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SOMMARIO. - Consideriamo un sistema in cui un’equazione differenziale
e accoppiata a un’equazione di evoluzione singolarmente perturbata:
{ :E: f(t,il?,y,E)

ey =Alt,z)y+g(t, z,y,€)

Dimostreremo che, per ¢ piccolo, il sistema ammette una varieta invari-
ante regolare C. = {(t, z,y)|ly = k(t,z,€)} e che l’equazione ridotta & =
ft,z, k(t,z,€),€) &€ C" vicina all’“equazione limite” & = f(t,2,0,0).
Daremo anche una descrizione qualitativa della dinamica vicino alla
varteta invariante C..

SUMMARY. - We consider a system in which a differential equation is cou-
pled with a singularly perturbed semilinear evolution equation, namely
{ I: f(tamayaE)

cy=Alt, z)y+g(t 2,y

We will prove that, for small e, the system admits a smooth invari-
ant manifold C, = {(t,z,y)|ly = k(t,z,¢)} and that the reduced equa-
tion & = f(t,z,k(t,z,€),€) is C" near to the “limit equation” & =
f(t,2,0,0). We will also give a qualitative description of the dynamics
near the invariant manifold C..

The author is indebted to Prof. K. Rybakowski who introduced him to the study
of invariant manifolds.

(*) Pervenuto in Redazione il 6 luglio 1994.
(**) Indirizzo dell’Autore: S.I.S.S.A., Via Beirut 4, 34013 Trieste (Italia).
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Introduction.

Let us consider the following semilinear parabolic system, de-
pending on the “small” parameter ¢,

(S)e{ x:f(t7'r7y7€) (1)

€y = A(t,l‘)y—l—g(t,$,y,€)

where z € X, y € Y, and X,Y are Banach spaces.

Let us suppose that A(t,z) = Ag + Ai(t,z), with —Ag secto-
rial and A;(¢,z) € L(Y*,Y) (here Y* is the a -fractional power
space generated by —Ag). Let us suppose that ¢(¢t,2,0,0) = 0,
Dyg(t,z,0,0) = 0, and that the spectrum of A(¢, z) is disjoint from a
strip containing the imaginary axis, uniformly with respect to (¢, z).
Finally, let us suppose that (t,z) — Ai(t,z), f and g verify certain
smoothness and boundedness conditions and some further “techni-
cal” conditions that we will make precise later. We say that (5). is
a “singular perturbation problem”; in fact, for ¢ = 0, (). is not a
parabolic system, but reduces to a differential equation coupled with
a nondifferential equation, namely

&= f(t,z,y,0)
{ Alt,z)y+g(t,z,y,0)=0 ° (2)

It is clear that, if z is a solution of

&= f(t,z,0,0), (3)

then (z,0) satisfies (2). In certain cases (e.g. when Y has finite
dimension), the hypotheses on g and on the spectrum of A(¢,z)
imply that equation

Alt,z)y+g(t,z,y,0) =0 (4)

defines implicitly the submanifold R x X of R x X x Y. In such
cases, (3) can be considered as an ODE on the submanifold implicitly
defined by (4). In general, we ask if any information about the
qualitative behaviour of the solutions of (S). (for small ¢) can be
obtained by studying (3). The answer is in part affirmative: in
Sections 2 and 3 we will prove that, under suitable hypotheses on A,
f and ¢, and for sufficiently small ¢, there is an invariant manifold
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C. for the system ()., contained in R x X X Y* which behaves like
a “center manifold” (in the sense that contains all globally defined
bounded solutions of (S),). This manifold will be the graph of a map
k. (regular and bounded) defined on R x X with values in Y*; also,
k. will depend smoothly on the parameter € and k.(,2) — 0 when
€ — 0, uniformly with respect to (¢, z), along with its derivatives (up
to a certain order). Then, for sufficiently small ¢ , the “reduced”
equation

&= f(t,z, k(t,z,€) € (5)
will be “near” to (3). As a consequence, we will be able to apply
bifurcation theory to equilibrium points and periodic solutions of (3)
and obtain informations about qualitative behaviour of (5)..

In Sections 4 and 5 we will analyze the behaviour of solutions of
(S)e “near” to the manifold C., for small € . Namely, we will ob-
tain that, if Reo (A (¢,z)) > 0, uniformly with respect to (¢, z), then
C. is “attractive”, i.e. each solution starting near C. tends espo-
nentially, as t = oo, to some solution lying on C.. More generally
(without supposing Reo (A (¢,z)) > 0), we will obtain that, for each
(to, zo,y0) € C., there are local “stable” and an “unstable” mani-
folds contained in X x Y¢; such manifolds are the sets of the points
near (zg,yo) which are the value at ¢y of a solution of (1) attracted
(respectively as ¢ — oo and t — —oo) by the solution whose value
at to is (20, ¥yo0)-

In Section 1 we recall some results about abstract evolution equa-
tions; for a complete treatment of the subject, the reader is referred
to [He], Chaps. 1,3,7. In proving smoothness of invariant manifolds,
we shall use an abstract regularity Theorem for solutions of fixed
points equations on a scale of Banach spaces, due to K. Rybakowski

([Ry1]).

Problems of type (1) have been richly studied, specially in finite
dimension. The first work in which singular perturbations have been
treated from a geometric point of view seems to be Fenichel’s paper
[Fe]; the techniques developed by Fenichel however do not generalize
to semigroups. Some recent papers (specially [V] and [VG]) have
developed a different approach to the general problem of invariant
manifolds, based on the use of spaces of functions of exponential
growth. This approach works for semilinear parabolic equations as
well as for ODE, once the fundamental notions about semigroups are



154 MARTINO PRIZZ1

well understood. Following this approach, K. Sakamoto developes in
[Sa] a complete treatment of singularly perturbed autonomous ODE;
along this line, K. Rybakowski gives in [Ry2] a slightly different (and
simpler) proof of existence and smoothness of an invariant manifold
for (). based on the abstract result in [Ry1].

In infinite dimension and with —Aq sectorial, problem (2) has
been studied in this form by D. Henry ([He], Ch. 9, page 295),
who obtained existence and C''-smoothness of (.. In this paper we
generalize the results of [Sa] to singular perturbed nonautonomous
semilinear parabolic equations, improving Henry’s results.

In dealing with stability and asymptotic phase we essentially fol-
low the “direct” tecnique developed by D. Henry; a different possible
approach to this problem is to prove existence of invariant foliation
(as in [CLL]) and then to state the asymptotic phase as a corollary.

Finally, we point out that here we are mainly concerned with ex-
istence and smoothness of invariant manifolds for abstract evolution
equations. Applications to singularly perturbed parabolic PDE will
be given elsewhere.

Before starting,we observe that, when € > 0, we can rescale the
time variable (setting 7 := t/¢), and obtain the “equivalent” system

dr __ ,
iy T=cf(er, 2y, ¢) ‘ 6

This is a “regular” perturbation problem; however, for ¢ = 0 the
system reduces to

dz
dz _
F dr . 7

( )0{ X = A(0,2)y+9(0,2,y,0) ™)
System (7) has X as an invariant manifold, but such invariant man-
ifold is only a set of equilibrium points: so reducing (F)o to the

invariant manifold would not be of any help in studying qualitative
behaviour of (F). for € > 0.
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1. Preliminaries.

In this Section we recall some results about semilinear parabolic
equations, cited from [He].
1.1. Generalized Gronwall inequality.

THeEOREM 1.1.1. ([He,]Lemma 7.1.1) Let b > 0, 8 > 0 be real
numbers; let t — a(t) be a non-negative function, locally integrable
on [0,T) for some 0 <T < oo ; let t — u(t) be a non-negative
function, locally integrable on [0,T), such that, fort € [0,7T),

u(t) < a(t) + b/ot(t — 5)71u(s)ds.
Then, for t € [0,7),

uoga@+ﬁlﬂ%w@—@m@M&

X LnB dE
where i = (LAY 5 Ba(z) = 3 i L Bylw) = “2(w)
(z,w € C). If a(t) = a, then u(t) < aEs(9t). Finally, there exists M
> 0 such that |Eg(z)| < % le”| . &

1.2. Solution operators.

Let X be a Banach space, let A be sectorial in X, and let 0 < a <
I; let t — B(t) : (to,t1) = L(X*, X) be locally Hoelder continuous.
By [He], Th. 7.1.3, we know that there exists a family of “solution
operators” {T'(¢,7),to < T <t < t1} such that:

1. {T(t,7),t > 7} is strongly continuous with respect to (¢, 7), with
values in £(X?, X?) for each 0 <8 < 1 ;

2. for each 7 € (to,t1) and 29 € X, T'(t,7)x is the solution of

i (t) + Az(t) = B(t)z(t)
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on (7,t1);
3. ift>s>7,T(r,7)=1and T(t,s)T(s,7)=T(t,7);

4. for each {t};,ﬂ} C (to,t1)there is a constant C', depending only

on A, @, t; — tg, and sup 1B(®)[|z(xa,x), such that, for = €
teftot1]
D(A?), to <7<t <t and for 0 < 8,7,9 <1,

(t—7)0=A)- |z|,, when 3 < 1, and where

(a) [T(t,7)zlg S =
(v = B)- == min {y — 5,0};

(b) |T'(t, )z —z| g < ﬁ(t —7) |z] 54, when 6 >0,
B4+9 <1

(© [T(t+h )z =Tt )zls < =52 — i+ ﬁ)hﬁ(t r)(r=r=9)-
2|, when t +h >t > 7,0 <9, and 8+ 9 < 1;

(d) 1Tt m)z = T(t, 7 = h)zls < Clyggy + Tma=y)
RO (t — 7)(=F=9)- |m| ,whent >7>7—-h, 0< 9, <1
and 14+7v > a4+ 9.

Note that, since D(A?) is dense in X# for each 0 < 3 < 2, these
estimates hold not only for z € D(A?%), but for z € X7, XA+9 X,
X7 respectively.

THEOREM 1.2.1. ([He], Th. 7.1.4) Let A, B(t) be as above; let
T € (to,t1), zo € X, f:(7,t1) = X locally Hoelder continuous, with
[Tt |f(0)|do < oo for any p > 0. Then there is a unique solution

of

b

{ i (t)+Az(t) = f(t), T<t<t

z(1) = 20

where A(t) :== A — B(t). The solution is given by

2(t) = T(t,r)mo—l—/:T(t,s)f(s)ds. (8)

Moreover, z : (1,t;) — X is locally Hoelder continuous, and z(t) —
2o in X as t — 7. Finally, if 0 < g < 1, 20 € X? and
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fHt — )P |f(s)|ds — 0 as t — 7t, then z(t) — z¢ in X7 as
t — 1. If we assume only that f : (7,#1) — X is continuous, (8)
defines a continuous map from (7,%1) to X as well. &

1.3. Exponential dichotomies.

Let A and B(t) be as above, with B(#) defined on (—o0, +00).
let T'(t,s) € L(X,X) be the solution operator (defined for t > s;
t,s € R).

DEFINITION 1.3.1. Let Z C X with continuous dense inclusion.
Set A(t) := A+ B(t), we say that the equation = () + A(t)z(t) =0
has an exponential dichotomy on (—oo,400) with respect to 7, with
exponent pu> 0 and limit My, if T(t,s) € L(Z,7) for each t > s, and
if it has projections P(t) € L(Z,Z), t € R, such that:

1. T(t,s)P(s) = P(t)T(t,s) for eacht > s in R;

2. the restriction T(t,s) |R(P(s)) (t > s) is an isomorphism of
R(P(s)) on R(P(t)); we define T'(s,t) (for s <t) as the inverse
map of T'(t,s) from R(P(t)) to R(P(s));

3. [T, s)(I = P(s))llg(z,2) < Moe=#t=%) fort > s in R;

4. [T, 8)P(s)llgiz,2) < Moe =Y for s > t in R, where T(t,s)
is the operator dej%ned n 2.

In what follows, we always have Z = X7 for any 0 < v < 1. See Th.
1.3.2.

If P(t) =0, we say that the dichotomy is trivial.

From the definition, it follows immediately that, for ¢,s,7 € R, it
holds:

1. T(t,s)T(s,7)P(r)="T(t,7)P(7);
2. T(t,s)P(s) = P()I'(t,s) on R(P(s)).

The main properties of exponential dichotomies are collected in
the following Proposition:
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ProrposiTiON 1.3.2. ([He],Lemma 7.6.2) Let Ay be a sectorial
operator in a Banach space X; let t — A;(t) : R — L(X* X) be
bounded and locally Hoelder continuous. Set A(t) := Ag + Ay (t), we
have:

1. If0 <~y <1, thenz (t) + A(t)z(t) = 0 has an exponential di-
chotomy on R with respect to X iff has an exponential dichotomy
with respect to X7,

2. Ifz (t) + A(t)z(t) = 0 has a dichotomy on R (with respect to
X or X®) with limit My and exponent p,and P(t) is the relative
projection, then exist constants My, My, M3, My, M5 (depending
only on «, &, v, Ag, «, the constants My, i of the dichotomy,
and ?flelﬂlﬁ) A1 ()] g(xo x)) such that:

(a) |T(t,s)P(s)z|, < Mye= (=t |z|s for s >, when 0 < v < 1
and & > 0;

(b) |T(t, ) (1 = P(s))al, < Maem =) max {1, (t — 5)*7} [al,
fort>sand 0 <8 <~vy<1;

(c) [P(t1)z = P(tz)z], < Mst; — to]° lz],if0<d <1 -y <1

) Tt ( )) for t > s
(d) if U(t,s) :== { ) for £ < 7
¢ cYfor0<o<1
set wy (o 1 elsewhere !
then [U(t, s)z|, < Miw,(t —s)e” ult=sl |z ;

() |U(t+ h,s)z = Ult,s)zl,, < My |h|® wops(t — s)emlt=5l |z] if
0<d<l—-a<l1,|h <1, |t—s] <|t+h—s|and sis not
between ¢ and ¢ + h;

() 1U(t,s—h)x = U(t,s)z|, < Ms |h|5wv+5(t—s)6_“|t_5| |z| if
0<d<l—-a<l,0<y< ], |h <1 |t=s|<|t+h—5]
and ¢t is not between s and s — h.

REMARK.
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2.(f) implies that the map s — U(t,s) : R — L£(X, X?) is locally
Hoelder continuous on (—oo,t) U (£, +00) so that it is locally inte-
grable on this set. By 2.(d) it follows that this map is integrable in
a neighborhood of ¢ . So it is locally integrable on R.

DEeFINITION 1.3.3. Let X be a Banach space. Let p € R. Let us
define, for I :== R, [0,4+00), (—00,0] and, for z : I — X,

aly, = supe M [a ()]
’ tel

BC?(1,X):= {m:]—>X|m such that |$|Ip<oo}.

Each BC?(I, X) is a Banach space with the norm |-|; .

Now we give some representation results for exponentially grow-
ing solutions of linear nonhomogeneus parabolic equations, whose
simple proof is implicitly contained in [He], Ch.7, and therefore is
left to the reader.

THEOREM 1.3.4. Let Ag, Aq(t), A(t) be as in Prop. 1.3.2. Let
us assume that © +A(t)z = 0 has an exponential dichotomy on R
with exponent p and limit M. Let 0 < p1 < pa < p and let f €
BC" (R, X). Set

o) = [ U9 f(5)ds. (9)

Then the integral in (9) converges absolutely in X* for eacht € R,
1 € BC” (R, X?) and

24p 1
l—ap—p

If [ is locally Hoelder continuous, then 1 is the unique solution of

i (t) + A(t)z(t) = f(t) in BCP (R, X°).

|¢|BOP2(R,XG) <M |f|BOP1 (R,X) " (10)

Proof. Prop. 1.3.2 and simple integration. &

THEOREM 1.3.5. Let Ao, A1(t), A(t), M, v be as in Th. 1.3.4, so
the following estimates hold:
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T (t,s)(I — P(s))z], < Me =)0, (t — 5) || for t > s

Tt 8)(I = P(s))l, < Me™#1=9) Ja,

(¢, 5) P(s)a], < Me =9 [z] .

Let p € R,|p| < p; let f € BC?([0,+00),X) be locally Hoelder
continuous.
The following facts are equivalent:

a) ¥ € BC?([0,
(t) + A(t)z(t)

b) there is zg € X* such that, for ¢ > to,

+00), X?) and (- — ) is a solution of z
= f(t —to) on (to,+0o0);

Blt—to) = T(t, to) (I—Plto)wot | U(t, s) f(s—to)ds.

to
(11)
Moreover, even if f is not locally Hoelder continuous, (11) defines

a map belonging to BC? ([0, +00)), for which the following estimate
holds:

[Pl Bee((0,4+00),x2) < M |zol, +
1 4 1 + 1
l—a p—p p+p

+M< ) | flBee(o,400),%) - (12)

Proof. Prop. 1.3.2 and snnple integration. Note that, if p < 0,
we have [¢], < M Jzol, + MEL_L || o

THEOREM 1.3.6. Let Ag, A1(t), A(t), M, pu be as in Th. 1.3.5. Let
|p| < p and let f € BC((—00,0],X), be locally Hoelder continuous.
Then the following facts are equivalent:

a) ¥ € BC?((—00,0],X%) and (- — ) is a solution of z
+A(t)z = f(t —to) on (—o0,t).
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b) there is zg € X such that, for ¢ < #g,
to
¢@—%%:T@mﬂ%mmo+/)lﬂuQﬂs—mM&(B)

Moreover, even if f is not locally Hoelder continuous, (13) de-
fines a map belonging to BC?((—o0, 0], X®), for which the following
estimate holds:

1 1
Y|, < M| M 14
o, < Mool + M (s b =t =) Ifl,. (1)

Proof. First, we observe that, for t < ty and £ € X, t —
T(t,to)P(to)& solves

z(t)— A(t)z(t) =0, t < tg
z(to) = P(to)¢
In fact, for t; <t < tg, we have

T(t, to) P(to)€ = T(t,t1)T (t1, to) P(to)£.

Now, one can argue as in Th. 1.3.5. &

The following Theorem will be used only in the proof of Th. 3.1.2
below.

THEOREM 1.3.7. Let Ag be a sectorial operator. Lett — Ay 4(t),
t — Ay p(t) be locally Hoelder continuous and bounded, from R to
L(X* X). Let Ay(t) :== Ao+ A1,4(t), Ap(t) := Ao+ A1 (t), and let
Tu(t,s), Ts(t, s) be the solution operators, respectively for

& +A,(t)z =0 (15)

and

& +Ay(t)z = 0. (16)

Let us suppose that both (15) and (16) have an exponential di-
chotomy, with projections P,(s), Py(s); limits M,, My; exponents pi,,
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py; Green functions U, (¢, s), Uy(t, s) respectively. Then for ¢,s € R,
£ € X, we have the folowing formula:

Uatt,9) = Ut D= [ Ot 2)(A1s(p) ~ Ar.alp) Uap, o).

B (7
Moreover, the following estimate hold:
N |(Ua(t, 8) = Up(t; 8))€], <
< [T A1) - A P)Valp, e dp < (18)

< const. w, (t — s)elt=sl|g].

¢
Proof. The proof is based on the fact that, setting
o ) Ta(t,s)(I — Pu(s)E, t > s
“”fUW”K—{—nm@a@mtSS ’
we have
L) =—Au)a(t) = —A(t)x(t) + (Arp(t) — Ava(t)) 2(t) =
=~ A0 () + (A1) — Ara(0) Talt, 5)(T - Pa())E, £ >
z(s) = - Pu(s))§,
and
Et) = —At)x(t) + (Arp(t) = Ara (1) Tult, ) Pals)E, t < 55
z(s) = —Pi(s)&.
So, we can apply Th. 1.3.6 and 1.3.5. &

1.4. Uniform exponential dichotomy Theorem.

The following Theorem gives sufficient conditions for an expo-
nential dichotomy. Actually, it is a consequence of a more general
Theorem ([He], teor. 7.6.12), and the reader is referred to [He] for a
complete treatment of the subject.
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THEOREM 1.4.1. ([He],Th. 7.6.13) Let Ay be a sectorial op-
erator in X, and let 0 < o < 1; let (A,d) be a metric space; let
A= Ar(A) t A = L(X*, X)) be locally Hoelder continuous, bounded,
uniformly continuous, with range contained in a compact subset of
L(X1', X). Let us suppose that Ag has compact resolvent. Finally,
set A(X) = Ag — A1(N), let us suppose that, for some p > 0,
o(A(N) C{z€C ||Rez| > u}. Let 0 < py < p. Then there exist
€ >0, My > 1 such that the equation

i +AN(E)z =0

has an exponential dichotomy on R with exponent py and limit My,
for each locally Hoelder continuous map A : R — A wverifying the
following condition:

(x) if |t —s| <1, then d(A(t), A(s)) < e. ¢

1.5. A technical Lemma.

In the sequel, the following technical Lemma, whose simple proof
is left to the reader, will be very useful.

LEmMA 1.5.1. ([Ry2],Lemma9) Let X,Y,Z be normed spaces.
Let A CY be convex. Let p : A — Z be continuous and bounded.
Let ¢ : X — C°(J, A) (with J =R, orJ = [0,+00), or J = (—00,0])

be a map satisfying the following condition:

for every compact interval C .J,the map
(+) X X153 (1) p€)(t) € A

is continuous in &, uniformly with respect tot € I

Then for all £ € X and every o > 0,
) lim sup e~ (g (€ + B) (1) — (() (1)) = 0
—UeJ

b) lim sup =¥l sup |p(dp(€+ h)() + (1 = D)p(&) (1))
—UteJg 9€[0,1]

—9(p(€) (1) = 0.

Assumption (x) is satisfied if ¢ is continuous from X to BC"(J,Y)
for some n € R. &
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2. Setting of the problem.
2.1. Main hypotheses and first results.

Let us consider the following singularly perturbed system:

(S)e{ &= f(t,z,y,€)

€y = A(t,$)y—}—g(t,$,y,€)

We make the following assumptions:

(SP)
1. X and Y are Banach spaces, z € X and y € Y;

2. there exist r € N, e3,89 € R, 7 > 2 and €3,89 > 0, such that, if
B§: (0) is the open dp-ball centerd at 0 in Y'*, we have:

(a) A(t,z) = Ao+ A1(t,z), where — Ag is a sectorial operator in
Y if Y is the “fractional-power space” generated by — Ay,
the map

(t,z) = Ay(t,z) :Rx X — L(Y,Y)
is of class C7;

(b) feCy(R x X x B (0) x (0,e3), X) and g € CF(R x X X
B§ (0) x (0,¢€3) ,Y) (Note that this assumption implies that,
for0 <n <r—1,D"g : RxXxBg (0)x(0,€3) = LT(RXX X
YoxR,Y)and D" f : Rx X x B§, (0)x (0, €3) — L"(Rx X x
Y? xR, X)) are globally Lipschitz continuous, and therefore
can be extended continuously to R x X x B [0] x [0, €3]
we denote these extensions still as D" f and D"g );

3. ¢(t,z,0,0) =0 for all (t,z) € Rx X;
4. Dyg(t,z,0,0) =0 for all (t,z) € R X X;
5.  Ag has compact resolvent;

6. For some g > 0, and for all (¢,z) € R X X, |Rec(A(t,z))| > 2pu.
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The first result regards the linear part of system (5)..

LEMMA 2.1.1. There are real ¢g and N, €3 > €9 > 0, N > 0, such
that, for each 0 < € < €3, and for all x € CY(R, X) with sup |z(t)] <
tER

N, and all ty € R, the equation
= Alto+et,z(t))y

has an exponential dichotomy with limit M and exponent p indepen-
dent of ¢, x and tg.

Proof. We apply Th. 1.4.1. First of all, we observe that
{A1(t,z) |(t,z) e Rx X }

is bounded in L(Y*,Y). Since Ay has compact resolvent, the in-
clusion Y! < Y? is compact (see [He], Ch.1). By the Ascoli-
Arzela Theorem, it is easily seen that also the inclusion £(Y?Y) <
L(Y1Y) is compact. So

{Ai(t,z)|(t,z) ER x X }

is in a compact subset of L(Y!,Y).

Now we set A := R x X, and supply it with a metric space structure,
by mean of the product norm. Since the map (¢,2) — Ay (¢, z) is of
class C7, with r > 2, it is globally Lipschitz. By Th. 1.4.1, there are
qg >0, M > 0, such that, if A : R — A verifies:

() d(A(t),A(s)) < qif [t —s| <1,

the equation
y=AA@)y

has an exponential dichotomy on R with exponent p and limit M.
Now, if ¢ > 0, 2 € C} and sup |&(t)| < oo, if tg € R,and if |t — s| < 1,
tER

we have

(t0-+ ct,2(t)), (to-+ cs,2(5))) < et = 5|+ sup ()] |t = o] <
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< e+ sup|z(7)|.
TER

Setting ¢; := ¢/2, N := q/2, we obtain the conclusion. &

Let us consider now, for ¢ > 0,

(S)e{ &= f(t,z,y,€)

€y = A(t7$)y+g(t7m7y7€)

If we rescale the time variable, by mean of the map ¢t — €t, we obtain
that (). is equivalent to

(F) i:Gf(Gt,:C,y,G)
| y=A(et, )y + g(et,z,y,€) '

in the sense that:

1. if (z,y) : (t1,t2) € R — X x Y is a solution of (9)., then
(2,9) : (&,2) - X x Y defined by

C)

T
= y(€t) )
is a solution of (), ;

2. conversely, if (z,y) : (t1,t2) CR — X x Y is a solution of (F),,
then (&,7) : (et1, et2) = X X Y, defined by

i(t) == (%t)
g(t) =y (1),

is a solution of (5)..

We call (5), the “slow” system and (F). the “fast” system.

2.2. Some properties of the map g.

Now we analyze some properties of the map g that can be directly

deduced from hypotheses (SP)2.(b), (SP)3 and (SP)4. As we have
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already seen, since g € C] (R x X x B?O(O) x (0,€3)), forevery 0 < j <
r—1, D7g can be extended continuously to R x X x Bg§. (0) x [0, €3] -

Also, we agreed to denote these extensions again as D7g. Moreover,
for 0 < j <r—1, the map

Dig:Rx X x B [0] x[0,e5] = LI(Rx X x Y x R,Y)

is Lipschitz continuous; hence, if a sequence {¢,},cy, €2 — 0, is
given, then

{ng(t, z,y, en)}

is a Cauchy sequence in £7(Rx X xY?xR,Y), uniformly with respect
to (t,z,y) € R X X x B§ [0]. So, for 0 < j <r—1, D/g(t,z,y,¢,) =
D’g(t,z,y,0) uniformly with respect to (¢,z,y) € R x X x B [0].
Therefore the map (¢, z,y) — D’g(t, z,y,0) belongs to C’g_l(]R x X X
B§ (0),Y), and (¢, z,y) — D(;;y)g(t, z,y,0) is Lipschitz continuous.
We assumed that

neN

g(t,z,0,0)=0
Dyg(t,z,0,0)=0.

Obviously, also D,g(t,z,0,0) = 0. By the Mean Value Theorem, we
conclude that there is a constant C' € R, C' > 0, such that, for all
(t,,y,€) € R x X x B (0) x [0, €3], the following estimates hold:

lg(t,z,y,6)] < Cle+yl2);
|Deg(t,z,y,€)] < Cle+yl,); (19)
|Dyg(t,z,y,€)] < Cle+yl,)-

2.3. Strategy of work.

Our goal is to build an invariant manifold for (5).. Namely, we
shall construct a map k : R X X X (0,¢9) — Y, of class C}, with
k(t,z,¢€) = 0 uniformly with respect to (¢,2) € R x X, such that

e—
the set
Ce=A{lt,z,y)ly=Fk(t,z,e) ] CRXx X xY*

is an invariant manifold of (5).. As a consequence, we will have that,
since k(t,z,€) v 0 uniformly with respect to (¢,z) and since, for
e—
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0 < j <r—1, Dk is Lipschitz continuous, then D7k(t,z,¢) — 0
uniformly with respect to (¢, z) for 0 < 7 < r—1; therefore k(- -, ¢) —
0in C;7'(R x X,Y®). So we'll have that

ft,z, k(t,z,€),¢) = f(t,z,0,0)
D(t,r) [(t7 $) = f(tv <z, k(tv x7€)7 6)] ;; D(t,r)f(t7 z,0, O)

uniformly with respect to (¢,z) € R x X; i.e. the reduced equation
&= f(t,z,k(t,z,€),¢€)
“tends” to the equation
&= f(t,z,0,0).

Let us suppose now that we have built an invariant manifold for
(F)., € > 0. Namely, let us suppose that we have constructed a map
h:R XX x(0,¢) — Y such that, for all (ty,2¢) € R x X, there is
a unique solution (z,y) of (F). on (—o0,400), with z(tg) = z¢ and
y(t) = h(t,z(t),¢) for all t € (—o0,400). Let us set

t
k(t,z,€):=h (—,x,e) .
€

It is very easy to check that A defines an invariant manifold for (5)..
Conversely, if k: R x X X (0,¢) — Y defines an invariant manifold
for (S)e, then h(t, z,€) := k(et, z, €) defines an invariant manifold for
(F)e-

In the next section we will construct an invariant manifold for
(F)¢, and hence, as we have just seen, one for (5)..

3. Existence and smoothness of the invariant manifold.

In this Section we prove existence and smoothness of an invariant
manifold for systems of type (5). assuming hypotheses (SP).
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3.1. Existence.
We start with some “technical” results.

LEMMA 3.1.1. Let ¢; and N be as in Lemma 2.1.1.

1. Let p € R, p > 0; let z; € BC?(R,X) and, for ¢t € R, let
t
z(t) == /0 z1(s)ds. Then z € BC?(R, X) and |z|, < %|£E1|p.

2. Let z € CY(R,X) with sup | ()] < N.Let € < . Let 0 < py <
tER
p2 < p. Let 1y € BCP1(R,Y). For t € R, let

V() = /+OOU(t,s;to,m(-),e)@bl(s)ds.

— 00

Then 9 is well defined and belongs to BC??(R,Y?®), and the
following estimate holds:

o1
[¥],, <K o |91,

l,l/ —
where K := Mff—g

Moreover, if ¥ is locally Hoelder continuous, % is the unique
solution of

§ = Alto + ety (1)) y + 1 (1)
in BC?2(R,Y™).

Proof.

1. For every t € R we have:

t t
/0 |z1(s)|ds /Oep|5| 21|, ds

S 6_P|t|%6p|t| |$1|p = % |$1|,D .

e—rltl lz(t)] < e—rlt < el <

2. Point 2. is simply a reformulation of Th. 1.3.4. &
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LEMMA 3.1.2. Let 0 < p < & and let w € BCP(}R Y). Let
z,2* € CY(R, X), withsup |#(t)| < N, sup|i*(t)] < N. Let to,t € R,
tER tER

and let 0 < ¢,¢* < €y. Let

+oo

w(t) ::/ Ult, s;to, z(-), )w(s)ds.

— 00

Then

w0 = [ U120, (Ao + es,a(s) +

— 00

—AL(t5 + €°s,27(s)))w(s) + w(s)] ds.

Proof. By Th. 1.3.7,

+oo
5 / Ut, s:to, 2(-), )w(s)ds =
_/+°° (1,515, 2°(), () +
+/_m Ut pit5 2™ (), €) [ A (85 + €', 2" (p)+
+41(to + €p, 2(p))]
U(p,s to, z(-), €)w(s)dp}ds =
= [ W st a0, )+
_|_/_Oo (t,s5t5, 2°(-), €) [Ar(to + €s,2(s) )+
— A1ty + ¢*s,2%(s))]
. U(s, p;to, z(+), )w(p)dp}ds =
- /_Oo Ult, s;t5,2%(-), €) [w(s) + (Ar(to + €5, 2(s))+
—A1(t5 + €5, 2%(s)))w(s)] ds

Here we have used Fubini and Tonelli Theorems. This was possible
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thanks to estimate (18): infact, we have

+oo 400
/_Oo [/_OO |U(t, s;ts, *(+), €) (A1 (to + €s,z(s))+
A1t 4 €,27(9)))
Ul(s,p;to, z(+), é)w(p)|] dsdp <

+oo u
< / const. wy (t — p)e 212l [w(p)|dp <

— 00

+oo u
< / const. wy (t — p)e~ 2Pl |w], e?lPldp < oo.

— 00

%

LEMMA 3.1.3. Letz : R — X, y : R = Y be continuous, with

sup |y(t)|, < do. Let N := sup |f(t,z,y,€)|. Let 0 < €1 < €3 be
teR (t,z,y,€)

such that N < N. Let 0 < ¢ < ¢;. Then the following facts are
equivalent:

1. (z(-—to),y(-—to)) is a solution on R of

i =cf(et,z,y, e
(F)e{ = Alet,z(t))y + glet,z,y,€)

2. z € CYR,X), sup|2(t)] < ¢ N, and, for some £ € X, some
tER
to € R,and all t € R,

t

o(t) = €+ [ ef(els+10),2(9),y(), s

y(t) = /+OOU(t, s;eto, z,€)g(e(to+ s), z(s), y(s), €)ds.

— 00

Proof.
1.= 2.
If 1. holds, for every t € R

z(t —to) = z(0) + /t:ef(es, z(s —to),y(s —to),c)ds =
=z(0)+ /;_toef(e(s +to), z(s),y(s), €)ds
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and so
2(t) = 2(0) + /Oef(e(s +to), 2(s), y(s), ) ds.

As for y, by hypothesis the map s — g(es,z(s — to),y(s — to),€) :
R — Y is locally Hoelder continuous (see [He], Ch. 3); moreover, by
the estimates 19, the map s — g(es, (s —to), y(s — to), €) belongs to
BC°(R,Y). By Lemma 3.1.1, for each ¢ € R,

+oo
y(t —to) = / U(t,s;0,z(-—tg),€)g(es, z(s — to), y(s — to), €)ds =

—00

= /_J(:OU(t,s+ to; 0,2 (- — o), €)g(e(s+to), z(s),y(s), €)ds.

So

+oo
y(t) = / U(tO + t, tO + 53 07 x( - t0)7 6)9(6(8—1_ tO)v $(8)7 y(8)7 €)d8'
Let us set

zé(/\) =T(MNto+5;0,z(-—tg), €)y
P(A) =P (A + o).

By definition, % solves

{ du — A(ed,z (A — to))u
u(to + 5) =Y 7

moreover, t solves

{ = AN+ o), 2(N)u
u(s) =y

Therefore, for all y € Y, we have

T(t7 s; €to, 'r()7 6)3/ = ‘¢"(t) = ’¢(t+t0) = T(t+t07 s+t0; 0, ;Z‘(-—to), €)y.

So

o) = [ U s eto, 209, ge(s-+ 10),2(5), (5), s

— 00

2.=1.
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If 2. holds,

d

I [s = z(s—to)] (t) = ef(et,x(t — to),y(t — to), €).

As for y, we know that the map s — g(es, z(s — o), y(s — to), €) is
continuous and bounded, i.e. belongs to BC°(R,Y). Arguing as in
the first part of the proof, it is easily seen that

y(t —to) = /+OOU(t, 5;0,2(- —tg), €)g(es, z(s — o), y(s — to), €)ds.

— 00

It can be easily shown (cf. the proof of Th. 1.3.4), that, for ¢ > s,

t y(t —to) =T(t,50,2(-—tg), €)y(s — to)+
+/ST(t7p; 0,2(-— to), €)g(ep, z(p— o), y(p — to), €)dp.

By estimates at page 155, it can be shown that y is locally Hoelder
continuous, and so, by Th. 1.2.1, (z(- — t¢), y(- — to)) is a solution of
(F)e..

NoTE: we could not have applied directly Lemma 3.1.1, as it
should have seemed more natural, because we didn’t know a-priori
if s+ g(es,z(s —tg),y(s — to), €) were locally Hoelder continuous.

&

LEMMA 3.1.4. Let N := sup|f|, Ny = max{sup|D,f|,
sup | Dy f|, My :=sup |DA;|. There exist b, p, ¢o,§ € R such that:

b>2,0<60§61,p>2N160,0<5§50,prb<,u/2,
Cleo+62) < L6,

0 < K1 := —L - max {My4,C(e0 + 6%),Cleg +6)} < 1.

pw=p

Proof.

1. Fix b > 2;

1 1.
2. choose p < 55 (i ot < m) ;
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3. choose ¢ such that: 0 < § < &g; § < %%Igl/\iﬁ 5 < %%%,
114/2,
< 3iRC

. . o 11p/2.

4. finally, choose ¢y such that: 0 < ¢g < €15 ¢¢ < any €0 < 3I RS

€ < %5—52

With this choice, it is easily seen that all our requests are satisfied.

&

THEOREM 3.1.5. Let N, Ny, My, p, €9, &, b be as in Lemma
3.1.4; in particular, with this choice, we have

K 1
0< HmaX{Mgcs,C(eo—|—52),C(60—|—5)} <7

Then for each 0 < € < €, for all £ € X, tg € R, there is a unique
couple

($7 y) = (991(t07 57 6)7 902(t07 57 6))
of maps, with z € C'(R, X), y € CO(R,Y?), and |i|, := sup|i(t)] <
teR
eolN, |yl, :=sup|y(t)| < 4, stisfying, for ¢ € R, the following integral
tER

system:

2(1) =€+ [ flels +10),2(5),y(s), s
+oo 0 : (20)
vt = [ Ul sz, Oglels +10),2(5),y(s), s

— 00

Proof. We introduce the Banach space BC?(R, X) x BC*(R,Y®)
supplied with the product norm |(z, y)|p = |£C|p + |y|p.
Let
A= {(2,y)[o € C' (R, X),y € CO(R,Y?), |ily < coN,Iylo < 6}
Since p > 0, we have that A C BC?(X) x BC?(Y?). We define

Fr:Rx X x(0,¢) x A— BC?(X)
Fr:Rx X x(0,¢) x A— BC?(Y?).
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in this way:

Fi(to, &, 6,z,y)(t) =&+ /;ef(e(to +5),z(s),y(s), €)ds
Falto, &, 6, z,y)(t) == /-l—OOU(t7 s;eto, z,€)g(e(to+ s),2(s),y(s), €)ds.

— 00

Clearly, Fi(to,&,6,2,y) € CY (R, X) and |Fy(to, &, €, 2,y)|, < eN.
Moreover, by Lemma 3.1.1 and by our choice of the constants (Lemma
3.1.4),

|]:2(t07€7€7$7y)|0 S %Sgﬂg |g(€(t0 + S)7$(8)7y(8)7€)| S
< BC(e+6%) <6
Therefore F := (Fy, F2) : A — A.
Now, for (z,y), (z*,y*) € A,

t Fi(to, &, e, 2,y) () — Filto, &, e, 2%, y*) (1) =
= /06 [f(e(to+5),2(s),y(s), €) — fle(to + 5),27(s),y™(s), €)] ds

and so, by Lemma 3.1.1,

|]:1(t07€767$7y) - fl(t07€767$*7y*)|p S
< Tesup el f(e(to + 5),2(5), y(s), ) — fle(to +5),27(5), y7(5), )| <
SER
< 2Ny(jz 27|, + Iy - v7],).

moreover, since p < /2, by Lemma 3.1.2,

. Falto, & 6,2, y)(t) — Falto, &, 6, 2™, y") (1) =
= /_Oo U(t, s;eto, 2%, €) [(Ar(e(to + 5), 2(s)) — Ar(e(to + 5),27(s)))
Falto, & 6z, y)(s)+
+ g(e(to +5),2(5),y(s), €) — g(elto + 5),2*(s), y*(s), €)] ds
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and so, by Lemma 3.1.1,
[ Fa(to, &, €, 2, y) — Falto, &, 6,2, y7)], <
< sup =PIl (A1(e(to + 5), 2(5))—
—Ai(e(to + 5),27(s))) Falto, &, €, 2, y) (s)+
+g(eto + 5),2(s),y(s), €) — ge(to + 5),27(s),y™(s), )] <
< I Mybfe - w7, 4 Cleo + 8)(Jo — 27, + ly - v7l,)] <
< G 2max {Mad, Ceo + 0)} (v — 2%, + |y — y°,).
Therefore
|F (o€ 6 2,y) = Flto, & 6,27 y7)|, < wl(wsy) — (97, (21)

where K := (%Nl + 2/@1) < 1.

Let £ € X, e € (0,€0), to € R be fixed; let (zo,y0) € A. For each
k>0, let us set

(@ht1, Yhg1) = F(to, & € 2k, Yie).-
For m > n we have:
(@ Ym) = @y ya)l, < (K" 4 o+ 67 (@1, 91) = (20, 30)1
hence {(z,yx)}ren 18 @ Cauchy sequence in BC?(X) x BC?(Y?).
So it has limit (z,y) = (z(t0,&, ¢), y(t0, &, ¢)) in BC?(X) x BC?(Y?).

In particular, (zx(s), yx(s)) = (z(s), y(s)) uniformly on the compact
intervals of R. By the continuity of f,

Filto, & €, z,y)(t) :5+/;€f(6(t0‘|‘S)ykli_{f;oxk(S),k]i_}r{)loyk(g)7€)d8:
:5+/t6 lim f(e(to + s), zx(s), yu(s), €)ds.
0 k—oo

Since in the last expression the limit is uniform on the compact
intervals of R, we have

Filtor & 6,0,0)(0) =€+ Jim [ S+ 5),m1(6), u(s), s =

= lim fl(t07g767$k7yk)(t) = lim TE+1 (t) = ‘r(t)
k—o00 k— oo
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As a first consequence, we obtain that z € C''(R, X) and |z|, < V.
On the other side, since yi(t) — y(¢) uniformly on the compacts, y
is continuous, and |y|, < 4. Therefore (z,y) € A.

Now, we observe that:

L (Zp41, Yet1) = (2, y) in BOP(X) x BCP(Y?);
2. ($k+17yk+1) = f(t07€767$k7yk);
3. Flto,& €,z yx) = Flto, &, €,2,y) in BCP(X) x BC?(Y?), since

F : A — BCP(X)x BC?(Y?) is continuous, and (zj,yx) —
(z,y) € A.

Therefore (z,y) = F(to,&,¢,2,y), i.e. (z,y) is a solution of (20)
belonging to A. If (z*, y*) is another solution of (20), with |2*|, <
e, |y*|y < 6, we have:

|($*7y*)—( )| :lf(t07€7€ <L 7y) (t07€7€7$7y)|p§
< k(@) = (2,9)], -

Since K < 1, it must be (z,y) = (z*, y*).
NoTE: we could not have applied the contraction principle, be-
cause A is not a closed subset of BC?(X) x BC?(Y ). &

Now we are able to construct an invariant center-like manifold for
(F)., and consequently one for (S).. Let ¢1, ¢ be the maps obtained
in Th. 3.1.5. We set

h(to,f, 6) = @2(t07€7 6) (0)

We want to show that A defines an invariant manifold for (F).. Let
us fix (£p,&) € R x X and set

2(t) == ¢1(to, & ¢) (£ — to)
g(t) = palto, & €)(t — to).

By Lemma 3.1.3, (Z(¢),y(¢)) is a solution of (F). on (—oo,+00).
Moreover

(f(to), :l?(to)) = ($07 h(to, 57 6))
and, for all ¢t € R,
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g(t) = p2(to, &, €)(t — to) -

Now, we set

ISI

~(A) = @1(t0757 6)(’\+ t— to)
g(A) = @Q(to,f, 6)(A+ t— to).

Clearly (z,7) € A; moreover

(@(-=1),9(-—t) = (e1(to, &, €) (- — to), pa(to, & €) (- — to))

is a solution of (/). on R, and #(0) = ¢1(to, &, €)(t — to). Then,

by Th. 3.1.3, (z,y) solves the integral system

z(p) = p1(to, &, €)(t —to) + /Opef(e(s +1),2(s),y(s),€)ds
y(p) = /+OOU(p,s;et,ac,e)g(e(s+ t),z(s),y(s), €)ds '

— 00

By the uniqueness result in Th. 3.1.5, we have that

(575) = (Wl(u @l(t()?g? 6)(t - tO)? 6)7 992(t7 991(7:0757 6)(t - tO)? 6))

Since
(0) = @1(to, &, €)(t —to)
(0) = @2(t07€7 6) (t - t0)7

@2 B

we obtain

©1(to, &, ) (t — to) = @1(t, p1(to, &, €)(t — to), €)(0)
©a(to, &, ) (t — to) = pa(t, p1(to, &, €)(t — to), €)(0)

and therefore

(22)

() = h(t, 5(t), c).

So we have just proved that i defines an invariant manifold for (F)..
These arguments show also that each solution of (F'). belonging to
A must lie on this invariant manifold.

As we have seen on page 168, the map

0,6 1= b (2.6,) = (L.6,6) ©
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defines an invariant manifold for (S).. We are mainly interested in
proving smoothness and boundedness and studying the behaviour as
€ — 0 of k£ rather than of h. So it is natural to introduce the maps

¢1(t07€7€) =¥ (20'7576)
¢2(t07€7 6) = P2 (%757 6)

and to study the proerties of 1 := (11, ,) rather than those of
¢ := (¢1, p2). For sake of clarity, we point out that:

1. The map 7 — (¢1(t0757 6)(t - t0/€)7 ¢2(t0757 6)(t - tO/e)) is a so-
lution of (F),., and its value at to/c is (£, h (12,&,¢)) .

€

2. The map t — (¢1(to, &, €)(t/e — to/€), Pa(to, &, €)(t/€ — to/€)) is
a solution of (5), and its value at ty is (&, h (t0, &, €)) .

We end this Section with two very important results.
ProrosiTION 3.1.6.
lim [ (t0, &, €)|, = 0
uniformly with respect to (tg,€) € R x X.
Proof. By definition,
Pa(to, &, €) (1) =

= /_+OOU(t7 s;to, Y1(to, €, €), €)
!](to + €S, '¢1(t07€7 6) (8)7 ¢2(t07€7 6) (8)7 e)dS

and so, by Lemma 3.1.1,

[92(t0,€, )], < 75 sup bl
g(tO + 637wl(t07€76)(5)7@/)2(t0’€76)(8)76)| S

< g supe IO+ [9s(to, &, () < G5+ L5 alto €, 9,
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Since 1‘05 < 1, we obtain that
KCs\ ™! AC
Ualto &0l < (1- )
w—p) w-p"
hence the conclusion. &
REMARK.
As a consequence of this Proposition we have that |k(to, &, €)|, —

e—0

0, uniformly with respect to (fg,£) € R x X.

ProposITION 3.1.7. The map ¢ : R X X X (0,¢) = BC?(X) x
BC?(Y*®) is globally Lipschitz continuous.

Proof. We know that i and 1, satisfy:
(t07€7 g + / €f lo + €s ¢1(t07€7 )( )7 ¢2(t0757 6)(8)7 e)dS

m%fJUI/mU@smm%fJJ
g(to + es, ¥1(to, &, €)(8), Yalto, &, €)(s), €)ds
i.e. ¥ = (11,1)2) satisfies
P(to, &, €) = ]—'(%0,5, €, ¥ (to, &, €)) .
Then we set
Gi(to, &, e,z,y) = F; (%0,5, €z,y);1:=1,2
G = (G1,Gs).

Clearly,
G:RxXx X x(0,6) x A— BC?(X)x BC?(Y)

is a contraction on A, uniform with respect to (¢g,§,¢) (cf. (21)).
If we show that G is Lipschitz continuous in (fo,&, €), with Lipschitz
constant L independent of (z,y) € A, then clearly v is Lipschitz
continuous. In fact

[P (to, & €) = P(t5, €7 €], =
= 1G(t0, &, €9 (to, &5 €)) = G(t5, €7, €, ¥ (85,6 )], <
<G(to, &€, ¥ (to, €, ) = G(15, €7, €7, P (to, &, ), +
I3 € &, Dlto,€, ) — G0, €, (85, €% )], <

S L |(t07€7€) - (t875*7€ )| +H|¢(t07576) - ¢(t675* )l
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Since k < 1, it follows that ¥ is Lipschitz continuous. So we have to
prove that G; and Gy are Lipschitz continuous.

gl(t(hga €, T, y)(t) t_ gl(t675*7 6*7 €z, y)(t) =
=&—& 4 (e— e*)/o flto +es,2(s),y(s), €)ds+

_+€*f£t[f(t0_Fes’x(s)’y(s)ve)“ffté-Fé*S,x(S)yy(S),e*)]ds

and therefore
|g1(t07€7 €T, y) - gl(t675*7 6*7 €z, y)|p S
< I~ €+l — €| Nsup i ey
. teR
+egsup | D f|sup e?l / (lto — t5l 4 Is| |e — €| + |e — €*|) ds| <
tER 0
<comst. (I — €| + lto — 151+ | — )

As for Gy, since p < /2, by Lemmas 3.1.2 and 3.1.1, we have:

g?(f(()xy)g7€7$7y)(t) - g2(t875*76*7$7y)(t) =
/_Oo Ul(t,s;t5, z,€) [(Ar(to + €s, z(s))+
_Al(tg+6*87$(S)))g2(t07€767$7y)(8)+

Folto + 5,200, 5(5),0) — 9(23 + 5, 2(5), y(5), )] ds

and therefore

|g2(t07€7 €T, y) - g2(t67€*7 &z, y)|p <

< supe P [My(|to — t§| + |e — | |t])6+
tER
+sup |Dg| ([to — t§] + |€ — €| |[t| + |e — €*|] < const.([tg — 5| + |€ — €*]).

&

REMARK.

An immediate consequence of this Proposition is that the map &
is Lipschitz continuous. Infact k& = evgo 1y, where evg : BC?(Y?) —
Y is the “evaluation map at 0”7, which is linear and bounded.
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3.2. Smoothness.

In this section we prove that the map £k belongs to C} (R x X x
(0,¢€0),Y®). Namely, we shall prove that

P € Cy(Rx X x (0,6), BC’™ (R, X) x BC”™ (R, Y®)).

We shall apply Theorem 2.11in [Ry1]. First, we proceed heurystically:
1 satisfies

lw(t07£7 6) = g(t0757 €, ‘d)(t07€7 6))

Differentiating formally this expression, we obtain that D*1 should
be expressed as as a finite sum involving the derivatives Dl G

form.
evaluated at (to,&, €, ¥ (to, &, €)). Since

Gi(to, &, €2, ) (1) —5+/ef to + es,2(s), y(5), ds,

it is natural to set

Dform gl(t07§76 z y) <t07€1 yl) (t)
=&+ [ (0 + es,a(s > y(s), )+
+eDf(to+ €5, 2(5), y(s), ) (4 + s, 2 (s), y1(s), ) )ds

and, for j > 1,

D?‘orm (t07 57 €, T, y) [<t67 gi’ €i7 $i7 yi)]izlw.ﬂ' (t) =
t . . . . .
/0 (€D]f(t0 + €S, $(S), y(5)7 6) [<t6 + 6257 $Z(8)7 yl(S), 62)]2’:17,,,7]' —I_

> DIt f(to + es,2(s),y(s), €) [(th + 's, 2(s), ¥ (s), el)]zi]) ds-

=1

As for Dj,ormgQ, we observe that, if s — ¢(to+ €s, z(s), y(s), €) were
locally Hoelder continuous, by Lemma 3.1.1 we should have:

%QQ(tO7€7 €T, y)(t) = A(to + €t7 x(t))QQ(t07€7 €T, y)(t)—l_

+g(to + et z(t), y(t), ).
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By formal differentiation we obtain:
& (D Galto, & ¢, 2,w) [(t, €1, 62t y) ] oy L) (8) =
= A(tO + Gt, -T(t))Djform.QZ(tm 57 €T, y) [<t67 527 E27 $27 yl)]izl,,,,d (t)+

+ Y DIV Ao + etz (1)) [(th + ¢t 27 (1) ]ien
(N,M)es’

DEY Galto, &6 0, y) [(t, €, € 2, y) s (8)+

+ng(t0 + €t7 x(t), y(t)v 6) [(% + 6%7 mi(t)7 yi(t)7 €i)]i:1,...,j
where

S = {(N,M)|N,M C{1,...;}, NOM=0,NUM = {1,...,j}}
S'i={(N,M) € S|N #£0}

Lemma 3.1.3 suggests to set:

DY Galto, &, 2,9) (15,6, 62l )] o= Galto €62, y)

and, for 1 <j<r,

D% Galto, & € 2, y) (6, €6, ¢ 2l )]y (1) =

+oo
:/ U(t,s;to,m,e)[ Z D#N Ay (tg + es, z(s))
e (N,M)es’

€0

[(t%) + 6i87 xi(s))]ieNDJ#o])"Jm.QQ(t(J? 57 €T, y) [(tév g? eiv $i7 yl)]zeM (5)+

+Dig(to+ es,z(s),y(s), €) [(th + €'s,2%(s),y'(s), €)]._; ] ds .

k3 goens]

From now, to simplify notations, we write z and ' instead of (z,y)
and (2',y') respectively. For k:= 1,2, let us set

fO,k(t07€7 6) = gk(t07g7 €, ¢(t0757 E))

and, for j > 1,

Lintn &0 [(1,6,6,5)] = DY, Gklto, & 6 910, €, )

1=1,...,7

(e )]
1=1,...,5
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Note that we have not specified the domain of the f;;-s. This will
be made clear in the following Lemmas, which describe the main
properties of the f;i-s.

Let, N, Ny, My, b, p, €o, 8, k1 be the constants obtained in Lemma
3.1.4, K := %604—2/@1 <l1l,¢:= max{l,supe_p'S' |s|} and let a € R,
_ seR

0 < a< /2. Let us set M :=sup;, . |D/Ay(t,z)|.

LEMMA 3.2.1. There is a constant C" = C'(a) such that, for each

J €{1,..,r}, for every j-tuple (n1,...,n;) of real positive numbers,

withp <m; (i:=1,...,5)and n:=m+...4+n; < a, for all€,€,..., 8 €

X, all'to,t(l), wnty €R all e € (0,¢), €', ..., €R, and all 2, ..., 27,

with z* € BC"(X) x BC"(Y?) (i:=1,...,7), and for k = 1,2, the
map

fj,k(t07576) |:(t07€ , €, % )L'Zl,...,j

is well defined, belongs to BC"(X) for k=1, to BC"(Y?) for k = 2,

and

J
f]7k(t0757€) {(to,f y € 72)}2,:17.“7]. . <C ZZI_II <‘(t07€ 76) + |z T/i) .
Proof.
Case k = 1: we apply Lemma 3.1.1, a).
Case k = 2: induction on j := 1,...,r and Lemma 3.1.1, b). &

LEmMMA 3.2.2. Let j € {0,...,r}, let (m1,...,m;) be a j-tuple of
real positive numbers, with n; > p (j:=1,...,7); set n:=p if j =0,
n=p+m+..+mn;ifj>1, let n < a. Then, for each { > n and
fork=1,2,

‘(fj,mo 0,64 hyetX) — finlto €, 0))

0

(e )]
1=1,...,5

uniformly with respect to (¢}, £, €', z*) with |t6|—|—|§i|—}—|ei|—}—|zi|m < 1.

—
¢ (9,h,x)—0
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Proof.
Case k = 1.
We set D! f := 0, and, for j :=0,...,r,

B(rﬁah7X) = ‘(fj,l(to +197€+ h7€+X) - fj,l(toagve))

(e )]
1=1,...,5

By applying Lemma 3.1.1, by adding and subtracting terms, and by
Lemma 1.5.1, we obtain

. .

B(9,h,x) < |kl + ngﬂge(ﬂz;m)lsi <|X| n

[+D7 f ((to + 9) + (e + x)s, 0 (to + 9, §+ hy e+ X) (), e+ X) +
| —Dif (to + €5, %(t0, &, €) (), €)] +
+7 [ DI ((to +9) + (e 4+ X)s, % (to + 0, &+ hy e+ x)(5), e+ x) +

_pi-t |
DI f (to + es, w(tmf’ém) @0

Case k = 2 : induction on 7 := 0, ..., 1.

If j = 0, by Lipschitz continuity of ¥, since ( > 7 := p, we have

|f0,2(t+197€+h76+X) - fO,Q(t7£7€)|C =
= |¢2(t0 + 197€+h7€+X) - ¢2(t07€76)|< <

S|¢2(t0+1975+h76+X)_¢2(t07576)|p (19h—> 0.

=
1
[}

Now, let 1 < 7 < r, and let us suppose that, foreach n, 0 <n < j-—1,
the assertion is true; for j we have

fj,Z(tO + 1975 + hv e+ X) [(té,fi, €i7 Zi)]i:l,...,j (t) =
+oo
:/ Ult,s;to+ 9,91t + 9,8+ h,e+ x), €+ x) wi(s)ds
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where

wy(s) ==
= > D*NA ((to+9) + (c+ x)s, ¥1(to+ 0, + h, e+ X)(5))
(N,M)es’

[(t5 + €'s,2°(s)) ;e
Sama(to+0,E+he4+x) [(th, €, €,2°)],cpr (5)+
+D7g ((to+9) + (e + )8, P1(to + 9, E + by e+ x)(s), € + X)
[(tg +€5,2°(s), €)] iy, -

By Lemma 3.2.1, w; € BC2oi=1 7 (Y) C BC*(Y).Since 0 < a < /2,
we can apply Lemma 3.1.2, to obtain

fj,?(t0+1975+h7€+X) [<t67€i76i72i)]i:1 ](t) =

.....

+oo
:/_ U(t7S;t07¢1(t07576)7€)w2(3)ds

where

wy(s) =
= (A1((to+ ) + (e+ X)s, 1t + 9, E+ b, e+ x)(5)+

—Aq(to + es, Y1 (to, &, €)(s)))
fia(to +9,&+ hye+x) [(16, €, ¢, 29)] iy (5) +wi(s).

.....
So

(f]ﬂ(to + 9,8+ h,e+ X) B fj72(t07€7 6)) [(téﬁgi? Ei’ Zi)]i:l ..... J (t) =
+oo
:/_ U (¢, s;to, ¥1(to, &, €), €) w(s)ds
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where

w(s) =

= (A1((to +9) + (e 4+ )5, D1 (to + 9, E+ by e+ X)(5))
—Aj (to + €s, ¥1(to, &, €)(8)))
Fialto+ 9,6+ hye+x) [(t, € €', 2) ],y 5 (5)

+ ) {B(IN,M)( +BNM }+
4 (N.M)es'
+ (D79 ((to + 9) + (e + X)5, ¥(lo + 9, £+ by e+ x) (), e+ X) +
—D7g (to + es,9(to, &, €) (), €) [(th + €'s, 2°(s), Ei)]i:l,...,j
with
B(lN,M)(S) =
= DN Ay ((to+ 9) + (e + X)s, ¥1(to + 9, &+ h, e+ X)(s))
[(th + €5, 27(5)) ] ;en
Saara(to+ 9,6+ h, e+ x) [(t, €, ¢, Zi)]ieM (s)+
—D#FN A (to + es,91(to, &, €) () [(th + €'5,27(5))] ey
fama(to + 9,4 hye+x) [(85, €5 €, 2] icpr (5)
and with
By any(5) := DFN Ay (to + es, ¥1 (f0, €, ) (5)) [(th + €5, 2°(5)) ;e
fama(to+9,€ 4 hye+x) [(85, €, €, 29)]icpr (5)-
—D#FN Ay (to + es,91(to, &, €) () [(th + €'5,27(5))] ey
Fama(to, &) [(t6: €7, ¢, 2) ] icar (5)-
By Lemma 3.1.1,

Uialto + 9, €4+ by e X) = fialto &) | (16, €€, 2) ]

¢

K ol
— (W, .
p—¢ ¢
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So, we have to estimate the norm ||C of the terms in w. This is easily
done using Lemma 1.5.1, Lemma 3.2.1 and the inductive hypothesis.

&

LEmMA 3.2.3. Let j € {0,...,r — 1}, let (11, ...,n;) be a j-tuple
of positive real numbers, with 7; > p (i := 1,...,j); set n := 2p if
J=0,n:=2p+m+...+n;if  #0,let n <a. Then, for each { > 7
and for £k = 1,2 we have that

‘(fj,k(t0+1975+h7€+X) iklto, &) [(th: € €', 2)] oy i+
—fi+1,6(t0, &, €) (9, k X Y (t0+1975—|-h,e—|-X)
—(to, &, €)) [(th, & )]¢:1,...,J“C =

0(|(19 h X)|)

as (9, h, x) = 0, uniformly with respect to (th, €%, ¢, 2%) with |t6| +
€]+ €]+ 12, <1

Proof.
Case k = 1.

Let us set

B(t) = (fj,Z(tO + 1975"’ h7€+X) - fj,?(t07€76)+
_fj+1,2(t07€7€) (197 k7X7 ’t’/)(to—}— 1975—}— h7 €+ X)—I_
(o, &, €))) [(té,fi, ¢, Zi)]i:l,...,j (t);

by definition of f; 2 and f;11 2, recasting the terms in this expression,
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we have

B0 = [ {eis+0)+ (40
Bllo T 0,6+ b4 ) (3), e+ 1)+
=D f(to + es,(t0, €, €) (5), )+
DI (1o + s, lt0, & (5),
(94 x5, Bllo + 9,6 + by €+ X)(6) — lt0, & (5), 1)

J
[t + €5, 2%(s), €)] oy + > Bl(s)+
(D7 F((to + ) + (e 4 X)s, lto +9,€ + hy e+ X)(8), €+ )+

=Dt 5, ¥t €, ) (5), ) [t + 5,29, ]y, b

where

Bl(s) := Zez (Dj_lf((to +9)+ (e+ x)s,
=1
Dlto +9,&+ hy e+ ) (), e+ x)+

_Dj_lf(to + €s, w(t(h 57 6) (8)7 6)
—D]f(to + €S, ’¢(t07 57 6) (5)7 6)
(9 + x5, ¥(to+ 9,6+ hy e+ x)(s)

0, € ), x (15 + €', (5, N Zs ).

By Lemma 3.1.1, we reduce to estimate the norm |-[, of the addends
in the above expressions: this is easily done by using the Mean Value
Theorem, Lemma 1.5.1 and Lemma 3.2.2 and the fact that % is
Lipschitz continuous.

Case k£ = 2: induction on j :=0,...,7 — 1.

Let j € {0,...,7— 1}, and let us suppose that the assert is true for
each 5/, 0 < j' < j. Since 0 < a < p/2, applying Lemma 3.2.1 and
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Lemma 3.1.2, and adding and subtracting terms, we obtain

(fia(to+ 9,6+ R, e+ Xx) — fi2(to, &, )+
_fj—}—l,? (t07€7 6) (197 h7 X f‘z‘/)(to + 1975 + h7 €+ X)—I_

.....

+oo
:[ U(t7S;t07¢1(t07576)7€)w1(5)d5

where
wi(s)=D(s)+ Y Ewamls) +Q(s)
(N M)es'
with
D(s) == (A1 ((to + 9) + (e + x)s, ¥a(to + 0, €+ h, e+ X)(s))+
—Ax(to +es,¥1(to, &, €)(5))) fi2(to + 9,6 + h e+ X)
(65,6, ]y (04
—DA;(to + €s,¢1(t0, &, ¢)(s))
(0 + x5, ¥1(to + 0, &+ h, e+ x)(5) — (o, €, €)(s))
fia(to, & 0) [(th, €', ¢ 2N)], oy (s);
Evan(s) = (DFN A ((to + 9) + (e 4+ X)s, ¥1 (fo + 9, € + h, e+ X) (s))+
—D#N Ay (to + es, 91 (to, &, €)(s))+
—DENHLA, (g + es, ¥ (t0,€, ) (5)) (9 + x5, ¥ (to + 0, € + b, €+ X) (5)+
—1(to, &) () [(th + €'s,2°(5)) |,y Jenra(to, &, €) [(10, €%, €, 2%) ]y (8)+
+D#EN Ay (to + €5, 91 (to, €, €)(5)) [(th + €'s,2°(5)) ] 1o i
(Fanm2(to + 0,6+ h e+ X) = fgma(to, & €) = fgmir,2(to, €, €)
(0, h,x, % (to+ 0, €+ h,e+X) — $(to, &, 6))) [(th, €', ¢, 2)], ()4
+ (D#N A1 ((to + 9) + (e + X)s, ¥1(to + 0, €+ h, e+ X)(s))+
—D#N Ay (to + es,91(t0, €, €)(5))) [(th + €5, 2°(5)) ] ;e

(f#Mﬂ(tO + 19:£+ha€+X) - f#M,z(to,f,E)) [(téﬂgiaeiazi)]ieM (S)



INVARIANT MANIFOLDS FOR SINGULARLY PERTURBED etc. 191

and
Q(s) == (Dg((to + ) + (c + x)5, ¥ (to + 9, &+ hy e+ x)(5), € + x)+
—D7g(to+ es, ¥ (to, &, €)(s), €)+
— DT g(to + es,9(to, &, €)(5),¢) (9 + x5, P(to+ D, &+ h, e+ x)(s)+
—(to, &) (), x [(th + €'s,2°(5), )],y ;-

By Lemma 3.1.1, we reduce to estimate the norm ||C of the single
addends of wy. This is easily done by applying the Mean Value The-
orem, Lemma 3.2.2, and Lemma 1.5.1, and by using the inductive
hypothesis and the fact that @ is Lipschitz continuous. &

LEMMA 3.2.4. For each ¢ with p < ¢ < prb, for all € € (0, ¢),
Jor all € € X, for all tg € R, and for all z' € BC?(X) x BCP(Y®),

[Fr0(0,€,0) (0,0,0,2) |+ |12 (t0.€,6) (0,0,0,2) |, < s |2

~
&~

.
Proof. the assert is a direct consequence of the definition of f; i,

fi1,2 and s and of Lemma 3.1.1. &

Now we are able to apply Th. 2.1 of [Ryl] and to prove that ¢ is
smooth.

THEOREM 3.2.5.
¥ eC (Rx X x (0,¢), BC™ (X) x B (Y?))

and D71 is bounded for 1 < j < r.

Proof. We apply Th. 2.1 of [Ryl], with

1. U=RxX x(0,¢), Ey:= BCP(X) x BO?(Y?),
se{1,2,..,r}U{b,20b,...,7b};

2. fj (t07£7 6) [<t67€i7 €i7 Zi)]izl,u-,j =

= (fin (b0, & ) [t €', 6,20 =y i Fia (t0,€,€)
[(t5, & €, Zi)]z’:L...,jv ji=1,..,7
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3. M :=C"(a), for a := prb.

(H1) is trivially satisfied;

(H2)1. and (H2)2. are satisfied by Lemma 3.2.1;

(H2)3. is satisfied by Lemma 3.2.2, provided b > 2;

(H2)4. and (H2)5. are satisfied by Lemma 3.2.3, provided b > 2;
(H2)6. is satisfied by Lemma 3.2.4. &

We have defined

k(t07€7€) = T/JQ (t07€7€) (0) - (ﬂ-Y"‘ O €Pg © ft/)) (t07€76)

where mye : X X Y® — Y is the projection on the first factor,
and evy : BC™(X) x BC?®(Y?) — X x Y is the evaluation map
at 0 (i.e. evo(B) := B(0)). So k € C"(Rx X X (0,¢),Y?), and
Dk :Rx X x(0,e0) = L) (Rx X x R, Y?) is bounded for 0 < j < r.
Finally, since k (to,&, €) = 0 uniformly with respect to (to,&), we

can conclude that & (-, -, ¢) " 0in C; ™' (R x X,Y*)(cf. page 167,
e—

when we discussed the properties of g).

REMARK.

More general results about regularity can be obtained, just look-
ing more carefully at the proof of Th. A in [Ry1]. For instance, if f
and g are of class C” with respect to (z,y), but only locally Hoelder
continuous in ¢ and Hoelder continuous in € (together with their
(z,y)-derivatives), we still obtain existence of an invariant manifold,
which now is the graph of a map, again of class C" with respect to z,
locally Hoelder continuous in ¢ and Hoelder continuous in € (together
with its z-derivatives).

4. Stability of the invariant manifold.

As usual, we consider the system

(S)e{ &= f(t,z,y,€)

€y = A(t,$)y—}—g(t,$,y,€)
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We assume hypotheses (SP). Moreover, in this section we assume
that the spectrum of A(t, z) satisfies

Reo(A(t,z)) < —2p.
This implies that equation
y = Alto + et, z(t))y

has a trivial dichotomy (see Lemma 2.1.1, and [He], Ths. 7.4.1,
7.4.2). In particular, if 3, N, M and p are as in Lemma 2.1.1, then
for each z € C'(R, X) with |#], < N and for each 0 < ¢ < €3, and
for t > s, it holds

|T(t,s;to, 2, ¢)y|, < MemH(t=s) (t —s)~% |y|forally € Y;

|T(t, s5t0,2,€)y|, < Me=#(t=5) ly|,, forall y € Y.
Finally, let b, p, €9, § be as in Lemma 3.1.4, with the further condition

1 Hl/(l_a)

©t0< e 21/(=2)1(1 = a)

First of all, we recall that for every (to, z0,%0) € R x X x Bf there
exists a unique maximal solution of (5),,

(z,y) : [to, 1) = X X Bf
with (z(to),y(t0)) = (20, %0). In this Section we show that, if ¢ and
lyo — k(to, zo, €)|, are sufficiently small, then such solution is defined
on [0,4+00), and satisfies

(1) — k(t,(8), 9], < const.e” 56 |yo — k(ty, 20, )], -

We say that C, is uniformly exponentially attractive.

4.1. Attractivity of (.

We procede by steps.
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Lemma 4.1.1. Let (to,z0,90) € R X X x B§ and let (z,y) :
[to,t1) = X x B be the mazimal solution of (S). with (z(to), y(to)) =
(zo,y0). Let us set

&(t) = z(et)

(
9(t) = y(et);
(therefore (£,9) : [to/€,t1/€) — X X Bg. is the mazimal solution of
) =

(F)e, with (2(to/€), (to/€) (z0,90))- Let ¢ == (¢1,p2) be the
map constructed in Th. 3.1.5, and let L be a Lipschitz constant for
k. Then, fortg/e < s <t < ty/e, it holds

|2(s) =1 (1, 2(1), ) (s = 1)| <

1
< eNy(1+ L) / N1 (2+L)(p-5)

S

g(p) — k(ep, 2(p), o), dp.

Proof. Definition of ¢; and Th. 1.1.1 (Gronwall inequality). ¢

LEMMA 4.1.2. Let us assume the same hypotheses as in Lemma
4.1.1; then, for s <tg/e <t < ty/e, it holds

[e1(t, 2(t),€)(s =) — @1 (%07‘% (t?o) v€) (s — 7“?0)| <

t
< eNi(1+ 1) / e M @HL)E=5) |§5(p) — k (ep, #(p), ¢)], dp-

to/E

Proof. For s <tg/e <t < ty/e, we have

and
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Therefore

<& (%) = eult, 2(1), ) (= )| +
LN, /t:/ﬁ (|901 (L2, <m> 9 (p—12) +

By Th. 1.1.1, we get

|§01(t7‘%(t)76)(5_t) ¥1 (?Ov*i(t )76) (S_t?o)| <
< e Ml g () — @i (1, 3(8),0) (2 = )]+

—}—eNlL/ ecV1(p—3)
to/E

@l(tﬂ%(t)?e)(p_ t) — ¥1 (t?oviﬂ (t?o) 76) (p_ t?o) dp|.

, applying again Th. 1.1.1, and
, we get

By multiplying both sides by e*M*
multiplying both sides by e~<M*

)i (s - )| <

to )|66N1L(t0/e—s) —

|§01(t7i(t)7 )(S_t (?0 z
< eeNl(to/e—s) |,f (l‘?o) _

(
o) (£

— M1 (14+L)(to/e—s)

@ ("%) —er(t (1), 0) (= 1)]

Finally, by Lemma 4.1.1, we get

|Q01(t,i(t),€)(8—t) 1 (to i(:?o)7€> (8_%0)| <

< €Ny (14 L)erM+L)(to /e s)/ N1 (24L) (p—t0/©)

to/E

Ig)(p) — k(ep, &(p), €)l,dp <
< eNi(1+ L)/ e M CHDE=2) |§(p) — k (ep, &(p), €)],, dp.

to/E
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LEMMA 4.1.3. Assume the hypotheses of the previous Lemmas.
There exists M = M (o) and €* such that, if € < €, and for to <t <
t17

MM
ly(t) — k(t,z(t), o), < T a lyo — k(to, z0, )|, e~ 2110,

Proof. We procede by steps.
Preliminary step.
Let tg < t; < t1; let us set

To + $(t0) (t — to) for t < tg
F(t) =< x(t) fortg <t <ty
$(t~1) + $(t~1)(t — tl) for ¢t > t~1

It is easily seen that # is of class C! on R and that ‘%5‘0 < ¢N.
1% step.

By definition of ¢y and by Lemma 3.1.2, it follows that, for #y/e <
t < t~1/€,

i ea(t, &(t), €)(7) =
= [ 1ot 50,90, g (clt +0), ¢a(t,3(0), ) (o)
T wa(t, 2(t),€)(0),€)do =
= /_OOT(T,wtyfc( +1),6) [(Ar(e(t + o), 1(t, 2(t), ) (o)) +
—Ay(e(t+ 0),%(t + 0))
wa(t, 2(t), e)(a) +g EE Uls]ﬂétf(t)’ €)(o),

wa(t, (1), €) (0 —t) + g (€0, p1(t, (1), €) (0 — 1),
pa(t, &(t),€) (0 —t),€)] do.

Then, by adding and subtracting terms, and recalling the definition
of k (see also the proof of Lemma 3.1.3), for to/e < t < £1/e, we
have:
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k(et, z(et), ) = T(t,to/e; 0, 2(-), €)k(to, o, €)+

+ tt/ Tt o; 07?6(')7 €)
(Ao, o1t 2(1), ) (0 = 1) — Ar(e0,5(0)))
k(eo,o1(t,2(t),€) (o — 1), €) —

+g(eo,o1(t, 2(t),€)(o — 1),k (eo,o1(t,2(t),€) (0 —t),€),€)] do+

[T 00,30,0 (o 0450, 00 - )
ﬂ%&awﬂmﬁxdd) (o~ to/))) +
k(eo, 16,30, ) (0 — 1), +
Ay (e, 1 (fo/ €, (to /), ) (o — to/ )+
(k (e, u(t, (1), ) (7 = 1),0) +
—k (o, galto/e, #(t0/), (@ — t0/€), ) + A1 (€0, (0))
(k (e, @1 (to/e, (10 ), ) (0 — to/€), ) +
—k (o, (8, 3(2), ) (o — 1),) +
g (e, 11, 3(0), ) o — 1), (e, @ (t, (1), (0 — 1), ), ) +
—g (o, 1t/ 6, (1)), ) o — o),
Ko, g1 (to/ €, (to/€), ) o — to/€), ), O] do.
Moreover, by 1.2.1, and by definition of &, for tg/e <t < #; /¢,
i(t) =
T(t,to/6:0,30), o+ [ T(t,3:0,3(), )g(ec, #(0), §(0), )do.

to/c
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274 step.

By definition of #, for tg/e < t < t;/¢, we have

e () — k(et, (1), )|, < M/ |yo — k(to, 20, )], +
+M (M36+ C (o +6) (14 L))

[ et =)l (43 0,0 (0 1) ~ (o)) dot

ofe
i
FMC (e +5)/ e (t — o)~ |§i(a) — k(eo, 3(0), )|, do+
to/c
+M (M6 + 2L sup |A1|+C (e0+6) (1+ L))
to/E

7 (1= o) 1 (1,2 (1), €) (0 — 1) +
—p1 (2,2 (%) ,¢) (0~ 2)|do.

Note that in this last inequality there is no dependence on the choice
of t1. So it holds for each to/e <t < t1/e.

37 step.
By Lemmas 4.1.1 and 4.1.2 and by steps 1 and 2 of the present proof,
we have that, provided p > eNy(2+ L),

e () — k(et, (1), )|, < M/ |yo — k(to, 20, 6)], +
+{MC (0 +8)+2M [My6+C (o +90) (1 4+ L)+

eN: L
L sup |4 20 ]

t
[ et =97 Iils) — k(es, 3(s), ), ds.
l‘o/c
By Th. 1.1.1, we may conclude that, for sufficiently small ¢, and for
some M = M (a),

MM

LB o — ko, 20,0, O

ly(t) — k(t,z(t), €)|a <

—_

We can resume the above reults in the following theorem.

THEOREM 4.1.4. Let us assume hypotheses of Lemma 4.1.1;
moreover, let us assume that ¢ < € as in Th. 4.1.3. Then, if €
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satisfies also

~ o\ -1
1 KC) MM w—p
€<§<1_,u—p)<1+1—05> B,C(S,

if (to,z0,%0) € R x X X Y?, and if

11—«
in{ ———=46,4
|y0|a < mln{Q MM ) }7
then the solution (z,y) of (). with (z(¢0), y(t0)) = (z0, yo) is defined
on [tg,00), with |y(¢)], < & and

e~ 2e(t=to) lyo — k(to, zo, €)], -

ly(t) = k(t,z(t), €

R Y

Moreover, for all (tg, zg) € R x X,

11 -«
k(to, zg,€)| < = =
|k (to, zo, €)], SRV,

and, if t — tg > max{%log (GMM) ,0}, then

1—«a

11 -«

t —0.
Ol < 55

REMARK.
This theorem has the following geometric iterpretation: there is

astrip S := X x BJ(0) C X xY® (where ¢ := min {%]1\4_—]\%5, 5}) such

that, for sufficiently small ¢,

1. the manifold C.; := {(z, k(t,z,¢)) |z € X } is contained in S for
all t € R;

2. forall (zo,y0) € S, and all {5 € R, the solution (z,y) of (). with
(z(t0), y(to)) = (z0, yo) is defined on [tg,00), and satisfies:

(a) ly(t) — k(t,z(t), o), < Jff_—ae‘%“‘“) lyo — k(to, zo, €)|, 3

(b) y(t) € Sfort > tg —I—max{% log .
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4.2. Asymptotic phase.

Let S the strip defined in the above remark, and let us assume
the hypotheses of Th. 4.1.4. In this Section we show that, if
is sufficiently small, there exists a constant @ = Q(e) > 0 such
that, if ¢y € R, (z0,%0) € S and (z,y) is the solution of (S). with
(z(to),y(to)) = (z0,y0) (defined on [tg,+o00) by Th. 4.1.4!), then
there is a unique solution (z, y) of (S). with (z(t),y(t)) € C.4 for all
t € R, such that, for each t > tq,

2(t) = 2(8)] + |y (t) — y(®)], < Qlyo — k(to, w0, €)], €271,

We say also that (S). has asymptotic phase. The idea for the con-
struction is this: we look for a constant Q' = @’(¢) > 0 and a map
z € BC~#? (R, X), with |2 _puj2e < Q' lyo — k(to, zo,€)|, such that
t— x(t) + z(t — to) solves

(R)ew = f(t,w,k(t,w,e€),¢)

on (tg, +00).
Let z € BO~#/2 (R, X); we set, for t € Ry, 2, (t) 1= 2(t — to). It is
obvious that z + z¢, solves (R). on (g, +o0) iff

’éfo (t) =
= Do f(t,2(t),y(t), )z, (1) + [ (1,2 (1) 4 200 (1), k(8 (1) + 215 (1), €), )+
_f(tv x(t)v y(t)v 6) - sz(tv :C(t)v y(t)7 6)Zz‘o (t)]

on (tg, +00).
Let W (t, s) be the solution operator for

W = sz(t7 ‘r(t)7 y(t)7 €)w

on (tg, +00). Since D, f(t, z(t),y(t),¢) € L(X, X), W(t,s) is defined
for tg < s,t < +00. Moreover, for all z € X, all t5 < s,t < 400,

Wi(t,s)z =2+ /:sz(o, z(0),y(o),c )W (o,s)zdo,

so that

t
W (t,5)a] < Jal + | [ N1 W (o, )2 do
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and, by Gronwall inequality,
W, )] < M=l g
LEMMA 4.2.1. Let z € BC~#/% (R, X). the following facts are
equivalent:

1. =z satisfies

24 (t
+ (2
_f(tv x(t)

) =
£) + 24 ( :

7y(t)7 6) - Da;f(t7 (t)v (t)v 6)Zto (t)]
on (tg, +00);

2. z satisfies

o0

_ —/ W (t + to, 0 + to) [f(0 + to, (0 + to)+

" 2(0), k(to, 2(0 + to) + 2(0), ), )+
—flo+to,z(0c+to),y(oc+to), €)+
—Dyf(o+to,z(0+to), y(o+to),€)z(0)]do

on (0,400).

Proof. The proof is left to the reader. &

THEOREM 4.2.2. Let tg, zo, Yo, €, (z,y) as above. Assume e¢ <
%m Then there exists a unique z € BC~*% (R, X), such

that
N z(t) =
== [ Wt to,0410) [f(0 + 10, 2(0 +t0)+
+z(0), k(to,z(0 4+ to) + z(0),€),€)+
—flo+to,z(0c+to),y(oc+ to), €)+
=D, f(o+to,z(0+to),y(o+to), €)z(0)]do.
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Moreover

MM
= |90

z < —F—"7—F7~
R S (Y

— k(to, o, 6], - (23)

Proof. We define K : BC~#/2¢ (R, X) — BC~#/%¢ (R, X) by
Kz(t) =

- —/tOOW(t +to,0 + o) [f(0 + to, 2(0 + to)+
+Z(U)7 k(t07 .r(U—|— to) + 2(0)7 6)7€)+
—f(o+to,z(0+to), y(o +to), )+

=Dy f(o+to,z(0+to),y(o+to),€)z(0)]do.
We have:

IKz(t)] <
< / eNi(o—t) o= 5co (N1(2 + L) |z|_ﬂ/26
1
—|-47V1 1— MM |]€(t0,$0, ) y0| )dG’ =

e~ Mt ((2 + L) 2]z + MM | (to, zo, €) — y0|a)
el=sctM)t =

(24)

Ny
N H2e MM i
= e (@4 L) 2l + 2 [k(to, 20, €) — yol, ) €5

So K is well defined from BC~#/2¢ (R, X) into itself.
Now, let 21,2y € BC~#/2¢ (R, X). We have:

(K21 = Kz9) ()] = ‘/tOOW(t +to,0 + o)

[flo+to,z(0 4+ to) + z1(0), k(to, z (0 + to) + z1(0), €), €)+
—flo+to,z(0 4+ to) + z2(0), k(to, z(0 + to) + z2(0), €), €)+

DL (0 + to,2(0 4 to) y(0 + 10),) (22(0) = 21(0)} do| <

< /t eMlo—1) (Nl |21 — 22[_, /. €727 + N, L 21 — 22| 2 eT2%4
+N; |2 — ,22|_M/26 6_%5) do <
<N (24 L)/ eN(o=1)
ACTSS)

/J,
. —Ly
= ety 121 T 22l TR

e~ 2% do |z — 22|y =
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Since %%} < 1, K is a contraction on BC~#/%¢ (R4, X). By the
contraction principle, we obtain the thesis. Estimate (23) follows

directly from (24). &

Putting together Lemma 4.2.1 and Th. 4.2.2, we may conclude that
(S). has asymptotic phase: infact we have only to set

z(t) == z(t) + z(t — to)
y(t) == k(t, z(t) + z(t — to),€).

5. Stable and unstable manifolds.

Let us turn back to the equivalent systems

(S)e{ &= f(t,z,y,€)

€y = A(t,.f)y—}— g(tv T, Y, 6)
and

izéf(€t7$7y7€)
(F)E{ y=Alet,z)y+ g(et, z,y,€)

Let €, 8, p be asin Lemma 3.1.4. Let us fix (fg, 0, €) € R X X X (0, ¢p)
with € already so small that, for each (7,2,1) € R X X x R,

8
ea(r, 2, (0)], < 5

we reserve, if necessary, to impose some further smallness condition
on ¢. Our goal is to find a closed set P C X x Y, with

<]

(5607 yO) = (-r07 k(t07 ZQ, E)) = ($07 @Z(to/év L0, 6) (0)) P,

and a stable manifold W? (g, 2, €) , of class C", contained in P, such
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that

W? (to, zo,€) = {(wl,yl) € P| the solution (z,y) of (S5). with
(z(to),y(to)) = (z1,y1) exists on [ty,00), with |y(t)|, < & Vt, and

sup e/2<(=10) (Ja (1) — @1 (to/€, zo, €)(t/e — to/€)| +
t>tg

+[y(t) — palto/c, zo,€)(t/c — to/e)|,) < oo} =

= {(ml,yl) € P| the solution (Z,y) of (F).
with  (2(to/€), §(to/€)) = (21,1
exists on [to/e,00), with |y(t)|, < Vt, and

sup e/2(=1/9) (|2(t) — 1 (to/€, o, €)(t — to/€)| +
t>to

+13(t) = ¢alto/e, 2o, €) (t — to/€)],) < oo}.

We know that the map
t— (@1(t0/€7 L0, 6) (t - t0/€)7 ‘%‘92(t0/67 L0, 6) (t - t0/6))

is the solution of (/). whose value at tg/¢€ is (zo, k(to, o, €)) ; there-
fore the map

t = (¢1(to/ €, zo, €)(t/€ — to/€), palto/ €, xo, €) (t/€ — to/¢))

is the solution of (S5). whose value at ¢y is (zo, k(to, zo,€)). Then
W? (to, zo, €) will be the set of the points (z1,y1) € P, such that
the solution of (5). whose value at tg is (z1,y;) exists always in
future, and differs from the solution of (S). whose value at ty is

(w0, k(to, w0, €)) by an O (e=#/2e(t=0)).

Similarly we may construct an “unstable” manifold W*" (tq, 2o, €)
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such that

W (to, zo, €) = {(ml,yl) € P|3 a solution (z,y) of (5).
with (z(to),y(to)) = (z1,y1) defined on (—o0,tp],
with |y(t)|, < é Vt, and

sup e/ 201 ([a(t) — @1 (to/€, 2o, €)(t/€ = to/ )| +
t<to

+ly(t) = walto/e, a0, ) (/e = to/O)],) < oo}.

Here we are mainly concerned with W* (¢g, g, €), because as for
W™ (tg, o, €) the arguments are completely analogous.
To simplify notations, since we work with fixed (to, zo, €), we set

wi(t) == @i(to/€, o, €)(t),1:=1,2

T(t, S) = T(tv 53 to, 991(')7 6)

P(s) := P(s;to, ¢1(+), €).
We will obtain (for sufficiently small €) W? (g, 2o, €) as the graph of
a map

j s R(I = P(0)) N BY [k(to, zo, €)] = X x R(P(0)),

ie.
W (to,0,€) = { (0,1) + S(0) o € Y™, (1 = PO)n =1,
|77 - k(t07‘r07 e)la < 7}7
where
_ [y _ (N 2K )] 9
v = [1 <H/2 —}—H/QmaX{Mg(s,C(eo—l—cs)} 7

First of all, we need the following Lemma, whose simple proof is left
to the reader.

LEMmMA 5.0.3. If

. 1 g -1
ot [1+<1—K05) KC] |

MC p=p,) p=p
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then
R(I - P(0))N BS (k(to, zo,¢€)) # 0.

Note: this implies that R(I — P(0)) N B (k(to, zo, ¢)) is a nonempty
open subset of R(I — P(0)). &

5.1. Construction of W?(tg, zo, €).

LeEMMA 5.1.1. Let (z,y) € BC™#?(R, X) x BCTH/%(R,Y?), and
letn e Y, with (I—-P(0))n =7, |n— ¢2(0)], < v, then the following
facts are equivalent:

L. Je2(t —tofe) +y(t —to/e)|, <& fort >ty/ec and the map
b (pr(t—to/e) +a(t—to/€)pa(l —to/€) +y (L —to/e))

is a solution of (F). on (tp/€,00), with (I — P(0))(¢2(0) + y(0))
=1

2. (z,y) solves the integral system

2= = [Flto+ e, 1(s) + 2(5), (o) + u(s), I+
—f(to + es, 1(s), gals), )] ds
y(t) = T(L0)(I = P0)(n— 22(0)+
(D -|-/0 Ult, s) [(A1(to + s, 01(s) + 2(s))+
“Ai(to + es, 1(5))) (pa(s) + y(s)+
Tglto+ s, 01(s) + 2(5), @a(s) + y(s), )+
~g(to + e, 21(5), pals), ] ds

and |$|—,u/2 + |y|—,u/2 S 6/2

Proof. Th. 1.3.5, Lemma 3.1.4 and easy calculation. &

THEOREM 5.1.2. Let us suppose that € satisfies the condition in
Lemma 5.0.3, and all the other conditions introduced at the begin-
ning of this Section. Then, for every n € Y, |n — v2(0)], <7, ({ —
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P(0))n = n, there exists a unique couple (z,y) = (x1(n), x2(n)) be-
longing to BC~*?(R ., X) x BC~*?(R,, Y ), with 2| _y2 1Yl
< §&/2, such that the map

tr (@1 (t—to/e) +a(t —to/e),p2(t —to/€) +y(t —to/e))

solves the integral system (I) (hence the differential system (S).) and
satisfies (1 — P(0)) (¢2(0) + x2(n)(0)) = 7.

Proof. Let us set

Bss {BC_’L/Z(R%X) X Bc_ﬂ/z(R+7ya)} =
={(z,y) € BT (B4, X) x BCH/? (R4, Y?) |
(@] _ya + Wl < 6/2}

For (z,y) € Bs)s {BC—#/Z(IRG,X) X BC_#/Q(R+7Y°‘)} and n € Y%,
with 7 —2(0)|, <, (/ = P(0))n =7, let us set

File,ym)(0) = = [ [t +0,1(0) +2(0), 92(0) + y(0), )+
Zf(to+ 0, 01(0), a(0), )] do
and
Falie,y,m) (0) = T(1,0)( = P(0)) (1~ 2(0))+
+[ U@ (it + o) + a(o)+

—Ai(to + €o,1(9))) (p2(0) + y(0)) +
+(to + €0, p1(0) + 2(0), 2(0) + (o)
—9(to + €0, ¢1(0), 992( ), €)]do.

By Lemma 1.3.5 and Lemma 3.1.4, it easy to show that
F = (fl('7 ) U)7f2(‘7 K 77)) :

Bsj2 |[BO™#3 (R, X) x BO™H2(Ry, Y9)| =

= Byjy [BCTM2(Ry, X) x BC™H/2(Ry, Y )]

)+

is a contraction, uniform with respect to 7, so the thesis follows by
the contraction mapping theorem. &
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REMARK.
It is easy to see that F is Lipschitz continuous in 7, uniformly
with respect to (z,y). So the map

= (), xa(n) = R P(0)) 0 By [92(0)] —

— BC™"Y(Ry, X) x BCTH2(R,,Y?)

is Lipschitz continuous.

Now we are able to construct the manifold W? (o, 2o, ¢). We set

3(n) = (#1(0) + x1 (1) (0), P(0)(2(0) + x2(n)(0))) =
= (2o + x1(1)(0), P(0)(k(to, 2o, €) + x2(1)(0)))

and
W*(to, 20, €) = {(0,m) + j(m) [n € R(I = P(0)) N BS [¢2(0)] }.

Since

(I = P(0))(2(0) + x2(n)(0))) +
+(21(0) + x1(n)(0), P(0) (2(0) + x2(n)(0))) =
(( ( )(0))

X( n
0 + 0(0) =
2 (n)(0)).

we obtain

W= (to, o, €) :=

= {(@o + x1(n)(0), k(to, zo, €) + x2(n)(0)) [n €
€ R(I - P(0)) N B2 [k(to, 20, ¢)]} -

Moreover,
(o + X1(1)(0), k(to, 2o, €) + x2(n)(0)) =
= (#1(0) + x1(1)(0), 2(0) + x2(n)(0))

is by definition the value at #g/¢ of a solution of (F’). defined on
(to/€, 00) , whose difference from

(¢1(to, o, €) (- — to/€), pa(to, o, €) (- — to/€))
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is exactly
(xa(m) (- = to/€), x2 () (- — to/€)) -

If we set
P = {($7y) € X X Ya”(l_ P(O))y_k(t07$07€)|a < 7}7

it is easily seen that

W*(to, zo,€) = {(mhyl) € P such that the solution (z,y) of (S).
with (z(to),y(to)) = (z1,y1) exists on [tg,00),
with |y(t)|, < évt and

sup 070 (2(0) = o/ ey 20, ) 1/ — 10/ )] +

+ly(t) = ¢alto/e, 2o, ) (t/e = to/e)],)) < oo}.

Smoothness of W*(tg, 2g,€) can be obtained by application of the
standard parameter-dependent contraction mapping theorem. The
details are left to the reader.

REMARK.

It would be interesting trying to understand if the manifolds
W?(to, xo,€), as (to, zg) varies, “tie together” to form a smooth in-
variant manifold. The problem is that the map jy, .,) generating
the manifold W*(tg, zo, €) is defined on an open subset of

R(I — P(0;t0, ¢1(to/¢€, xo, €), €);

so, as (to, zg) varies, the domain of J(to,zo) 18 MOt constant. Sakamoto
solves this problem (in finite dimension!) by showing that the spaces
R(I — P(0;¢1(z0,€), ¢) form a smooth vector-bundle on C, and con-
structing each W*(zq, €) as the graph of a map defined on the fiber
of zg; However this technique seems not to generalize to the case of
evolution equations in Banach spaces.
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