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SOMMARIO. - Questo lavoro verte sul fenomeno della contrazione istanta-
nea del supporto delle soluzioni non negative di una classe di equazioni
nonlineart paraboliche singolari. Vengono anche forniti risultat: di es-
istenza, unicita’ e confronto per i problemi di Dirichlet e di Cauchy,
nonche’ alcune stime sul comportamento iniziale della frontiera libera.

SUMMARY. - This paper deals with the phenomenon of the instantaneous
shrinking of the support of the nonnegative solutions of a class of non-
linear singular parabolic equations. Existence, uniqueness and compar-
1son results for the Dirichlet and the Cauchy problems are also given,
together with some estimate of the initial behaviour of the free bound-
ary.

1. Introduction.

In this paper we are concerned with the following class of non-
linear parabolic equations:
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ur = Au™ — uP,
and its generalization:
ur = Ap(u) — F(u).

The phenomenon of the instantaneous shrinking of the support,
or briefly 1.S., was originally discovered in an unpublished work by L.
Tartar in the semilinear case m = 1,0 < p < 1, and then proved by L.
C. Evans and B. F. Knerr (see [Ev-Kn]) in the general slow diffusion
case with strong absorption (e.g. when m > 1land 0 < p < 1). A
nonnegative continuous solution u of the Cauchy problem:

(AP) ur = Ap(u) — F(u) on RN x (0,7]
u(z,0) = ug(x) on RN

has the L.S. property if for any ¢ > 0 its support at time ¢, i.e. S(¢)
:={z € RM|u(z,t) > 0} is bounded even if it is unbounded for ¢t = 0.
In [Ev-Kn] it was proved that, if ug is a positive bounded continuous
function such that lim;4eu0(z) = 0, the solution of (AP) with
slow diffusion and strong absorption possess the 1.S. property. For
the power case this means 0 < p < 1 < m; for general ¢ and F they
assume:

i) (linear or slow diffusion) ¢ € C'([0,00)),¢(0) = 0, strictly
increasing and convex;

ii) F € C([0,00)), nondecreasing, F'(0) =0, F(z) > 0forz > 0
and [ [F(s)]~'ds < oo;

iii) [y [sn(s)]""/?ds < oo, where 7 := F o'

Results on I.S. can also be found in [Ke-Ni] for the porous media
equation with variable coefficients.

In Section 4 of the present paper we prove that 1.S. for initial
data tending to 0 at infinity also occurs in the fast diffusion case,
if and only if the absorption is stronger than the diffusion. For the
power case this means simply that 0 < p < m < 1. For general ¢
and F we assume the following “hypotheses B”:

B1) (fast diffusion) ¢ € C([0,00)) N C3((0,00)), ¢(0) = 0,
¢'(s) > 0 when s > 0, lim,_,q+ ¢'(s) = +o0;



THE FAST DIFFUSION EQUATION WITH STRONG etc. 111

B2) (absorption) F € C'([0,0)), nondecreasing, F'(0) = 0, F(z) >
0 for z > 0 and F is locally Lipschitz continuous on (0, co);

B3) (strong absorption) as iii).

We have not found in the literature any result of well posedeness
of the (AP) problem in the case of our interest, i.e. fast diffusion
with strong absorption. Nevertheless the works of J. Filo, [Fi], M.
Bertsch, [Be], and M. Bertsch, R. Kersner, L.. A. Peletier, [Be-Ke-
Pe], provide a good outline to follow both for Dirichlet and Cauchy
problems under assumptions weaker than hypotheses B (see hypothe-
ses A, Section 2). As a consequence, we have chosen to collect the
fundamental ideas of well posedeness of Dirichlet and Cauchy prob-
lems respectively in Sections 2 and 3. The main tool of our proofs,
besides the techniques of the previously mentioned papers, is to ap-
proximate the weak solution of (AP) by classical positive bounded
solutions following well-known techniques (see e.g. [La-So-Ur], [Ol]).

In Section 4 we prove the 1.S. in our case by comparison with
a function similar to the one used by [Ev-Kn]; it will turn out that
in the fast diffusion case the comparison has to be local in space-
time. We conclude the paper providing some a priori estimates for
the support S(#) and for the solution » in the radially symmetric
case as t — 0 (Section 5).

2. The Dirichlet Problem.

In this Section we will provide well posedeness results for the
Dirichlet problem for the fast diffusion equation with strong absorp-
tion. As a matter of fact, we are concerned with a different type of
nonlinearity of ¢ and so we give a different proof of Bertsch’s Propo-
sition 1.1 about uniqueness of solutions, making use of the techniques
exposed in [Fi, Theorem 2.4]. Let’s consider the problem:

ur = Ap(u) + f(u) on  x (0,7]
(DP) u(z,t) = Ulz,t) on 99 x (0,7]
u(z,0) = ug(z) on Q,

where 7 > 0 and © ¢ R" is a bounded connected domain with com-
pact boundary 0f2. Let’s also assume that 0 is regular, i.e. it is
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piecewise of class C'! and it satisfies the so-called exterior sphere con-
dition (see e.g.[La-So-Ur]). We will assume throughout this Section
that the functions ¢, f, U and wug satisfies the “hypotheses A”:

Al) as Bl);

A2) f € C([0,00)), f(0) = 0, f is locally Lipschitz continuous
on (0,00) and uniformly Lipschitz continuous from above
on [0,00), in the sense that there exists a constant K > 0
such that f(s) — f(r) < K(s—r), forany 0 < r <'s;

A3) U € C(09Q x [0,T]),up € C(Q) and U, ug are nonnegative
functions such that ug(z) = U(z,0) for every z € Q.

To be more clear, one can have in mind the model u; = Au™ —AuP
with0<m < 1,0<p<1land A>0.

DEFINITION 2.1. A nonnegative function u defined on Q x [0,T]
is said to be a weak solution of problem (DP) on [0,T] with data
fyug and U if

i)  weC(0,T]; LYQ) N L>(Q x [0,T]);

ii) for any test function ¢ € C°(Q x [0, T])NC*Y(Q x (0,T])
such that ¢ > 0 on Q x (0,7] and { =0 on IQ x (0,7], u
satisfies the integral identity:

(2.1) Jou)C(t) = foq uoC(0) = fg foqe(U)DC+
+ fo JaluCe + ¢(w)AC+ f(u)],

for any 0 <t <T. Here, and in the following, v := v(z) will denote
the outward-directed normal vector pointed at = € 9Q , 9, = %
and we use the common notation [ou(t)((t) := [qu(z,t)((z,t)dz.
Replacing the equality into (2.1) by < , u is said to be a weak
subsolution of problem (DP) on [0,T] with data f,ug and U.
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Following [Be], we define supersolutions of the problem (DP) in
this way: let’s consider the problem (PS)

ur = Ap(u) + f(u) + h(z,t) on € x (0,7]
(PS) u(z,t) = Ulz,t) on 9 x (0,7]
u(z,0) = ug(x) on €,

where h € L>®(Q x [0,T]),h >0 on 2 x (0,77].

DEFINITION 2.2. A weak (sub-)solution of the problem (PS) on
[0, T'] with data f,uo, U and h is a function which satisfies Definition
2.1 after having added to the right-hand side of the (in-)equality (2.1)
the term fg Jq RC.

DEFINITION 2.3. A generalized supersolution of the problem
(DP) on [0, T] with data f,ug, and U is a function u such that there
ezist functions f*,uy and U™ satisfying hypotheses A, and there exists
a function b € L*(2 x [0,T]) such that f < f* on [0,00), ug < uj
on Q, U < U ondQx (0, T],h >0 a.e. onQx[0,T] and u is a
weak solution of problem (PS) on [0,T] with data f*,ui, U* and h.

EXISTENCE

THEOREM 2.1. Assuming hypotheses A, the problem (DP) ad-
mits a weak solution on [0,T] with data f,uy and U.

The proof, which we summarize for sake of brevity, is a straight-
forward adaptation of that one proposed in [Be]. The ideas are:
to regularize the absorbing term with a sequence {f,}neN, fn €
C1([0,00)) such that on [0,00) it holds:

(i) f<h<f+1/n
W Rk
where K is the constant defined in A2); to define A,, := max{[f(s)]~,
0 < s < 1/n}, where [r]” = max(0,—r); to consider the unique
classical solutions of the problems:

ur = Ap(u) + fo(u) + A, on £ x (0,7]
(DP),, u(z,t) =Ulz,t)+ 1/n on 99 x (0,7]

u(z,0) = ug(z) +1/n on €2;
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to show that {u,} is a positive decreasing sequence bounded from
above by a constant depending only from U, ug, K and T’; to define
u = lim,,, U, and to prove that u is a weak solution of (DP).

UNIQUENESS

We begin considering the simpler problem:

u = Ap(u) + g(z,t) on € x (0,7]
(BP) ( t)=Ul(z,t) on 0 x (0,77]
u(z,0) = uo(2) on £,

where g € L>(2 x (0,77]) is a given function.

By a weak solution of (BP) we mean a function u satisfying Def-
inition 2.1 with the term f(u) replaced by g. A weak subsolution
(supersolution) of (BP) on [0,T] with same data is a nonnegative
function u which verifies the same definition, replacing the equality
sign in (2.1) by < (>) .

Following the ideas of [Ar-Cr-Pe, Proposition 9] we begin with a
useful inequality:

LEMMA 2.2. Let g,9* € L™(Q x (0,7]) and suppose that ¢
satisfies hypothesis A1) and U, ug, V, vo hypothesis A3). Assume also
that u is a weak subsolution of (BP) on [0,T] with data U, ug, g and
v is a weak supersolution of (BP) on [0,T] with data V,vo,g*. If
U<V then forany A\ > 0 and 0 <t < T,

[ ut) = o] < [ fuo—walt+ | t [ e¥lg =g+ A= o))",

Proof. The proof is the same as in [Fi, Theorem 2.5]. We summa-
rize it here because a similar proof is needed later in Section 3 (see
Proposition 3.2). According to the definitions, for any test function
¢ one has:

L) = o@ico - [ [ o - ewlag +40) <
< [ (w0 = w0l (0) + / [o-g¢- / /SQ[SO(U)—@(V)]@VC,

where
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(2.2) 0= { [u—v]/[p(u) —p(v)] u#v

0 u=u.
Since ¢(U) < ¢(V) we get:
(2.3) Jalu(t) = v0IC(t) = fo Jole(w) = w(v)](ad; + AQ) <
< Jaluo = v0)C(0) + fy fo (g — 97)C

Now one regularize a, which is a bounded function (see A1)), with the
sequence a, := R.a + 1/n, where R, is a mollifier with Supp(R.) C
B(0,¢) and € > 0 is chosen small enough in order to have

| @ — Rea ||r2(ax0,m)< +-
It is easy to see that the functions a,, are smooth and the following

properties hold:

L <an <[l aln=(@xpm) +1
(2.4)
(an = a)//an =0 in L2(Q2 x [0, 77).

Now fix an arbitrary x € C§°(22),0 < x < 1, and consider the
solutions (,, of the parabolic backward problems:

an(z,5)(Cn)s + AC, = Aay(z, ) on Q x [0,7)
(2.5) Cnlz,8) =0 on 99 x [0,7)
Co(2,T) =X on Q x {T}.

Asin [Fi, Theorem 2.4] we can show, by means of the maximum prin-

ciple and of standard integral estimates obtained from the equation
(2.5), that:

0 < (o, ) < e M=) on Q x [0,T]
(2.6)
fg fQ an[(cn)s]Q S C.

Substituting the functions ¢, into (2.3) one obtains:
(2.7) Jalu(®) = v(]x = J Jalp(w) — ¢(v)]AanCn <
< Jalwo = v0)C(0) + fy Jo g = 97)C + fo Jala — an)lp(u) — ¢(v)](Cn)s-
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By means of Hélder’s inequality and of (2.4),(2.6), one can show
that the last addendum converges to zero. Therefore, passing to the
limit in (2.7),

Jalu(t) = vy < foluo = vol*e™ + [ folg — g% + Au = v)]Fer0.

Now choosing any sequence of x,, € C§°(£2) pointwise converging to
the function sign([u(t) — v(¢)]*) and letting n tend to infinity, the
Lemma remains proved.

Now we can prove the following results:

ProPOSITION 2.3. Assuming hypotheses A, let u,v be weak so-
lutions of (DP) with initial data ug, v respectively but the same data
U and f. If it happens that u(z,t) > v(z,t) a.e. on Q and for any
0<t<T, then

() = v(t) lpya)< e |l wo = vo llraay -

Proof. As in [Be] we may apply Lemma 2.2 to the functions u
and v with A =0, ¢ := f(u) and g* := f(v). Then, using A2) one
finds that for 0 <t < T

Jalu(t) - v(t)]* < Jaluo — volt + K fg Jalu - o]t

So the result follows from Gronwall’s Lemma and the fact that for
0<t<T, flult) —v®)]" =[ u(t) — v(t) [l11(q), since u > v.

ProPoOSITION 2.4. Assuming hypotheses A, let u be the weak
solution costructed in Theorem 2.1 and let v be any weak subsolution
of (DP) on [0,T] with the same data uo,U and f. Then u(.,t) >
v(.,t) a.e. on Q , for any 0 <t <T.

The proof is the same as the one of [Be, Lemma 3.1] and we omit
it here; the main ideas, anyway, are to use Lemma 2.2 and to prove
that v < u,, for any n using assumption A2).
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THEOREM 2.5. Assuming hypotheses A, for any T > 0 the prob-
lem (DP) admits a unique weak solution on [0,T] with data ug, U
and f.

Proof. If u is the weak solution constructed in Theorem 2.1 and
v is another weak solution with the same data then, by Proposition
2.4, v < u. So Proposition 2.3 states that « = v a.e. on Q x [0,7T].

COMPARISON

THEOREM 2.6. Assuming hypotheses A, let u be the weak solution
of (DP) on [0,T] of data ug,U and f. i) If v is a weak subsolution
of (DP) on [0,T] with the same data, then v < u a.e. on 2, for any
0 <t<T.ii)lfwis a generalized supersolution of (DP) on [0,T]
with the same data, then w > w a.e. on §2, for any 0 <t <T.

The first part of this Theorem comes from the uniqueness result
together with Proposition 2.4. The proof of part ii) is the same of
the one proposed in [Be, Thm 0.2] and we don’t reproduce it here,
recalling that one needs the following result:

LEMMA 2.7. Leth € L= (Q2x[0,7]),h> 0 a.e. on Qx (0,T] and
assume hypotheses A. Then the theorems 2.1, 2.4 and Theorem 2.5-
i) still hold replacing “weak (sub)solution of problem (DP) on [0,T]
with data ug, U and f” by “weak (sub)solution of problem (PS) on
[0,T] with data ug, U, f and h”.

Note that in [Be, Lemma 4.1, Lemma 4.2] two sufficient condi-
tions are proved in order to ensure that a function v is a weak sub-
solution or a generalized supersolution of (DP). We will need only
the first one, which still holds under our assumptions.

LEMMA 2.8. Letv € C(Qx[0,T])NC% (Q2x(0,T]) be nonnegative
and o(v) € C*O(Qx[0,T]). i) If vi—Ap(v) — f(v) <0 on Qx(0,7],
v < U on 022 x (0,T] and v(.,0) < ug on €, then v is a weak
subsolution of (DP) in [0,T] with data ug,U and f. ii) If for some
C' > 0 it happens that 0 < vy — Ap(v) — f(v) < C on Q x (0,T],v>
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U on 9Q x (0,7] and v(.,0) > ug on Q, then v is a generalized
supersolution of (DP) in [0,T] with data ug, U and f.

CONTINUOUS DEPENDENCE

THEOREM 2.9. Assuming hypotheses A, let u,v be solutions of
(DP) on [0, T] with data ug,U, f and vo, U, f respectively. Then, for
any 0 <t <T,

lu(t) = v(t) L@y < T [ uo = vo [l (a),
where K is defined in hypothesis A2).

Proof. Define wq := max(ug, vo) , 2o := min(ug, vg) and respec-
tively w, z the solutions of (DP) with these initial data. As, by

comparison, we can show that z < u < w and z < v < w a.e. on {,
we apply Proposition 2.3 to z and w in order to obtain:

[u(t) = o) |l @) <l wt) = 2(t) L)<

< T || wo — 20 @y = 7T || wo — vo |11 -

3. The Cauchy Problem.

We will deal with the Cauchy problem:
(CP) ur = Ap(u) + f(u) on RN x (0,7
u(z,0) = ug(x) on RV,
We will assume that ¢ and f satisfy hypotheses A1) and A2) as
prescribed in Section 2, while ug satisfies the following;:

A3") up : RN — R is continuous, bounded and nonnegative.

For the uniqueness and comparison results we will also assume
that ¢ is concave (at least in a right neighbourhood of the origin).

DEFINITION 3.1. A nonnegative function u, defined on RN x
[0,T] is said to be a continuous weak solution of problem (CP) on

[0, T] with data f and ug if:
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i) u is continuous on RN x [0, T], nonnegative and bounded;

ii) for any regular domain Q and for any test function ¢ as
prescribed in Section 2 such that ¢ > 0 on  x [0,T] and
¢=00ndQx(0,T], u satisfies the integral identity:

e [ = [uco)- [ [ emact

T /Ot /Q[UQ + p(u) A+ f(u)(],

for any 0 <t <T. Replacing the equality into (3.1) by <, u is said
to be a weak subsolution of problem (CP) on [0,T] with data f and
Up.

Asin Section 2 we define supersolutions in this way: let’s consider
the problem:

(CS) ur = Ap(u) + f(u) + h(z,t) on RN x (0,7
u(z,0) = ug(x) on RV,

where h € L (RN x (0,7]),» > 0 a.e. on RN x (0, 7).

A weak (sub-)solution of the problem (CS) and a generalized su-
persolution of the problem (CP) are defined according with Defini-
tions 2.2 and 2.3 with obvious changes.

EXISTENCE
Let K be the constant defined in A2) and M :=|| ug [|;,0(mn)-

THEOREM 3.1. Assuming hypotheses A, the problem (CP) admits
a continuous weak solution uw on [0,T] with data f and wug, which
satisfies u < Mef?,

Proof. Let’s define f,, and A,, as in Theorem 2.1. Following [Ol],
for any n > 2 define:
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up(z)+ 1/n [|lz|]| < n—2
o () = Yon(z) n—-2<|z||[<n—1
M41/n  n—1<jafl <n,

where {yo n}n>2 is a suitable sequence of continuous functions such
that ug , is continuous on B(0,n) and

up(z) +1/n < yon(z) < M+1/n.

Consequently, using the ideas of Section 2, the standard theory guar-
antees that for any n > 2 there exists a unique classical solution u,
to the Dirichlet problems:

u = Ap(u) + fu(u) + Ay on B(0,7n) x (0,7]
(CP), u(z,t) = (M + 1/n)ei? on dB(0,n) x (0,7
u(z,0) = ug,,(2) on B(0,n).

It is clear that the sequence {u,},s2 is positive, not increasing
and uniformly bounded. Defining » :=lim,_, ., u,, one shows that
the u,’s converges to a weak solution of (CP). To prove that u is
continuous we may use the estimates:

i) I J IV (ua)|]? < €y
if) JE o Va2 < €
iii) supessio 1)[un (., )| z2(0) < Cs

where Q@ ¢ RV is any bounded domain and C;(1 < i < 3) are some
positive constants, C; = C;(£2), indipendent on n and ¢. Therefore
we can apply the continuity results of [DB, Thm. 6.1, Thm. 7.1].

UNIQUENESS

Let us first remark that the weak continuous solution u con-
structed in Theorem 3.1 is mazimalin the set of the weak continuous
solutions bounded above by ||ug||r~e"?. This can be shown by the
following:

ProproOSITION 3.2. Assuming hypotheses A, let u be the continu-
ous weak solution constructed in Theorem 3.1 and let v be any weak



THE FAST DIFFUSION EQUATION WITH STRONG etc. 121

subsolution of (CP) on [0,T] with the same data f and ug such that
v < MeXt, Then u > v.

Proof. We will follow the same ideas exposed in the proofs of
Lemma 2.2 and Proposition 2.3. Integrating (CP), and defining a
as in (2.2) we obtain:

/B (o,n)[”(t) — un (1)]C(t) — /0 /B (Om)[ép(v) — p(un)](als + AC) =

~ [}, (w0 e+ y o0 = 1) = )

-, | /aB [p(v) = (M +1/n)e"")]0,C.
0 (0,n)

Since by hypothesis the last term of the above inequality is non
positive, then we can proceed as in Lemma 2.2 getting

M [pom[v(t) = (O] < [p(o,m[u0 — wo] T+

+ o Sp(om @ 1F () = flun) + Mv = un)]F,
and now we can argue as in Proposition 2.3 to conclude that:
Jamv () = un ()] < 0.

Therefore we have that v < u,, in B(0,7) x [0, 7] and letting n tend
to infinity we conclude the proof.

For general initial data ug as in A3’) we can give uniqueness
results when ¢ is concave.

LEMMA 3.3. Assuming hypotheses A with ¢ concave, let u,v be
two weak continuous solutions of (CP) on [0,T] with the same data
f and ug. If u > v then for anyy € RN, R > 0 and 0 < s < t there
exists a constant C' = C(N, M, K,T) > 0 such that

JRTCRUIE
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e—Ix’s

< meas(B(y, 2R))emq)_l[q)(me:cLS(B(y 2R)) /B(y 2R)

(u(s) —v(s))+

HCRT (e - o F)
where ®(s) == [§ \/%.

Proof. The proof is very similar to the one of Lemma 3.1 of [He-
Pi]. We choose a test function ¢ = pB, where u € C°(RN), 3 €
Cse([0, 7)), > 0,0 < p < 1land g =1on B(y,R),p = 0 out-
side B(y,2R) for any y € RY; using the assumption u > v and f
Lipschitz from above, we get the following differential inequality in

D'([0,T1]):
(32) & faw n(ult) o) <

< Jrw Aplp(u(t)) = (v(t)) + K fga p(u(t) = v(1)).

By means of Holder inequality we get:

Jow Aplp(u(t)) — e(v(t)) <

< \JR(MeET)C () S (2 (u(t)) = 2 (v (1)),

where, as in [He-Pi]:

Ci(p) == \/faw 222 < Cy(N) R

I

Since ¢ is concave we can use Jensen inequality to get:
Jow ple(u) = ¢(v) < frr p(p(u —v)) <

< meas(B(y, 2R)¢(memmmzry Jav #(u = v).

Substituting the above inequality into (3.2) and denoting by
w = [gn p(u —v)(t), we get in D’'([0,7T7]) that:

(33 <Kot GRY o(ammramy ),

meas(B

where C5 = C3(M, K, T, N). Integrating (3.3) we conclude the proof
setting C' := C5/meas(B(y, 2R)).
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THEOREM 3.4. Assuming hypotheses A with ¢ concave, then

there exists a unique continuous weak solution of (CP) on [0,T]
bounded above by MeXt with data f and ug.

Proof. Let u be the solution constructed in Theorem 3.1 and let
v be any other weak continuous solution bounded above by MeR?.
Proposition 3.2 states that u > v, so we can apply Lemma 3.3. Then
the proof is almost the same of the one of [He-Pi, Thm. 2.3]; the main
difference is that they use the fact that [ (u™ —v™) is superharmonic
in D'([0,7T7]). Here multiplying (3.2) for e~ and integrating in time
we get:

OSe fu o) o)< [ b [T o)

i.e. the function w(t) := [Je K [p(u(r)) — ¢(v(r))]dT is superhar-
monic in D’([0,7]). Therefore, proceeding as in [He-Pi] and using
again Jensen inequality, we have that for any R > 0 :

w(y,t) < Cy(N)R™N Ip,pyw(z, t)de <

< Cs(N) fo e oy JBer ((7) = v(7))).

Using now Lemma 3.3 with s = 0 and the above inequality we get
that:

0 <e X [He(uly, 7)) — ¢v(y, 7)) < wly,t) <

< %(1 _ e—Kt)SO(CG(N)eKT(I)—l(CR—Q %))

Letting R tend to infinity, one ends the proof.

REMARK 3.5. With the same method used in Lemma 3.3 and
Theorem 3.4 one can prove a uniqueness result also if ¢ is con-
cave only near the origin. To be more precise, one can assume that
there exists sg > 0 such that ¢(s) is concave for 0 < s < sg.
We omit the proof of this result for sake of brevity; let us only
remark that in Lemma 3.3 the function ® must be substituted by
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* . S dZ &3 N N N
* = [J Tioerel) where K* is the Lipschitz constant of ¢ for

s0 < s < MeKT,

In the case that ¢(u) := 4,0 < m < 1 one can obtain an
estimate similar to the one of [He-Pi]. In fact, in the assumptions of
Lemma 3.3 one get that there exists a constant C' = C'(N,m) > 0
such that:

/B(%R)[u(t) —viB] < C{[/B(y,zR)(U(S) — v(s))el )4

1

—|-[I(_1eK(1_m)(t_s) _ 1]mRN_ﬁ} .

COMPARISON

This comparison criterion is the same of that seen in Section 2.
As its validity depends also from the uniqueness of the solutions of
(CP), we consider ¢ concave.

THEOREM 3.6. Assuming hypotheses A, let u be the continuous
weak solution of (CP) on [0,T] of data ug and f. i) If v is a weak
subsolution of (CP) on [0,T] with same data, then v < u a.e. on
RN, for any 0 < t < T. ii) If w is a generalized supersolution of
(CP) on [0,T] with same data, then w > u a.e. on RN, for any
0<t<T.

For the proof of this Theorem hold the same considerations ex-
posed in Section 2 and particularly in Lemma 2.7; moreover one has
the following:

LEMMA 3.7. For any domain Q C RN let v € C(Q x [0,T]) N
CoYQ x (0,7]) be nonnegative and o(v) € C*(Q x (0,7]). i) If
vy — Ap(v) — f(v) <0 on Qx (0,7 and v(.,0) < ug on £, then v
is a weak subsolution of (CP) in [0,T] with data ug and f. i) If for
some C > 0 it happens that 0 < v, — Ap(v) — f(v) <Con Q x (0,7]
and v(.,0) > ug on Q, then v is a generalized supersolution of (CP)
in [0, 7] with data ug and f.

For general ¢ satisfying hypothesis A1), the first part of Theorem
3.6 holds if we denote by u the solution constructed in the Theorem
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3.1 (see Proposition 3.2). The second part holds if we denote by
w the generalized supersolution constructed by the same method of
Theorem 3.1, i.e. if w = limywy,, wn0 > Uy .

Let us also remark that in the absorption case one could also
consider unbounded solutions. In fact the solutions of the absorption
equation are smaller than the ones of the equation of pure diffusion
and for the latter it is only required that u € L} _ (see [He-Pi]).
Moreover in Section 4 it is given an explicit unbounded stationary
solution (see (4.4),(4.5)).

4. Instantaneous Shrinking.

We will deal with the Cauchy problem in the strong absorption
case

(AP) ur = Ap(u) — F(u) on RN x (0,7]
u(z,0) = ug(x) on RV

i.e. the problem (CP) with f = —F" under hypotheses B

Let us make some preliminar remarks. First of all, hypotheses
B1) 4+ B2) imply that 7 is a nondecreasing function, 1(0) = 0 and
hence (see [Ev-Kn])

21(3) < Jon < snls).
Therefore B3) implies that
(4.1) e n(s)]71? < o0 (i.e. localization)
and

\/><f/2 s < C <o,

therefore:

1 dz _2Cd=z
(4.2) o sy < fi 2= < oo

Since assumption B1) holds, the last inequality implies that
Jo[F(s)]"'ds < oo and hence a condition of extinction in finite time
is ensured.
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In the power nonlinearity case, B1) and B3) implies respectively
m < 1 and £ < 1, and so one can restate hypotheses B simply as
0 < p < m < 1. Clearly, assumption B2) implies that also A2) is
satisfied with K = 0.

In what follows we will denote by M :=[| uo ||pec(rry, u will
be the continuous weak solution constructed in Theorem 3.1 and
¥(s) := ¢~!(s). Let us remark here that since u is maximal (see

Proposition 3.2) all the result exposed in this Section still hold for
any continuous solution of (AP) bounded by M. In the power nonlin-
earity diffusion case, when ¢(s) := s™, u is the unique weak solution
(see Theorem 3.4).

LEMMA 4.1. Assuming hypotheses B, let ug be a nonnegative real
valued function defined on RN such that
(4.3) lim| |z 500 Uo(z) = 0.
Then the solution u of (AP) is such that
lim||g) oo u(z, 1) = 0,
uniformly in t.

Proof. The proof is obtained by comparison. As in [Ev-Kn], we
will consider the stationary problem

y'(r) = wknly(r)) r>0
(4.4) y(0) = 0
y'(0) = 0,

where £ is a positive constant which will be defined in the following.
By hypotheses B3) (see 4.1) the problem (4.4) possesses a unique
nonnegative strictly increasing solution

(4.5) JYE (26 2 m(z)dz]~12ds = 1.

If we consider the power nonlinearity case then 7(s) = AsP/m N\ >

%)%. Recall also that in our

assumptions Tg—Tp >2,as 0 < p<m.

With the help of y we are going to construct a supersolution of
(AP). For any a > 0 and zq € RV, let’s set x := & and define on
RN x [0,T]

0 and y(r) = 57‘73—3,6 =
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Gazo(2) = a+ 8, y(l2' — )
and then

Wa o (2,1) := (¢ © gaw, ) (7).
We have that, dropping for simplicity the indexes:
Wi — Ap(W)+ F(W) =

= =il " (12t = 2p)) + nla+ S y(le' - 2g)) 2

> - Ef\; %77(9) + 77(25\;1 y) >0,

where the last statement makes use of a simple monotonicity argu-
ment, (i.e. 7(>a;) > % Y. n(a;), when a; > 0). Now as (4.3) holds,
for any € > 0 there exists some R(g) > 0 such that 0 < ug < ¢ if
|| z [|[> R(e) and 0 < ug < M if || z [|< R(e). A similar thing can
be made for the ug,’s introduced in Section 3: for any sufficiently
large n we have that up, < ¢+ 1/nif R(e) <|| z [|< n — 2 and
ug, < M+ 1/nif || 2 ||[< R(e) or n — 2 <|| z ||< n. If we define the
positive constant

(4.6) di=y (@M +1)) = [7H 6] 7 n(2)dz] 1/ 2ds,

it will be sufficient to take a := ¢(¢ 4 1) and to consider any zg such

that R(e) 4+ dv'N <|| 2 [|[< n — 2 — dV/N, in order to obtain that:

W(z,0) > ug,, on |z |<n

1
WZM—I—IZM—I—E:un on { || z [|=n} x[0,T],

where w,, is the classical solution found in Section 3. Finally the
comparison results (see Theorem 2.6 and Lemma 2.8) ensures that
W is a generalized supersolution, and in particular for any large n:

% < up(zo,t) < Wizo,t) =€+ %,

for R(e) + dvV'N <| z¢ ||< n — 2 — dv/N. Passing to the limit
as n diverges to infinity, we obtain that u(zo,t) < ¢, for any zo >
R(g)+dv/N. Since d is indipendent of ¢ (and z), the Lemma remains
completely proved.
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REMARK 4.2. The technique here exposed can be also used to
prove a localization property: suppose that for some xq and some ¢ >
0 it holds that ug(z) < ¢ for every z in the cube || x — g ||oo< d; then
u(zo,t) < ¢, for everyt > 0. Let us also remark that since we use a
“local” comparison function, the same result holds for the solution of
a Dirichlet problem in a sufficiently large domain. Moreover the only
assumption used is B3), i.e. that the absorption is stronger than the

diffusion (see [Ev-Kn]).

THEOREM 4.3. In the same hypotheses of Lemma 4.1, the sup-
port S(t) of the solution u is bounded for anyt > 0.

Proof. The idea is to use Lemma 4.1 and to show that a compari-
son function similar to the one of [Ev-Kn], is a supersolution of (AP)
only in a certain given bounded parabolic neighborhood of arbitrary
(z0,t0). Note that this can’t be made in the whole RY x [0, 7] as in
slow-diffusion case. First of all, let’s define such comparison function;
for any C' > 0,29 € RV, 5 > 0 we set:

(4.7) w(z, 1) = P(C+ h(to — 1) + XLy y(|2* — zp))),
where y and h respectively solve the ordinary problems (4.4) and
(4.8) h'(s) = rn(h(s))

h(0) =0

with K 1= ﬁ Hypotheses B (see 4.2) ensure that A is a nonnegative
function given by:

(4.9) S ()] = 5.

In the power nonlinearity case, when 7(s) = AsP/™ h is given by

m

h(s) = [AeZR]m=5 gm-p,

The first step is to show that there exists a bounded parabolic neigh-
bourhood of (z¢, tg) which we denote by G such that if (z,¢) €G then

Lw = w; — Ap(w) + F(w) > 0.

Let’s define the constants:
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v :=sup{s > 0[¢'(z) < 1,0 < z < s}
5= (N4 1) 77 D () ds

p = J3 NI n(z)de) s

in a way that h(6) = g(p) = v/2(N + 1). Note that in the power

2
nonlinearity case, ¥ = mT-=. For any 0 < C' < v/2 and for any
(z0,t0) we define

Gxoto := (2, 8)|to — 6 <t <to;|| 2 — 20 ||eo< p3
and set v := ¢(w), obtaining:

Lw=P(v): — Av+n(v) =
=@'(v) = Noe+ [0 =3 g"+nh+3g+C)] >

2 (¥'(v) = Do,

where the addendum in bracket square vanishes applying the same
monotonicity argument used in the proof of Lemma 4.1. As for 0 <
t < to the term v; is negative, it is enough to show that ¢'(v) < 1in
order to prove that Lw > 0. As a matter of fact, for any 0 < C' < /2
and for any (zo, to), if we take any point (z,t) € G we have that:

0<v=h+>Y 9g4+C< (N+1)+2(N+1)+7_77

and hence ¥'(v) <1

The second step is to apply Lemma 4.1: given v as above, for
any t > 0 there exists R(y) > 0 such that if || 2 [|> R(y) then
u(z,t) < ¥(v/2(N+1)) < ¥(v/2). As § is a well defined constant
indipendent from %, let’s fix 0 < 5 < § and, assuming that S(#g) is
unbounded, choose any zo € S(to) N{¢ € RN| || £ ||> R(y) + pV'N}.
Recalling the definition of w (4.7), let’s fix C' in a way that

w(zo,t0) = Su(zo,t0) > 0.

Since [|zg|| > R(v) then u(zo,t0) < ¥(5 N-l—l)) and hence

C= @(gu(ﬁo,to)) < ¢(u(zo, o)) < %
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(this choice of C still ensures that Lw > 0 on G). As a consequence,
for any (z,t) € I' := 0,G= {(2,t)[0 < t < §;|| z — 20 [|o= p} We
obtain that:

w(e,1) = v(g(la’ = wb)) = ¥(9(p)) > (5~

m) > ulr(z,t).

Now it is possible to claim that there is a point z* € RN with
the property that || * — z¢ ||o< p such that:

(4.10) w(z*,0) < u(z*,0) = ug(z™).

In fact if this would not be the case and if it were w(z,0) > ug(x)
for any z € GN{t = 0}, our choices should allow to apply Theorem
2.6 to obtain that w > u on G, yielding the contradiction that:

%u(mo,to) = w(zo,to) > u(zo,to) > 0.

Finally, inequalities (4.10) states that:
ug(z*) > w(z*,0) > ¥(h(t)) > 0,

and so z* € Lo := {& € RN |ug(€) > ¥(h(to))}, which is a bounded
set by the hypothesis (4.3). But the quantity || 2*—2z¢ || is bounded
by p and so the same zg must belong to a bounded set. In conclusion
we have shown that S(#g) is bounded for any 0 < g < §. For further
references, let’s be more precise: the support S(#) is such that:

(4.11) S(to) C B(0, R(y) + p(7)VN) U {€[€ € B(z, pV'N); € Lo}

Since p, § depends only on v, which is fixed once for all, we are able
to repeat this reasoning step by step on the intervals (4, 24], (26, 34],
... thus proving that S(¢) is bounded for any 0 < ¢ <7

PROPOSITION 4.4. Assuming hypotheses B, let ug be a nonnega-
tive real valued function defined on RN with compact support. Then
the solution u of (AP) possesses the localization property (i.e. the
support of u is contained in a fized ball for any time).

Proof. Recalling what stated in Remark 4.2, it is sufficient to use
the comparison function w defined in (4.7) after having set C' = 0
and chosen ¢ rather far from Supp(ug).
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THEOREM 4.5. In the same hypotheses of Lemma 4.1, there

exists an “extinction time” T* > 0 such that u(z,t) = 0 for any
t>T*.

Proof. Set T* := foM[F(s)]_lds and consider for instance ty :=
T*/2. Two cases are possible: either u(z,tg) = 0, and so there
is nothing else to prove since v = 0 for any ¢t > tg. Otherwise,
if u(z,t9) # 0, we can argue this way: as S(fg) is bounded, using
Proposition 4.4 we have that there exists some r > 0 such that for
any t > to if |z| > r then u(z,¢#) = 0. This implies that u can be
regarded also as the unique solution of a Dirichlet problem with zero
data on the lateral boundary dB(0,r) x [to,T]. Again the idea is
simply to compare u with the supersolution y(z,t) := [¢(¢)]T, where
q(t) is defined by

JF(s)]ds = —t
and it solves the ordinary problem

q(t) = —F(q(t)) r>0
q(0) =M

in order to have that 0 < u(z,t) < y(z,t) =0 for any 7% <t < T.

Let us remark that all the results of this Section also hold for
the initial boundary values problem in R™ \ Q, being Q a bounded
regular domain.

Let us also remark that hypothesis B3) is crucial to have L.S. (see
also [Ev-Kn], Remark 2.4). In fact if we assume that f; [sn(s)]""/?ds =
0o, then there exist a stationary solution which tends to 0 as ||z||
diverges but it is everywhere positive. As an example, take N = 1
and consider the function u := ¥ (y), where y solves the problem

y"'(r) =n(y(r)) r>0
y(0) = >0

y'(0) = vo:= \/m.

In this case [{° dz[fy n]7'/? = co and hence y \, 0 as ||z|| — co.
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5. Estimates of the Solution and of its Support.

Throughout this Section we suppose that there exists a continu-
ous bounded positive radially symmetric function V4 such that:

B4) lim, o Vo(r) = 0, p(uo(2)) < Vo(ll2]]) for [[a]| > Ro
(e.g. RO = 1)

and we will denote by hypotheses B* the set of hypotheses B1), B2),
B3) and B4). Under this assumptions we will give superior estimates
on the support of w as t — 0. First of all, we note that the proof
of Theorem 4.3 (more precisely the estimate (4.11)) immediately
provide the following superior estimate, whose proof is omitted:

ProPOSITION 5.1. Assuming hypotheses B*, for any t > 0
sufficiently small the support S(t) of the solution w is such that
S(t) € B(0,R4(t)), where
(5:1) R (t) = Vg (h(t))

and h is defined in (4.8), (4.9), i.e. we have:

JoF ()] 71z = g4

In the power nonlinearity case, when n(t) = M/ and h(t) =
c1t™=r , if one chooses for instance Vy(r) := Ar—®, A, a > 0 then

—m

(5.2) Ry (t) = eat 5w

The estimate (5.2) is not sharp, as it can be shown with the
following argument: let’s suppose that for ||z|| > Rj, besides hy-
potheses B* one also has that ¢(ug(z)) = ug® > Vo(||z]]) := al|z||7°.
Then it is possible to show that for £ > 0 sufficiently small:

—m

(5.3) B(0,R_(t)) C S(t), R_(t) = cxt o077

where



THE FAST DIFFUSION EQUATION WITH STRONG etc. 133

p+m <2

p<m

p<1 (eg. 0<p<m<l)
%>max(1,[N—2]+)

[N—2]+<oz<l7%”p

c3 = cs(a,a,m,p, A).

The estimate (5.3) is obtained by comparison with the function

1

1 1
U= Uy = (1= p)Mi, Uy = LV

which is a solution of the pure absorption problem
Uy = = NUP on [Ry,00) X (0,7T]
U(r,0) =Uy on [Ry,00).

The next statement provides a “sharp” superior estimate.

AsP and Vo(r) := Ar™® for r > Ry are such that m > p > 0,p <
,2>m+4p(eg. 0<p<m<1l)and 0 < a < 725, then, for any
t > 0 sufficiently small, one has that S(t) C B(0, R(t)), where

ProposITION 5.2. Under hypotheses B¥, if ¢(s) = s™, F(s) :=

(5.4) R(t) := cat D = eyt P oy = ca(N,a,m,p, A, N).

Proof. Let’s consider the comparison function
(5.5) Ur,t) = 4,9_1(‘/0112(ﬁ))7

where w is the solution of the problem (4.4) in the power nonlinearity
case, i.e.

2m
wiey = [ wo1=275 0<z<1
0 z > 1.
Let R > Ry be fixed and define the constants wy and Ty such that:

(5.6) Vo(R 4 dv/N)wg = 2Vu(R)
(5.7) o(U(R+ dV'N,Ty) = Vo(R)
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where d is the constant defined in (4.6). We will show that it is
possible to fix R = R(N,a, A, m,p, \) so that

(5.8) U>u on D:={(z,t)|||z]| > R+dVN,0 <t < Ty}

Let us remark that Lemma 4.1, under assumption B*, ensure that
o(u(z,t)) < Vo(||z]] = dv/N) if ||z]|] > Ro + dv/N,t > 0. Therefore
it is easy to check that the given definitions (5.5), (5.6) and (5.7)
ensure that & > u on the parabolic boundary of the domain D, for
any R > Rg. In conclusion it remains to prove that we can fix R so
that £U > 0 in D.

Set LU = I; + I; where

I = n(Vow) = [gzVow” + g’ (Vo= +217)
(5.9) +w(Vo” + E=1Vy)]
]2 = i’}?(‘/o’w) =+ ‘w/%(%)r‘/olbl(VOTU).

Since we have:

(510) w’ = _Q—mw(f—mwﬁ7

we get that, for 0 < z:= 7 < 1:

m—p ~

I > 2023 LV (r)) RV (1),

[

where

o = [2m(m +p)]~ (m — p)*

(11 V= HER 2+ (B T -

= L(1+[N-1-2a]" +afa+2- NJ*) =

= Les(a, N).
Therefore, for r > R+ d\/ﬁ,

m—=p

m=p _
> 2003y Ly (VY (R + dyV/N)).

[

Now recalling the definition of wg one has that Iy > 0 when r >
R+ dv/N and R is such that
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(5.12) v, ( W(R+dVN) < 32

For instance, one can choose R such that

Voo (R)V(R+dVN) < (Vo ™ V)(R) =

= A% cg(a, YR30 < e

Let us consider [y; since

4(4) = fef (1) = g(),

where

|-

1 a(l—m) 1-p
= 22w (14 &) 7 BAm - p)] AT

C

and 0 < z = 7z < 1, we have that, being m + p < 2 and w < wo:

(5.13) Iy > —w'4'Vo(r)[g(w)V(r) = g(})]
where
(m=p)  (mip—2 m=—1
g(w) == /\(ms—p)w0 gy T A(mS—p)wOm

~ _1=pP 1— 1—
Vir)y:=r=1V, ™ = A= pm e

Now recalling the definition of wg and ¢4 one gets that I3 > 0, thus
concluding the proof.

Let us now remark that with the same method of Proposition 5.2
one can prove a priori estimates for more general functions Vj(r).

If Vo = Ar= and a > =, then (5.4) and (5.8) still hold with
# = 1. This is again a better estlmate than the one given in Propo-
sition 5.1 for av < 2. If Vg is not a power function then (5.4), (5.8)
hold with R defined by

1-p

fgoo sTWy™ (s)ds = ert

provided Vj satisfy the following assumptions:
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m—p

i)V, ™ V is decreasing for r > Ry.

mep
i) V™ (r)V(r+4dVN) tends to 0 as r diverges to infinity.

iii) V tends to 0 as r diverges to infinity.

m=p
iv) W, ™ (r) €~L1(R0,oo)
where V and V are defined in (5.11) and in (5.13).

As we already mentioned, the proof is the same of that of Propo-
sition 5.2, with R as in (5.12). For example the method works for
Vo = A(logr)_q_%, q>0,r > 2 and gives R(t) = exp[(dt)”a0-7].
This estimate is better than (5.1) if ¢ > %%' We note that
if the hypotheses iii) and iv) are substituted by iii’) V > vg > 0 for
r > R, then the comparison function of Proposition 5.2 still provides
the superior estimate R(¢) = csgt™!, where cg = cg(A, d, p,m, Vp) is a
suitable constant.

Let us now consider the general equation (AP).

PropoSITION 5.3. Under the assumptions B¥, if n is concave
and Vo := Ar~% is such that r=*Vy 'n(Vy) converges monotonically
to zero as v diverges to +o0o, then the free boundary of the maximal
solution u is bounded by above by R(t) defined by:

(5.14)  fo PR [en(s)]73ds = cot,

where wg 1= 2(1+ %Oﬁ)a and cg = cg(A, a, A, p,m, d, Vo, maxqg 519').
Proof. The idea is again to follow what has already been seen

in Proposition 5.2 using the hypotheses 1 concave and %’ bounded.

The main difference is that now it is not possible to use directly the

comparison criterion for wu.
Define the sequences:

Uy = (V)
Vi = Vo(llel)w (%) + b

b, == (L) + Vo(n — 2 - 2V/N),
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where w is defined in a similar way of Proposition 5.2:

(5.15) w(2) ;:{ A‘lygl—z) 052? 1

and y(r) is the solution of (4.4) with x := %2. C' = C'(wp) is chosen
so that w(0) = wo, that is:

C = VA [§°[f§ n(As)ds]~2dg.

We will compare U,, with the approximating sequence u,, of The-
orem 3.1 on the domain Q, x [0,70],Q, = {z € RVN|R+ dV/N <
|z| < n—2—dV/N}, R and Ty being two suitable constants indipen-
dent from n. Once proved that for sufficiently large n one has that
u, < U, on Q, x [0,Ty], then letting n tend to infinity it remains
proved that for the maximal solution u one gets:

(5.16) u(z,t) <U :=lim, U, = p(Vow)

and so the desired estimate.

In order to prove that u,, < U,, we observe that from Lemma 4.1
and from B4), setting vo, = ¢(uo,n), vn = @(u,), we can say that
for sufficiently large n(n > n*,n* depending only on the modulus of
continuity of ¢):

) () < vou(e) < @2+ v(Va(llal]))) <
<Vo(llel) +@(L)  when Ry < |[al] < n—2
i) (1) < vale, 1) < (2 + 0 (Vi(llell — dVR))) <

< Vo(llz]l = dvV/N) + o (Gih Q, x [0, 00).
From the definition of V,, and setting T as in (5.7) one can easily
find that u, = ¢(v,) < ¢(V,,) = U, on the parabolic boundary of
Q, x [0,Ty]. As for LU, one has:

LU, = p(Vow + by,) — A(Vow) + n(Vow + b,) >

P(Vow + b,)e — A(Vow) + n(Vow) > 11 + I3,
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with I; and [, asin (5.9) - with ¢'(Vow + b,,) in place of ¥'(Vow).
Since 7 is concave we have that n(As) > An(s),0 < A < 1 and

n(As) > /Asn(A)n(s) for 0 < A, s < 1; therefore we have, in place of
(5.10),

w' > —%\/wn(Aw).

Hence
3 1 C? 1 C [ wVy N—-1 2V§
I > n(V, ————VW —— — |
A I T OV A T B TR
’w()VO ‘/”0 N -1 ‘/0/ + ~
- — =T t).
,rl(wovo)[ VO + r ‘/'0] } 1(T7 )

Now we fix R := max(Ry, R2), being Ry and Ry determined by the
positions:

’w()Vo(Rl) S 1

[+ NELET () = a2 - NTF < 20

and we set Ty sufficiently small in a way that, besides (5.7), it holds
on D (see (5.8)):

fl(’f‘7t) Z fl(R—}—d\/N,To) Z 0.
As for Iy, (5.13) still holds with the positions

q(w) = qo = 4£*

‘f/ 1 n(woVo(r))
T or wo Vo (r)

9(}) = §(RZ)r=r = C*V(r)

where U* := nvqax[og]@// and we have used the definition of R (see
(5.14)). Since V is decreasing when r diverges to infinity, it is possible
to choose C* indipendent from n such that I3, > 0 on €, x (0,7},
thus concluding the proof.
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The comparison method outlined in Proposition 5.3 can be ap-
plied to more general function Vj(r) and can be refined as soon as
one has the precise form of the functions F and ¢. We will not state
the precise assumptions here since they are too cumbersome.

Let us also remark that Proposition 5.3 gives always a less ac-
curate estimate on the free boundary than the one given in (5.2);
on the other hand it provides an estimate on the maximal solu-
tion itself (see (5.15), (5.16)). For instance, let us consider F'(s) :=

Log(~Togs 157‘5‘9(5) = — v > 270 <s < %7‘/0 = Ar™®. Then

(=logs) —logs
n(s) = s(-logs)? and the estimates of Propositions 5.1 and 5.3 are

respectively R(t) = Aexp(it_ﬁ) and R(t) = (A'wo)éexp(gt_ﬁ).
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