
c) of Theorem 4.2 hold true for this family. We get in this way a sys-
tem of controlled stratified tubular neighbourhoods for 33, ~, which
gives to M* the structure of a Thom-Mather (or abstract) stratified
space (see [M1] and [V]).

We end this paper recalling an important feature of the stratifi-
cation X3, 4. If (M, G) is a G-module, M/G can be embedded in a
space R" as a semialgebraic subset A by means of a map v induced
on M/G by a minimal set of generators of the G-invariant polyno-
mials on M ([Sc]). Then v is an isomorphism of stratifications with
a Whitney regular stratification of A ([B1]).
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