MANIFOLDS AS BRANCHED COVERS OF SPHERES (*)

by RiccaARDO PIERGALLINI (in Cagliari)(**)

SOMMARIO. - Queste note contengono una rapida esposizione di alcune idee fon-
damentali e risultati recenti sulla rappresentazione delle varieta come rives-
timenti ramificati di sfere.

SUMMARY. - This note contains a quick exposition of some basic ideas and recent
results on representing manifolds as branched covers of spheres.

The concept of branched covering originated from the theory of ram-
ified surfaces, introduced by Riemann for describing multivalued complex
functions.

The basic example arises from the map z — w = z* with & > 1. This
map is singular only at z = 0, and its restriction to z,w # 0 is a cyclic
ordinary covering of degree k. In fact the z-plane can be decomposed into
k angles each one of which is bijectively mapped onto the w-plane. So, we
can think of the z-plane as the union of k sheets over the w-plane, in such
a way that the multivalued map w — z = ¥w takes a single value on each
sheet.

(*) Pervenuto in Redazione il 15 gennaio 1994.
(**) Indirizzo dell’Autore: Universita degli Studi, 09124 Cagliari (Italia).
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Figure 1

We denote by pg : B2 — B2 the restriction to the unit disk B2 C C of
the complex map z — w = zF with & > 1. The maps p; will be our local
models for branched coverings between surfaces. If & > 1 we will call the
point z = 0 a singular point and the point w = 0 a branch point.

Figure 2

Before giving the definition of branched covering between surfaces, look
at another example. Let @ C CP? a non-singular cubic in the complex
projective plane and 7 :  — L be the projection of @) onto any complex
line L C C'P? from a generic point ¢ € CP2. Then, 7 is singular at z € Q
if and only if the projecting line cz is tangent to @ at z. So, there are six
singular points in ) that are projected by m into six branch points in L,
and at each singular point 7 looks like the double covering ps. Over each
branch point of 7 there are two points of ), only one of them is singular
the other one is called a pseudo-singular point. On the other side, over
the complement of the branch points 7 is an irregular ordinary covering of
degree 3.

Now, let A be an arc in L joining two branch points b7 and by, such that
A= 7~1(A) is an arc in @ joining the corresponding pseudo-singular points
s} and s}, as in figure 3. If N is a regular neighborhood of A in L, then
N = 7~1(N) is a regular neighborhood of Ain @Q, and both N and N are
homeomorphic to B%. So, by restricting 7, we get (up to homeomorphism)
a 3-fold branched covering p : B2 — B? with two singular points and two
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branch points.

Figure 3

In the light of these two examples, we give the following:

DeFINITION 1. A map p : F — F between closed surfaces is called
a branched covering if it is finite-to-one and for every z € F there exists
a neighborhood U of z in F such that the restriction fiv U = f(U) is
homeomorphic to py(, ») wWith d(p, ) > 1. The number d(p, x) is called the
branching index of p at . Moreover, we put S, = {z € F | d(p,z) > 1} (the
singular set of p), B, = p(Sp) (the branch set of p) and S}, = p~H(By) —Sp
(the pseudosingular set of p).

By the well-known theory of ordinary coverings, we have the following
two important facts, as immediate consequences of the definition:

a) the restriction pj : ];—p_l(Bp) — F'— By, is a finite ordinary covering
of degree d, (the degree of p), and so it can be described in terms of its
monodromy wy, : T (F — By) = g4, (the monodromy of p);

b) p is completely determined (up to homeomorphism) by such restric-
tion, hence it can be represented by means of the branch set B, C F' and
the monodromy wy,.

Then, we can represent the two examples above as shown in figure 4,
where each branch point is labelled with the monodromy of a fixed meridian
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around 1it:

Figure 4

Now, branched coverings between higher-dimensional manifolds, can be
defined analogously, by replacing two-dimensional local models with higher-
dimensional ones. We will construct these local models by induction on the
dimension.

The most trivial way to do that is crossing local models by the identity
of the interval I = [—1,1]. Namely, from a local model p : (B™~1, 0) —
(B™=1,0) in dimension m — 1, we get a local model p x idf : (B™,0) —
(B™,0) in dimension m, where B™ is identified with B™~! x I.

Figure 5

By iterating the crossing process, starting from the two-dimensional
local model pg, we get a local model py x idfm-2 : (B™,0) — (B™,0) in
any dimension m. Of course, both the singular set and the branch set of this
local model are flat (m — 2)-cells, and the restriction to the complements
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of them is a cyclic ordinary covering of degree k (again we call k the local
branching index).

Figure 6

In the figures 5 and 6, as well as in all the figures that follow, we use
labels to indicate the monodromy of meridians around the branch set.

We remark that the singular set of all the branched coverings arising
from the local models considered above, is a codimension 2 locally flat sub-
manifold of the covering manifold. Nevertheless, the branch set can be
singular, since self-intersections may appear when we map the singular set
into the covered manifold. However, we can always assume, by transver-
sality, that the branch set is an immersed manifold with only trasversal
self-intersections. In dimension 4, there is only one kind (up to homeo-
morphism) of such singularities of the branch set, consisting of an isolated
trasversal double point, which we call a node (see figure 7).

Figure 7

A more general way to construct a local model in dimension m consists
in making the cone of a branched covering between (m — 1)-spheres. That
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is, from any branched covering p : S™~! = S™~! we get a local model
C(p) : B™ — B™, where B™ is identified with the cone C(S™~!). Of
course, all the local models considered above are cones. Moreover they are
the only ones whose singular set is non singular, in fact we have Sc(,) =
C(Sp) and Be(py = C(B,) for any branched covering p between spheres.

In order to construct new local models, we need branched coverings
between (m — 1)-spheres. Such a branched covering can be given by gluing

2

together along S™~2 any two branched coverings p, ¢ : B™~! — B™~! such

that: 1) B, and B, meet S™~? transversally, 2) pjgm-2 = qjgm—2.

Two examples of local models in dimension 3 are represented (using
labelled branch sets) in figure 8: the first one is the cone of the map obtained
by gluing together two copies of the covering p depicted in figure 3, the
second one is the cone of the map obtained by gluing together one copy of
the same covering p with the cyclic covering ps. In both these examples
the origin is a non transversal singularity for the branch set as well as for
the singular set.

Figure 8

By gluing together two copies of the covering p of figure 3 crossed by
id;, we get different branched coverings of S3 by itself, depending on the
gluing homeomorphism. Labelled diagrams of the branch sets of two of
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them are shown in figure 9 (the dashed lines represent the gluing spheres):

Figure 9

The cones of these two coverings are local models in dimension 4, whose
branch sets respectively have a non-transversal double point and a cusp
singularity (the cone of a trefoil knot).

Figure 10

At this point, we can give the definition of branched covering between
higher-dimensional manifolds, by induction on the dimension:

DEeFINITION 2. A PL map p: M — M between closed PL m-manifolds
is called a branched covering if it is non-degenerate and for every z € M

there exists a neighborhood U of z in M such that the restriction fiy : U —
F(U) is homeomorphic to the cone of a branched covering of S™~! onto
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itself. Moreover, we put S, = {z € M | pis not locally injective at 2} (the
singular set of p), B, = p(Sp) (the branch set of p) and S}, = Cl(p~(B,) —
Sp) (the pseudo-singular set of p).

Observe that S,, S, and B, are homogeneously (m — 2)-dimensional
subcomplexes. Furthermore, properties a) and b) of branched coverings we
have seen in the two-dimensional case, still hold in general (cf. [27]):

a) the restriction pj : M — p~'(B,) - M — B, is a finite ordinary
covering of degree d, (the degree of p), and so it can be described in terms
of its monodromy w,, : (M — B,) — ¥4, (the monodromy of p);

b) p is completely determined (up to homeomorphism) by such restric-
tion, hence it can be represented by means of the branch set B, C M and
the monodromy wy,.

A more technical definition of branched covering, is usually based on
the remark following our definition and on the property a).

The first result in the direction of representing manifolds as branched
covers of spheres is the following theorem proved by J. M. Alexander [1] in
1920.

THEOREM 1. Any orientable closed PL m-manifold M is a branched
cover of S™.

Sketch of Proof. Let T be a triangulation of M, then the baricentric
subdivision ST of T has a black and white chessboard-coloration. Now, a
branched covering p : M — S™ can be easily defined by sending the black
m-simplices of BT onto the standard simplex A™ C R™ C R™U{oco0} = S™
and the white ones onto CI(S™ — A™).

Note that the degree of the covering p constructed in the proof of the-
orem | depends on the number of m-simplices of T', moreover the singular
set S, is the (m — 2)-skeleton of ST and the branch set B, is the (m — 2)-
skeleton of A™. So, two natural questions naturally arise, in order to make
branched covers of spheres an effective tool for representing and studying
manifolds:

QUESTION 1. There exists a bound d(m) for d, depending only on the
dimension m?
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QUESTION 2. There exists p such that S, is non-singular?

I. Bernstein and A. L. Edmonds in [4] established that if d(m) exists, it
cannot be less that m, in fact the m-dimensional torus 77 = S' x...x S' is
a m-fold branched cover of S™ (cf. [47]), but there is no branched covering
of T™ onto S™ of degree < m. In the same paper, they also prove that
in general we cannot require B, non-singular (the simplest counterexample
they give is in dimension 8). We will show that the answer two both the
questions 1s positive for dimensions m < 4.

The two-dimensional case is trivial: any orientable closed surface Fj; of
genus g can be represented as a 2-fold covering of S? branched over 2g + 2
points, as shown in figure 11.

Figure 11
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In dimension 3, the following theorem was proved independently by

H. M. Hilden, U. Hirsch and J. M. Montesinos ([36], [49] and [55]):

THEOREM 2. Any orientable closed 3-manifold M is a simple 3-fold
covering of S? branched over a knot. (simple means that the monodromy
of each meridian around the branch knot is a transposition)

Sketch of Proof. First of all, we observe that the branched covering of
figure 11 can be extended to a simple branched covering H, — B3, where
H, is the handelbody bounded by F, in R®. The branch set of this covering
consists of g + 1 trivial arcs in

Figure 12
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B3 (labelled with the transposition (12)). By adding an extra trivial arc
labelled with (13) to the branch set, we get a new branched covering H, —
B3 (see figure 13), with the following property: any homeomorphism k :
Fy — F, is (up to isotopy) the lifting of a homeomorphism A : §? — 52
(cf. [5]). Then, by considering a Heegaard splitting of M, we get a 3-fold
simple branched covering M = H, U, H; — B3 U B3 = S3, as shown in
figure 13.

Figure 13

The branch set of this covering is a link in S, which can be represented
by a plat, labelled as shown in figure 14. Finally, such a link can be made
into a knot, by using moves of type I described in figure 15.

Figure 14

By this theorem, any orientable closed 3-manifold can be represented as
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a cover M (L,w) of S3, where we can think of (L,w) as a labelled diagram
of a knot (or more generally of a link), that is a diagram whose bridges are
labelled by transpositions.
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Figure 15

R. Fox and J. M. Montesinos posed the following problem: find a set of
moves relating any two labelled diagrams representing the same 3-manifold
(up to homeomorphism). For a long time, the move T of figure 15 (to-
gether with labelled Reidemeister moves) was erroneously conjectured to
be enough (cf. [60]). A complete set of moves was recently given in [71], but
the new moves were not completely satisfactory because of their complexity
and non-local character.

Finally, in [74] it was proved that such inconvenient can be avoided by
stabilizing the coverings as show in figure 16. Namely, we have the following
equivalence theorem:

THEOREM 3. Let (L,w) and (L', w’) be labelled link diagrams represent-
ing two simple 3-fold branched coverings of S3. Then
M(L,w) = M(L' ') if and only if the stabilizations (L,w)# and (L/,w’)#
are related by a finite sequence of moves I and 1T and labelled Reidemeister

moves.

Sketch of Proof. First of all, the moves I and II do not change the
covering manifold, since the 3-cell that they involve is covered by a disjoint
union of 3-cells.
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Figure 16

On the other hand, let (L,w) and (L/,w’) be two labelled diagrams
representing the same 3-manifold M. We can assume, up to labelled Rei-
demeister moves, that they are plats as in figure 14, in such a way that
they induce two Heegaard splittings of M. Now, move I allows us to real-
ize a stable equivalence between these splittings, in order to get two new
labelled plats inducing the same splitting homeomorphism (cf. section 2 of
[71]). Finally, the stabilizations of these new labelled plats can be related
by moves I and TII, since these moves (in presence of the fourth trivial sheet)
generate all the braids representing the identity homeomorphism of F (cf.
section 3 of [71] and [74]).

The following question remains still open:

QUESTION 3. Are moves I and II together with stabilization and la-
belled Reidemeister moves sufficient in order to relate any two labelled
link diagrams representing the same 3-manifold as a simple 4-fold (n-fold)
branched cover of S3?

Finally, in dimension 4 the following representation theorem was proved
n [74], by using covering moves.
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THEOREM 4. Any orientable closed PL 4-manifold is a simple 4-fold
cover of S* branched over a transversally immersed surface.

Sketch of Proof. Let M be an orientable closed PL 4-manifold. By [57]
and using a handlebody decomposition, we can write M = MyUpgq M7 where
both My and M; are simple 3-fold covers of B* branched over locally flat
surfaces. Looking at the boundaries, we have two simple 3-fold branched
coverings of S® by the same 3-manifold BAM; = BdM;. By stabilizing
these coverings and relating them by moves, we get a simple 4-fold branched
covering p: M — S* (see figure 17).

The branch set of p is a surface F' C S*, whose only singularities are
nodes and cusps coming from the moves I and II as suggested by figure 18.
Finally, by using branched covering cobordism (cf. [39]), we can remove all
the cusps of F', in order to make it transversally immersed.

Figure 17
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Figure 18

We conclude by remarking that the singular set of the covering p con-
structed in the proof of theorem 4 must be a locally flat surface in M, but
the following question is still open:

QUESTION 4. Can any orientable closed PL 4-manifold be represented
as a simple cover of S* branched over a locally flat surface?
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