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SOMMARIO. - Si considera un caso particolare di 3-folds compatte M dif-
feomorfi alla somma connessa di n copie di S® x S3. Sen > 2, la
varieta non-Kahleriana M ha una struttura complessa con ¢ = 0. St
dimostra che non ci sono fibrati linecari non-banali su M e quindi st
deduce che il fibrato tangente di M ¢ stabile rispeto ad ogni metrica di
Gauduchon. Dal teorema di Li e Yau st conclude che su M existe una

metrica di Hermite-Einstein.

SUMMARY. - We consider a special case of compact 3-folds M which are
diffeomorphic to the connected sum of n copies of S° x S3. Ifn > 2, the
non-Kahler manifold M has a complez structure with ¢ = 0. We prove
that there are no non-trivial line bundles on M and hence we deduce
that its tangent bundle is stable with respect to any Gauduchon metric.
By a theorem of Li and Yau we conclude that there is an Hermitian-

FEinstein metric on M.

Introduction.

In this paper we consider a class of compact simply connected
3-folds M with trivial canonical bundle and the following Hodge

numbers:
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Namely, M has A'0 = p0! =0, AH20 =p%2 = pbl =0, R3O0 =
h%3 =1 and ¢;(M) = 0.

The first question which could be raised is whether such M ex-
ist. R.Friedman [7] answered afirmatively this question proposing
an algebraic-geometrical construction. Moreover, he showed that
C.T.C.Wall’s classification of 6-manifolds [28] implies that M is dif-
feomorphic to the connected sum of n copies of S? x S3, where
n > 103 [7]. Recently, P.Lu and G.Tian [20] proved that for any
n > 2 the connected sum of n copies of S% x S3 posseses a complex
structure with trivial canonical class.

As it is seen, the algebraic-geometrical structure of M is well
investigated and understood ([6, 7, 23, 20]), while its differential-
geometrical structure does not seem to be satisfactorily clarified.
Especially, on such non-Kihlerian manifolds there is a lack of ana-
lytic instruments. Recalling the case of K3 surfaces and more general
Calabi-Yau manifolds, we observe that the Calabi-Yau metric pro-
vides an important tool for the investigation of the moduli space.
See [26, 25, 12]. Moreover, on K3 fixing a complex structure and a
cohomology class, namely the class of the Kihler form, determines
uniquely the Calabi-Yau metric.

Now it is an open problem to have a Calabi-Yau substitute for
non-Kihler manifolds. With this paper we initiate a search for dif-
ferent sorts of conditions in order to have a rigidity theorem (as on
K3), which could suggest the existence of a canonical metric. We
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propose one such candidate, using the notion of stability. Indeed,
Uhlenbeck and Yau [27] proved the existence of Hermitian-Einstein
metrics on stable bundles over compact Kihler manifolds. The the-
orem of Uhlenbeck and Yau [27] was generalized by Li and Yau [17]
for non-K&ahler manifolds. The Kahler condition is replaced by the
Gauduchon condition which holds for a large class of Hermitian met-
rics. Therefore our first aim will be to prove the stability of the
tangent bundle of M. Before doing this, in section 2 we prove that
h*' = n — 1 and discuss the moduli space of M. Further we briefly
describe the above mentioned constructions of R.Friedman [7] and
Lu-Tian [20]. For completeness of the exposition, in section 3 we
recall the definition of stability, Hermitian-Einstein metrics, Gaudu-
chon’s condition and Li-Yau’s theorem.

In section 4 we prove that there are no non-trivial line bundles
on M. This enables us to obtain the main result in the paper:

PropPoOsSITION. The holomorphic tangent bundle of M is stable
with respect to any Gauduchon metric.

Then we are in position to apply the theorem of Li and Yau [17],
from which we conclude that there is an Hermitian-Einstein metric
on M. Asfar asis known to the author, the only previous application
of the Li-Yau theorem can be found in [18], where Yau et al. suggest
a short proof of a famous theorem of Bogomolov.

2. Complex Geometry.

At this stage, we have at our disposal only the Hodge diamond
of M, a complex structure J with ¢;(J) = 0 and the compactness.
Here are some direct consequences of these facts.

If we look at the Hodge diamond, we can see at first sight that
M is not a Kihler manifold. Indeed, the inequalities

0<b < D AP,

ptg=r

which hold for any compact Hermitian manifold [8] imply that by =
0. Note that in the K&hler case the second inequality is actually
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an equality which follows from the Hodge decomposition of Kihler
manifolds.

Another natural question concerns the relationship between hA%!
and n—the number of copies of $3x S in the connected sum. For any
compact complex manifold the Euler characteristic can be calculated

by

dimM dimM /2
M) = 3 (b = 3D (e,
r=0 p,q=0

where b, is the r-th Betti number and AP is the respective Hodge
number. The second equality is well-known for Kahler manifolds for
the same reason we pointed out above—the particular Hodge decom-
position of such manifolds. In the general Hermitian case this for-
mula can be obtained by considering the I'rélicher spectral sequences
[8] which relate the cohomology groups of Dolbeault as invariants of
the complex structure and the cohomology groups of de Rham as
topological invariants. It can also be obtained by the Atiyah-Singer
index theorem. For M it gives

x = —2h%1,

On the other hand, taking a connected sum of two even-dimensional
manifolds Ny and Ny, the Euler characteristic behaves as follows:

X(N1#N2) = x(N1) + x(N2) — 2.
See [1]. Thus
X(#n9” X %) = X (#4215 x S3) —2=...= =2(n - 1),
since
X(S? x S%) = x(5?)x(5%) = 0.
Therefore
hPt =n —1.
Further we note that

H'(M,0) = H'(M, Q%) = H2' (M),

where © is the sheaf of germs of the holomorphic vector fields over
M, QP —the sheaf of the holomorphic p-forms, and we have used the
triviality of the canonical bundle which implies ©® = Q2. Moreover,

H*(M,0©) = H*(M, Q% = H2*(M) = 0.
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The spaces H'(0©) and H%*(O) play an important role in the the-
ory of deformations of complex structures advanced by Kodaira and
Spencer [15, 16]. A subsequent theorem of Kodaira, Nirenberg and
Spencer [14] states that if a manifold has a complex structure J such
that H?(©) = 0, then for any infinitesimal deformation I of J there
exists an actual deformation of J which infinitesimally coincides with
I. As we saw above, the obstruction space H?(0) vanishes for M, so
we can apply directly the Kodaira-Nirenberg-Spencer theorem [14],
from which we conclude that the local moduli space of M is smooth,
that is, the first order deformations are unobstructed.

It is worthwhile to note that the K3 surfaces provided one of
the earliest examples which illustrate the Kodaira-Spencer theory.
From Yau’s proof of the Calabi’s conjecture [29] and the fact that
every K3 surface is K&hler [24], it is well known that the K3 surfaces
admit non-trivial Kihler-Einstein-Calabi-Yau metrics. The Calabi-
Yau manifolds give other examples for the theory of deformations
of complex structures. G.Tian [25] proved that the local moduli
space of a Calabi-Yau manifold is smooth of dimension dim H(0) =
dim H'(Q2™~1). Since for such manifolds © = Q™= the obstruction
space H?%(O) is H%(Q2™~!). The latter one need not be zero for
Kéahler manifolds. Indeed, for Kahler three-folds H?(€?) is never
zero in the contrast to our situation on M.

Before concluding this section, we shall give a brief description
of the Friedman [7] and Lu-Tian [20] constructions of complex struc-
tures with trivial canonical bundle on the connected sum of n copies
of % x S3. The details and references can be found in [6, 7, 20, 23].

One begins with a smooth quintic three-fold N in C'P* which
contains infinitely many (—1, —1) smooth rational pairwise disjoint
curves C;, one of which is a line. Recall that a (=1, —1) curve C'in N
is a rational curve, such that the normal bundle of C'in N splits into
O(—1) & O(—1). The existence of such quintic threefolds N is due
to Clemens ([5]). In [7], p. 130, Friedman describes a modification
of Clemens’ construction which provides a simply connected N such
that [C;] span H?(N,Q?) and there is a relation Y; \;[C;] = 0 in
H?%(N,Q?), where \; # 0 for every 1.

Then one takes & > 2 such curves C; of degrees d;, one of which
is chosen to be a line. Since the C; are (—1,—1) disjoint curves,
they can be contracted to k ordinary double points F;. In this way a
three-fold N is obtained. By contraction, we mean an isomorphism
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N\ C; = N\ P; between complex analytic varieties. By [6] N has
small deformations M in which the singularities disappear and if
H'(N,O) = 0, then all smoothings M have trivial canonical bundle.
From Lemma 8.1, [7], p. 126, 71 (N) = 71 (M) and hence M is simply
connected. Moreover, since by the construction of N the curves C;
satisfy the above mentioned relation in H%(N, Q?), the Corollary 8.8,
p. 129in Friedman’s paper [7] implies that Hy(M, Z) = Z/dZ, where
d is the greatest common divisor of the d;. But d = 1 because one
of the contracted curves is a line. Thus Hy(M, Z) = 0.
The Betti numbers of M and N are related by

bQ(M) = bQ(N) — S

and

bg(M) = bg(N) + 2k — 28,

where k — s is the rank of the kernel of @ Z[C;] — H3(N, Z) (see [7]
or [23]). As we saw by(M) = 0. From the last formula and from the
special construction of the “generic” quintic manifold N, the third
Betti number of M is in fact b3(M) = 2(k+101). It can also be seen
that Hs(M, Z) is torsion-free.

Summarizing, this complicated algebraic-geometrical procedure
provides a compact simply connected 6-manifold M with Hy(M, 7Z) =
0, H3(M, Z) - torsion-free and which possesses a complex structure
J with trivial canonical class.

On the other hand, according to the classification of C.T.C.Wall
[28] any compact oriented 6-manifold which is simply connected and
whose second Stiefel-Whitney class wy = 0, is classified up to dif-
feomorphism by the third Betti number b3, H?(Z), first Pontrjagin
class p; and a trilinear map H*(Z) x H*(Z) x H*(Z) — Z given
by cup product. Restricting to the case H%(Z) = 0, this implies
that any simply connected manifold with H*(Z) = 0 and H3(Z) a
torsion-free Z module of rank 2n is diffeomorphic to a connected
sum of n copies of S* x S? ([28]). Hence, since wy(M) = p1(M) = 0,
M is diffeomorphic to #,5% x S® , where n = 101 4+ k£ > 103 and
there is a complex structure J on M, such that its first Chern class
(&1 (J) =0.

In [20] P.Lu and G.Tian start with the singular three-fold N C
C'P* defined by

5 .5 5 .5 5
29+ 2] + 25 23+ 24 — Dzpz1202324 = 0,
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(20 : 21 @ 22 : 23 z4) being the homogeneous co-ordinates of C P
N has 125 ordinary double points. Then they consider (any) small
resolution M; of N, which afterwards is contracted to a singular
variety M;. The latter has 26 double points. The whole construction
provides data which satisfy the conditions of Corollary 8.8, p. 129, in
[7]. Hence, there are smoothings M = M; of M such that a(M) =
0, 7 (M) =0, Hy(M) =0 b3 =4 and by C.T.C.Wall’s classification
M is diffeomorphic to (52 x S?)#(S® x S2). Then one easily obtains
complex structures of ¢;(M) = 0 on #,5% x §% 2 < n <102. It
remains to combine this with the previously described R.Friedman’s
construction.

3. Hermitian geometry.

To study an Hermitian manifold it is always useful to pick a
metric with some special properties. Such metrics could be Kéhler,
balanced, Einstein, etc. However, to admit a special metric the Her-
mitian manifold must satisfy some conditions, generally of a topolog-
ical nature. First of all, one seeks a metric within a given conformal
class. For instance, to obtain a balanced metric, i.e. a metric whose
fundamental form F satisfies 9(F™~!) = 0, in general is impossi-
ble. In many cases such metrics simply do not exist. What one can
always achieve is due to the following result of Gauduchon [9, 10]:

THEOREM. [9, 10] Given any Hermitian metric on a compact
complex manifold of dimension at least 2, there is a conformal metric
unique up to homothety, such that its fundamental form F satisfies

QO(F™ 1) = 0. (1)

We shall call Gauduchon metric a metric for which the condition
(1) holds. In his own terminology such metrics are said to be standard
or of null eccentricity. In fact, there are many of them—one within
each conformal class.

N. Hitchin observed in [11] that the Gauduchon metrics enable
us to extend the notion of stability to holomorphic bundles on an
arbitrary Hermitian manifold M. Namely, if L is a holomorphic
line bundle on M, its degree with respect to a given Gauduchon
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metric F'is
deg(L) = deg(L, F) = /z/\le

where [ is the curvature of any Hermitian connection on L compatible
with Jr,, or more generally for a torsion-free coherent sheaf S on M

deg(S) = /M c(S)A P!

is well-defined for the Gauduchon condition since any two first Chern
forms differ by a 90 - exact form. If ¢; = 0 then the degree vanishes.

Denote
p(S) = deg(S)/rank(S).

DEFINITION. S is called stable if and only if

S < u(S)

for any torsion-free subsheaf 8’ of S.

On the other hand there is the notion of Hermitian-Einstein met-
ric. Let (F,h) be a holomorphic vector bundle over (M, g), where h
is an Hermitian metric in £ — M and g is an Hermitian metric on
M. The Chern connection D of h is the unique metric connection
which preserves the complex structure and whose torsion is a vec-
tor valued (2,0) form. The latter condition is equivalent to D" = 9
([13]). D is also called the (standard) Hermitian connection, or in
the terminology of A.Lichnerovicz “second canonical Hermitian con-
nection” ([19]). For the Chern connection, in any local holomorphic
frame, the corresponding connection forms are of type (1,0) with val-
ues in Fnd(F). In local complex coordinates adapted to the complex
structure, D has the well-known components:

0
AL
Fa /3 — h #—a ahﬁ/ﬂ
and its curvature is given by
0
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Then the Chern connection D of h is said to be Hermitian-
Einstein with respect to ¢ if and only if

g R(h) S\, = k0L, (2)

where R(h) is the curvature of D and k is a function. We shall

also call A an Hermitian-Einstein metric, when its Chern connection

is Hermitian-Einstein. If F = 7 —the tangent bundle of M, and if

g = h, then (2) reads
rob = k.62, (3)

with r—the second Ricci form of ¢ = h. In the latter case if g is
Kéhler, (3) is the well-known Kéahler-Einstein condition.

In [21] Liibke proved if an indecomposible bundle E over a Kéhler
manifold M admits an Hermitian-Einstein metric, then it is sta-
ble. Later Uhlenbeck and Yau [27] proved the opposite statement.
N.Hitchin suggested that the same relationship between stability and
Hermitian-Einstein metrics should be also valid in the general Her-
mitian setting. Buchdahl [4] proved the theorem for surfaces and
Li and Yau [17] generalized the work of Uhlenbeck-Yau to the non-
Kahler case for all dimensions. Namely,

THE THEOREM OF LI AND YAU.[17] Let M be a compact Her-
mitian manifold with a Gauduchon metric, and F be a holomorphic
vector bundle over M. Then FE is stable if and only if it admits an
Hermitian- Finstein metric .

4. Stability of the tangent bundle.
ProprosiTION 1. There are no non-trivial line bundles on M.

Proof. Consider the exponential exact sequence
0—272—03B0 —0
and a part of the corresponding long exact sequence

HY(Z) = HY(O) = HY(0*) & HX(Z) = H*(0) — ...
We have
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1) HYO) = Hg’l by the Dolbeault theorem. But h%! = 0.
Therefore H'(Q) = 0;

2) since M is simply connected H'(Z) = 0;
3) H2*(0)= HJ? and h? = 0. Thus H*(0) = 0.
Then we have the exact sequence
0 HY(0%) 5 HX(7)—0.
Thus § is an isomorphism and therefore
HY(M,0*) = H*(M, 7).
Further
dim HY (M, 0*) = rankz H*(M, Z) = rankz Hy(M, Z) = b** = h'"!
from the form of the Hodge diamond in [23]. Hence
HY(M,0*) =0 ifand onlyif A" =0.

The latter holds for M.

From this proposition we deduce that there are no subvarieties
of M of co-dimension 1, that is, no divisors.

The main result in this paper is the following

ProposITION 2. The (holomorphic) tangent bundle T of M is
stable with respect to any Gauduchon metric.

Proof. By Proposition (7.6)(b’) in [13], p.169, (also valid in the
Hermitian case) it is sufficient to check the stability condition only for
such subsheaves S of O(T) for which the quotient sheaf @ = O(T)/S
is torsion-free.

Let S be a rank 1 subsheaf of O(7) with @ torsion-free. Since T
is a vector bundle, O(T) is a locally free sheaf and therefore torsion-
free. Hence, S is also torsion-free as subsheaf of O(7). Thus we have
the following exact sequence

0—S—0O(T) —Q —0.
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Since () is torsion-free and O(T) is reflexive, from Lemma 1.1.16 in
[22] it follows that S is normal and being torsion-free, we get that S
is a reflexive rank 1 sheaf. The latter means, equivalently, that S is
a line bundle. But from the Proposition 1 we conclude that S is the
trivial line bundle. Its non-vanishing section is therefore a non-zero
section of O(7) = ©. On the other hand, since the canonical bundle
Ky is trivial, that is,

Ky = AT = O,
we have the pairing
T QN T — O
from which we obtain
T = AT
and
0~ 02

So far, we have a non-zero holomorphic 2-form. This contradicts the
fact that

dim H°(M, Q%) = dim H*°(M) = h*° =0

which follows from the Dolbeault theorem and from the Hodge dia-
mond. Therefore there are no rank 1 subsheaves of © with torsion-
free quotient.

Now suppose E to be a rank 2 subsheaf of © and let FF = ©/F.
We have the exact sequence

0 —F—0 —F—0
and also a part of the dual long sequence
0 — F* — Q' — ...

For an arbitrary coherent sheaf A its dual A* is reflexive ([13], Propo-
sition 5.18, p.160) and therefore F™* is a rank 1 reflexive sheaf, i.e.
F* is a line bundle. Again from Proposition 1, F* has to be the
trivial line bundle and to have a non-vanishing section, which, from
the inclusion F* — Q! provides a non-zero holomorphic 1-form.
This is a contradiction since

dim Ho(M, Q") = dim H'"°(M) = a'° = 0.
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Therefore there are no rank 2 subsheaves of O.
In this way we have proved the stability of the holomorphic tan-
gent bundle of M.

COROLLARY. There are no holomorphic subbundles of T .

5. Concluding remarks.

As we proved in the previous section, the tangent bundle of M
is stable with respect to any Gauduchon metric. Thus the theorem
of Li and Yau applied to the tangent bundle implies that for any
Gauduchon metric g there exists an Hermitian-Einstein metric A,
that is,

PR, = k5L, (4)

a Ai

where R(h) is the curvature of the Chern connection, determined by
h. By a conformal change of i, we can always make the function &
to be a constant [13]. Moreover, since ¢; (M) = 0, the degree of the
tangent bundle must be zero. Hence, an easy calculation gives k£ = 0
(see [13]), and therefore

g R(R).", = 0. (5)

Up to this point the Gauduchon condition has been used only to
have a definition of the degree which makes sense. Any Hermitian
metric g7 can be written as

g1 = ¢y, (6)

where the smooth function ¢ > 0 is uniquely determined and g is
the respective Gauduchon metric in the conformal class of g; [9].
And vice-versa, any Gauduchon metric can be obtained from some
Hermitian metric by (6). Hence, inserting (6) into (5) gives

gfﬁR(h)aﬁA =0.

I

Since the tangent bundle is stable with respect to any Gauduchon
metric, we see from the above equation and from the Li-Yau the-
orem that any Hermitian metric g; determines a unique Hermitian
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metric A which is Hermitian-Einstein with respect to g;. Of course,
h is Hermitian-Einstein with respect to any Hermitian metric in the
conformal equivalence class of g;. This is not a surprise since the
Hermitian-Einstein condition is not “differential” with respect to the
Gauduchon metric.

Now let p(h) be the first Ricci tensor of h, which has the compo-
nents

92
p(h))\ﬁ = m log det(h) (7)
From (5) we obtain
9™ p(h)rz = 0. (8)

But p(h) is given by (7). Therefore from (8) we conclude that

L(logdet(h)) =0, (9)
where
92
_ AR
L=g 0220z

L is an elliptic operator such that L(1) = 0. Hence (9) and the
maximum principle of E.Hopf imply that

det(h) = ¢ = constant. (10)

The last remark is in fact a tautology since we look for U(3) connec-
tion and the first Chern class vanishes.
Then from (7) and (10) we also get

p(h) =0.

As we pointed out in the Introduction, it is an open problem to
have a substitute of the Calabi-Yau metric for non-Kihler manifolds.
However, if we suppose that the Hermitian-Einstein metric & and the
Gauduchon metric g coincide, this would be one possible candidate.
In another paper we shall look for some consequences of the existence
of such a metric. Here we would only like to note that the situation
is similar to that on the K3 surfaces considered in [2, 3], where we
also had at our disposal two metrics: the Eguchi-Hanson and the
Fuclidean ones.



92

YURI BOZHKOV

ACKNOWLEDGEMENTS. We wish to express our heartfelt gratitude

to Prof. James Eells and Prof. Nigel Hitchin for their help and contin-
uous support. We would also like to thank Prof. M. Narasimhan for his
comments and advice. Thanks are due to the Consorzio per lo Sviluppo
Internazionale dell’Universita degli Studi di Trieste and the International
Centre for Theoretical Physics, Trieste, Italy for the hospitality and finan-
cial support. A part of this paper is a part of the author’s Ph.D. thesis.
We are grateful to the University of Warwick, U.K., for having given us the
opportunity to submit it to the Mathematics Institute.

(1]
[2]

[3]

[13]

REFERENCES

BEssE A., Géométrie Riemannienne en dimenston J, Cedic-Fernand
Nathan, Paris (1981).

Bozukov Yu.D., A construction of almost anti-self-dual connections
on Kummer surfaces, Serdica - Bulgaricae Mathematicae Publica-
tiones 14 (1988), 283-290.

Bozukov Yu.D., Specific complex geometry of certain complex sur-
faces and three-folds, Ph.D. thesis, Math. Inst., University of Warwick,
England, (1992).

BucHDAHL N.P., Hermitian-Einstein connections and stable vector
bundles over compact compler surfaces, Math. Ann. 280 (1988), 625
- 648.

CLEMENS H., Homological equivalence modulo algebraic equivalence
is not finitely generated, Publ. Math. .H.E.S. 58 (1983), 231 - 250.
FRIEDMAN R., Simultaneous resolution of threefold double points,
Math. Ann. 274 (1986), 671 - 689.

FRIEDMAN R.; On threefolds with trivial canonical bundle, Proc. Symp.
AMS 53 (1991), 103-134.

FROLICHER A., Relations between the cohomology groups of Dolbeault
and topological invariants, Proc. Nat. Acad. Sci. USA 41, No. 9 (1955),
641 - 644.

GAUDUCHON P., Le théoréme d’excentricité nulle, C.R. Acad. Sci.
Paris 285, Série A (1977), 387 - 390.

GAUDUCHON P., La 1-forme de torsion d’une variété hermitienne
compacte, Math. Ann. 267 (1984), 495 - 516.

HrrcHIN N.J., Math. Reviews 81e (1981), 81e:53052, 1822.
KoBayasHi R. and Toporov A., Polarized period map for general-
1zed K3 surfaces and the moduli of Finstein metrics, Tohoku Math.
J. 39 (1987), 341 - 363.

KoBayasHI S., Differential geometry of complex vector bundles, Publ.



THE GEOMETRY OF CERTAIN THREE-FOLDS 93

Math. Soc. Japan 15 Iwanami Shoten Publishers and Princeton Univ.
Press, Tokyo (1987).

Kobpaira K., NIRENBERG L. and SPENCER D., On the existence of
the deformations of complex analytic structures, Annals of Math. 68
(1958), 450 - 459.

Kobpaira K. and SPENCER D., On deformations of complex analytic
structures I-11, Ann. of Math. 67 (1958), 328 - 466.

KobpairA K. and SPENCER D., Stability theorems for complez struc-
tures, Ann. of Math. 71 (1960), 43 - 76.

L1 J. and Yau S.-T., Hermutian-Yang-Mills connections on non-
Kahler manifolds, in: S.-T.Yau, editor, Mathematical aspects of string
theory, World Scientific Publ., London (1987), 560 - 573.

L1 J., Yau S.-T. and ZHENG F., A simple proof of Bogomolov’s
theorem on class VIIy surfaces with by = 0, Illinois J. of Math. 34,
No. 2 (1990), 217 - 220.

LicuNeErOWICZ A., Théorie globale des connerxions et des groupes
d’holomie, Edizione Cremonese, Roma, (1962).

Lu P. and TiaN G., The complezx structures on the connected sums
of S3 x S3, Preprint, Courant Institute, (1993).

LUBKE M., Stability of Finstein-Hermitian vector bundles, Manuscr.
Math. 42 (1985), 245 - 257.

OkoNEK C., SCHNEIDER M. and SPINDLER H., Vector bundles over
complex projective space, Birkhauser, Boston (1980).

REID M., The moduli space of 3-folds with K = 0 may nevertheless
be irreducible, Math. Ann. 278 (1987), 329 - 334.

S1u Y.-T., Fvery K3 is Kdhler, Invent. Math. 73 (1983) 139 - 150.
TiaN G., Smoothness of the universal deformation space of compact
Calabi- Yau manifolds and its Peterson- Weil metric, in: S.-T.Yau, ed-
itor, Mathematical aspects of string theory, World Scientific Publ.,
London (1987), 629 - 645.

Toborov A., Applications of Kahler-FEinstein-Calabi-Yau metric to
moduli of K3 surfaces, Invent. Math. 61 (1980), 251 - 265.
UHLENBECK K. and YAU S.-T., On the existence of Hermitian- Yang-
Mills connections in stable bundles, Comm. Pure Appl. Math. 34
(1986), S257 - S293.

WarL C.T.C., Classification problems in topology V: On certain 6-
manifolds, ITnvent. Math. 1 (1966), 355 - 374.

YAU S.-T., On the Ricci curvature of a compact Kahler manifold and
the complex Monge-Ampére equation,I, Comm. Pure Appl. Math. 31
(1978), 339 - 411.



