τ-PARACOMPACTNESS AND REGULARITY (*)

by Alessandro Fedeli (in L'Aquila) (**)

SOMMARIO. - Sia τ un numero cardinale infinito. Uno spazio T_1X si dice τ -paracompatto se ogni ricoprimento aperto \mathcal{U} di X tale che card $(\mathcal{U}) \leq \tau$ ha un raffinamento aperto localmente finito. In questa nota si forniscono alcune condizioni equivalenti alla regolarità nell'ambito degli spazi τ -paracompatti. Come corollario si ottiene il seguente risultato di Aull: ogni spazio T_2 numerabilmente paracompatto e numerabile di 1° tipo è regolare.

Summary. - Let τ be an infinite cardinal number. A T_1 -space X is called τ -paracompact if every open cover \mathcal{U} of X such that $\operatorname{card}(\mathcal{U}) \leq \tau$ has a locally finite open refinement. In this note we give some conditions which are equivalent to regularity in the realm of τ -paracompact spaces. As a corollary we obtain the following well-known result of Aull: every Hausdorff countably paracompact first countable space is regular.

Let τ be an infinite cardinal number. A T_1 -space X is τ -paracompact if any open cover \mathcal{U} of X with cardinality $\leq \tau$ has a locally finite open refinement [3]. The \aleph_0 -paracompact spaces are called countably paracompact. A space X is τ -pseudonormal if given any two closed sets C, F, one of which has cardinality $\leq \tau$, there exist disjoint open sets U, V such that $C \subset U$, $F \subset V$. The \aleph_0 -pseudonormal spaces are called pseudonormal [4]. X is a C_{τ} -space if for each closed set F and for each $x \in X - F$ there exists a family \mathcal{G} of open neighbourhoods of x such that $\operatorname{card}(\mathcal{G}) \leq \tau$ and $\bigcap \{\bar{G} : G \in \mathcal{G}\} \subset X - F$. Obviously every regular space is a C_{\aleph_0} -space. Clearly the C_{τ} -property is hereditary, moreover we have the following

Proposition 1. The C_{τ} -property is productive.

^(*) Pervenuto in Redazione il 1° settembre 1993.

^(**) Indirizzo dell'Autore: Dipartimento di Matematica, Università dell'Aquila, L'Aquila (Italia).

Proof. Let $\{X_i: i \in I\}$ be a family of C_{τ} -spaces and let $X = \prod\{X_i: i \in I\}$. Let F be a closed set of X and $x = \{x_i\}_{i \in I} \in X - F$. Take a basic open set $U = \prod\{U_i: i \in I\}$ of X such that $x \in U \subset X - F$. Let $I_0 = \{i \in I: U_i \neq X_i\}$, for each $i \in I_0$ take a family $\{G_{\beta}(x_i)\}_{\beta < \tau}$ of open sets of X_i such that $x_i \in \bigcap\{G_{\beta}(x_i): \beta < \tau\}$ and $\bigcap\{\overline{G_{\beta}(x_i)}: \beta < \tau\}$ of thereign and $A_i(\beta) = X_i$ otherwise. Now let $H_{\beta} = \prod\{A_i(\beta): i \in I\}$ for every $\beta < \tau$. Then $\{H_{\beta}\}_{\beta < \tau}$ is a family of open sets of X such that $X \in \bigcap\{H_{\beta}: \beta < \tau\}$ and $\bigcap\{\overline{H}_{\beta}: \beta < \tau\} \subset \prod\{U_i: i \in I\} \subset X - F$. Hence X is a C_{τ} -space.

Remark 2. Let X be a Hausdorff space, let \mathcal{V} be a collection of open neighbourhoods of x in X, let $x \in X$. Then \mathcal{V} is a closed pseudobase for x if $\bigcap \{\bar{V}: V \in \mathcal{V}\} = \{x\}$. Now, for each $x \in X$, let $\psi_c(x,X) = \min \{\operatorname{card}(\mathcal{V}): \mathcal{V} \text{ is a closed pseudobase for } x\}$. The closed pseudocharacter of X is defined as follows: $\psi_c(X) = \sup\{\psi_c(x,X): x \in X\} + \omega$. If $\psi_c(X) = k$ then X is also said to be of H-pseudocharacter k [7]. A Hausdorff space with countable closed pseudocharacter is also called an E_1 -space (see e.g. [5]). Obviously if X is a Hausdorff space such that $\psi_c(X) \leq \tau$ then it is a C_τ -space. In particular every E_1 -space (and, a fortiori, every first countable Hausdorff space) is a C_{\aleph_0} -space.

Remark 3. If X is a Hausdorff space and $L(X) \leq \tau(L(X))$ is the Lindelöf degree of X, i.e. L(X) is the smallest infinite cardinal k such that every open cover of X has a subcover of cardinality $\leq k$) then X is a C_{τ} -space. In fact let F be a closed set of X and $x \in X - F$. Since X is T_2 then for every $y \in F$ there exist open sets G_y, H_y of X such that $x \in G_y, y \in H_y$ and $G_y \cap H_y = \emptyset$. $\mathcal{U} = \{H_y\}_{y \in F} \cup \{X - F\}$ is an open cover of X so there is a set $\{y_{\alpha}\}_{{\alpha}<{\tau}} \subset F$ such that $X = \bigcup \{H_{y_{\alpha}}: {\alpha}<{\tau}\} \cup (X-F)$. Then $\mathcal{G} = \{G_{y_{\alpha}}\}_{{\alpha}<{\tau}}$ is a family of open neighbourhoods of x such that $\operatorname{card}(\mathcal{G}) \leq \tau$ and $\bigcap \{\bar{G}_{y_{\alpha}}: {\alpha}<{\tau}\} \subset X-F$. Hence X is a C_{τ} -space. It is worth noting that if X is a first countable T_3 -space such that L(X) < b (b is the unbounding number, i.e. the smallest cardinality of an unbounded subset of $({}^{\omega}\omega, \leq^*)$) then X is pseudonormal [2].

Remark 4. A Hausdorff space X is functionally regular [6] if for each $x \in X$ and for each open neighbourhood V of x there exists

a zero-set Z such that $x \in Z \subset V$. A functionally regular space need not be regular but it is a C_{\aleph_0} -space (if Z is a zero-set of a space X then there is a sequence $\{G_n\}_{n\in\omega}$ of open sets such that $Z = \bigcap \{G_n : n \in \omega\} = \bigcap \{\bar{G}_n : n \in \omega\}$).

Theorem 5. Let X be a τ -paracompact space. Then the following conditions are equivalent:

- i) X is a C_{τ} -space.
- ii) X is regular.
- iii) X is τ -pseudonormal.

Proof. ii) \rightarrow i) and iii) \rightarrow ii) are obvious. i) \rightarrow ii) Let F be a closed set of X and $x \in X - F$. Since X is a C_{τ} -space there is a family $\mathcal{G}=\{G_{\alpha}\}_{\alpha< au}$ of open neighbourhoods of x such that $\bigcap \{\bar{G}_{\alpha} : \alpha < \tau\} \subset X - F. \text{ So } \mathcal{U} = \{X - \bar{G}_{\alpha} : \alpha < \tau\} \cup \{X - F\}$ is an open cover of X with cardinality $\leq \tau$. X is τ -paracompact so there is a locally finite open cover $\mathcal{V} = \{V_{\alpha} : \alpha < \tau\} \cup \{V\}$ of X such that $V \subset X - F$ and $V_{\alpha} \subset X - \overline{G}_{\alpha}$ for each $\alpha < \tau$. Let $H = \bigcup \{V_{\alpha} : \alpha < \tau\}$, obviously $F \subset H$. Since \mathcal{V} is locally finite we have $\bar{H} = \bigcup \{\bar{V}_{\alpha} : \alpha < \tau\}$, moreover $\bar{V}_{\alpha} \subset X - G_{\alpha}$ for every $\alpha < \tau$, so $x \notin H$. Hence H and G = X - H are disjoint open sets such that $F \subset H$ and $x \in G$. ii) \to iii) Let C and K be disjoint closed sets of X such that $\operatorname{card}(C) \leq \tau$. For each $c \in C$ there exist two disjoint open sets U(c) and V(c) of X such that $c \in U(c)$ and $K \subset V(c)$. $\mathcal{U} = \{U(c)\}_{c \in C} \cup \{X - C\}$ is an open cover of X with cardinality $\leq \tau$. X is τ -paracompact hence there is a locally finite open cover $\mathcal{W} = \{W(c)\}_{c \in C} \cup \{W\} \text{ of } X \text{ such that } W \subset X - C \text{ and } W(c) \subset U(c)$ for every $c \in C$. Let $G = \bigcup \{W(c) : c \in C\}$, since W is locally finite we have $G = \bigcup \{W(c) : c \in C\}$, moreover $K \cap W(c) = \emptyset$ for every $c \in C$, so $K \cap G = \emptyset$. Therefore G and H = X - G are disjoint open sets such that $C \subset G$ and $K \subset H$.

Corollary 6 ([1]). Every Hausdorff countably paracompact first countable space is regular.

Remark 7. The fact that every T_3 countably paracompact space is pseudonormal was observed by Proctor [4].

A space X is called initially k-compact if every open cover \mathcal{U} of X such that $card(\mathcal{U}) \leq k$ has a finite subcover. It is interesting to note that every initially k-compact space of H-pseudocharacter k is a regular space of character k [7].

Remark 8. A space X is a strongly C_{τ} -space if for each closed set B and for each open set G containing B there is a family \mathcal{U} of open sets such that $\operatorname{card}(\mathcal{U}) \leq \tau$, $B \subset \bigcap \{U : U \in \mathcal{U}\}$ and $\bigcap \{\bar{U} : U \in \mathcal{U}\} \subset G$. Obviously every normal space is a strongly C_{\aleph_0} -space. Arguing as in theorem 5 one can show that a τ -paracompact space is normal iff it is a strongly C_{τ} -space.

References

- [1] Aull C.E., A note on countably paracompact spaces and metrization, Proc. Amer. Math. Soc. 16 (1965), 1316-1317.
- [2] VAN DOUWEN E.K., REED G.M., ROSCOE A.W. AND TREE I.J., Star covering properties, Topology Appl. 39 (1991), 71-103.
- [3] MORITA K., Paracompactness and product spaces, Fund. Math. 50 (1962), 222-236.
- [4] PROCTOR C.W., A separable pseudonormal nonmetrizable Moore space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), 179-181.
- [5] SIWIEC F., Generalizations of the first aziom of countability, Rocky Mountain J. Math. 5 (1975), 1-60.
- [6] STEPHENSON JR. R.M., Pseudocompact and Stone-Weierstrass product spaces, Pacific J. Math. 99 (1982), 159-174.
- [7] STEPHENSON JR. R.M., Initially k-compact and related spaces, in Handbook of Set-theoretic Topology, (K. Kunen and J.E. Vaughan, eds.) Elsevier Science Publishers, B.V., North Holland (1984), pp. 603-632.