A NOTE ON THE CLASSIFICATION OF \mathcal{F} -FIBRATIONS (*)

by Petar Pavešić (in Ljubljana)(**)

Sommario. - Il concetto di una F-fibrazione viene definito richiedendo che le fibre appartengano ad una fissata categoria F di spazi topologici. In questa nota sono descritte alcune costruzioni sulle F-fibrazioni che vengono usate per ridurre la classificazione, a meno di equivalenza omotopica fibrata, delle F-fibrazioni alla classificazione delle loro fibrazioni principali associate.

Summary. - The concept of an \mathcal{F} -fibration is defined by requiring that the fibres belong to a fixed category of spaces \mathcal{F} . We describe several constructions on \mathcal{F} -fibrations and then show how to reduce, under suitable conditions, the classification up to fibre homotopy equivalence of \mathcal{F} -fibrations to the classification of their associated principal fibrations.

1. Preliminaries on \mathcal{F} -notation.

We recall some standard terminology used in the theory of \mathcal{F} -fibrations. All spaces and maps will belong to \mathbf{kTop} , the category of compactly generated spaces. In particular, let \mathcal{F} be a non-empty subcategory of \mathbf{kTop} . A triple $(E,p:E\to B,B)$ is an \mathcal{F} -arrow if p is onto and all fibres are objects of \mathcal{F} . A map $(g,\overline{g}):(D,q,A)\to(E,p,B)$ between \mathcal{F} -arrows is an \mathcal{F} -map if the restriction of g to every fiber is in \mathcal{F} . Two \mathcal{F} -maps are \mathcal{F} -homotopic if there exists a homotopy $(G,\overline{G}):(D\times I,p\times 1_I,A\times I)\to(E,p,B)$ between them, which is an \mathcal{F} -map. Two \mathcal{F} -arrows are \mathcal{F} -homotopy equivalent if there is an \mathcal{F} -map between them, that has an \mathcal{F} -map as \mathcal{F} -homotopy inverse.

An \mathcal{F} -arrow is an \mathcal{F} -fibration if it has the covering homotopy property with respect to all \mathcal{F} -arrows, i.e. if for every \mathcal{F} -arrow (D,q,A), every \mathcal{F} -map (g,\overline{g}) from p to q and every homotopy $\overline{G}:A\times I\to B$ of \overline{g} , there is an \mathcal{F} -homotopy $G:D\times I\to E$ of g covering \overline{G} . Because of the

^(*) Pervenuto in Redazione il 28 dicembre 1993.

^(**) Indirizzo dell'Autore: Department of Mathematics, University of Ljubljana, Ljubljana (Slovenia).

Proposition 1.1 ([2], Lemma 7.2.7) \mathcal{F} -fibrations are fibrations

all fibres of an \mathcal{F} -fibration over a connected base have the same homotopy type. To reflect this structure we will require in the sequel that in \mathcal{F} all maps are \mathcal{F} -homotopy equivalences and that there exists a distinguished object $F \in \mathcal{F}$ such that $\mathcal{F}(F,X) \neq \emptyset$ for all $X \in \mathcal{F}$. We call such an \mathcal{F} a category of fibres. Clearly, the pullback of an \mathcal{F} -fibration is again an \mathcal{F} -fibration.

An \mathcal{F} -fibration is *numerable* if there exists a numerable covering for its base space such that the restriction of the fibration to every element of the base is \mathcal{F} -homotopy equivalent to the trivial \mathcal{F} -fibration with fibre F. We denote by $\mathcal{B}_{\mathcal{F}}$ the category of all numerable \mathcal{F} -fibrations over connected spaces in \mathbf{kTop} and of all \mathcal{F} -maps between them.

THEOREM 1.2 (Dold-May [2], Th.7.2.4) If a map between two \mathcal{F} -fibrations over the same base is an \mathcal{F} -homotopy equivalence when restricted to every element of some numerable covering of the base, then this map is an \mathcal{F} -homotopy equivalence.

Proposition 1.3 ([2], Th. 7.2.13) The pullbacks of an \mathcal{F} -fibration along two homotopic maps are \mathcal{F} -homotopy equivalent.

We denote by $k_{\mathcal{F}}$ the cofunctor from the homotopy category of **kTop** to **Set** that assigns to every $B \in \mathbf{kTop}$ the set of \mathcal{F} -homotopy equivalence classes of numerable \mathcal{F} -fibrations over B, and to every homotopy class of maps in **kTop** the pullback along it.

Just as for fibre bundles, associated principal fibrations play a fundamental role in the study of \mathcal{F} -fibrations. Let \mathcal{H} be the image of the category \mathcal{F} via the functor $\mathcal{F}(F,-): \mathbf{kTop} \to \mathbf{kTop}$ (where \mathbf{kTop} is considered as enriched over itself). It's easy to check that \mathcal{H} is again a category of fibres with distinguished object $H := \mathcal{F}(F,F)$. Note that H is a topological monoid with the property that all translations in H are homotopy equivalences. We call \mathcal{H} the associated principal category of fibres for \mathcal{F} . A principal \mathcal{H} -fibration is an \mathcal{H} -fibration together with a continuous fibrewise right action of the distinguished fibre H on the total space.

We will use the following construction to pass from principal \mathcal{H} -fibrations to \mathcal{F} -fibrations. Given a right H-space A and a left H-space B over a topological monoid H form the amalgamated product $A \times_H B$ as the quotient

of the product $A \times B$ modulo the equivalence relation, generated by the requirement that $(a \cdot h, b)$ is equivalent to $(a, h \cdot b)$ for all $a \in A, b \in B$ and $h \in H$.

In particular if \mathcal{F} is a category of fibres with the distinguished fibre F, X an object in \mathcal{F} and $H=\mathcal{F}(F,F)$ then $\mathcal{F}(F,X)$ is right H-space and F is left H-space. Their amalgamated product $\mathcal{F}(F,X)\times_H F$ is of the same homotopy type as F. In fact, take $\varphi\in\mathcal{F}(F,X)\neq\emptyset$ and let $\overline{\varphi}$ be its \mathcal{F} -homotopy inverse. The maps

$$f: F \to \mathcal{F}(F, X) \times_H F, \quad f: x \mapsto [(\varphi, x)]$$

and

$$\bar{f}: \mathcal{F}(F, X) \times_H F \to F, \quad \bar{f}[(\alpha, x)] \mapsto \overline{\varphi}(\alpha(x))$$

are both well-defined. Moreover the compositum

$$f\bar{f}:[(\alpha,x)]\mapsto [(\varphi,\overline{\varphi}\alpha(x))]=[(\varphi\overline{\varphi}\alpha,x)]$$

is homotopic to the identity, while

$$\overline{f}f: x \mapsto \overline{\varphi}\varphi(x)$$

is even \mathcal{F} -homotopic to the identity. As we want to use this construction to obtain \mathcal{F} -fibrations from \mathcal{H} -fibrations, we must assure that these amalgamated products are in \mathcal{F} so we define a category of fibres \mathcal{F} to be a complete category of fibres if the space $\mathcal{F}(F,X)\times_H F$ is in \mathcal{F} for every $X\in\mathcal{F}$, the map $\mathcal{F}(F,f)\times_H F$ is in \mathcal{F} for every \mathcal{F} -map f and moreover, the evaluation map

$$ev: \mathcal{F}(F, X) \times_H F \to X, \quad ev[(\alpha, x)] \mapsto \alpha(x)$$

is an \mathcal{F} -morphism. It's easy to check that all examples given in [1] are indeed complete categories of fibres.

2. Associated Principal Fibrations.

As a first step toward the homotopy classification of \mathcal{F} -fibrations we reduce it to the classification of their associated principal fibrations.

First, we define a functor $\Phi: \mathcal{B}_{\mathcal{F}} \to \mathcal{B}_{\mathcal{H}}$ as follows: given (E, p, B) in $\mathcal{B}_{\mathcal{F}}$ let \overline{E} be the subspace of all maps $g \in \mathbf{kTop}(F, E)$, such that $(g, \overline{g}) : (F, pr, *) \to (E, p, B)$ is an \mathcal{F} -map, that is, the image of g is contained in a fibre of g. Define $\overline{p} : \overline{E} \to B$ as $\overline{p}(g) := p(g(x))$ for any $x \in F$.

PROPOSITION 2.1 ([1], Lemma 5.8) $(\overline{E}, \overline{p}, B)$ is a numerable \mathcal{H} -fibration.

Moreover, for $(g, \overline{g}) : (E, p, B) \to (E', p', B')$ we put $\Phi(g, \overline{g}) := (g \circ -, \overline{g})$ which is obviously an \mathcal{H} -map and that yields the functoriality of Φ .

Now we construct a functor $\Psi: \mathcal{B}_{\mathcal{H}} \to \mathcal{B}_{\mathcal{F}}$ using the amalgamated products. Given an arrow (D, p, B) in $\mathcal{B}_{\mathcal{H}}$ there is the fiberwise right action of H on D so we have the space $D \times_H F$ and the projection $\widehat{p}: D \times_H F \to B$ is determined by $\widehat{p}[(d, x)] := p(d)$. For an \mathcal{H} -arrow map $(g, \overline{g}) : (D, p, B) \to (D', p', B')$ we put $\Psi(g, \overline{g}) := (\widehat{g}, \overline{g})$ where $\widehat{g}[(d, x)] := [(g(d), x)]$.

PROPOSITION 2.2 Suppose the category of fibres $\mathcal F$ is complete. Then $(D \times_H F, \widehat p, B)$ is a numerable $\mathcal F$ -fibration, and $\Psi(g, \overline g)$ is a map of $\mathcal F$ -arrows.

Proof. That $(D \times_H F, \widehat{p}, B)$ is an \mathcal{F} -arrow and that $\Psi(g, \overline{g})$ is a map of \mathcal{F} -arrows follows from the completeness of the category of fibres \mathcal{F} . Assume now that the arrow (D, p, B) is \mathcal{F} -homotopy trivial, with (g, \overline{g}) : $(D, p, B) \to (B \times H, pr, B)$ the \mathcal{H} -homotopy equivalence.

Then $\Psi(g, \overline{g})$ is clearly an \mathcal{F} -homotopy equivalence between $(D \times_H F, \widehat{p}, B)$ and $((B \times H) \times_H F, \widehat{p}, B)$. On the other side the maps

$$(B \times H) \times_H F \to B \times F, \quad [(b,h),x] \mapsto (b,h(x))$$

and

$$B \times F \to (B \times H) \times_H F$$
, $(b, x) \mapsto [(b, e), x]$

(where e is the unit in H) are mutually inverse fiber-homeomorphisms.

In $D \times_H F$ the amalgamated product is fiberwise so it obviously commutes with restrictions. It follows that $(D \times_H F, \widehat{p}, B)$ is locally \mathcal{F} -homotopy

trivial with respect to the same covering as (D, p, B).

For a category of fibres \mathcal{F} there is the homotopy category of the category $\mathcal{B}_{\mathcal{F}}$ with the same objects, but with maps the equivalence classes of maps in $\mathcal{B}_{\mathcal{F}}$ with respect to \mathcal{F} -homotopy and similarly for $\mathcal{B}_{\mathcal{H}}$. We can now formulate our main result.

THEOREM 2.3 If the category of fibres $\mathcal F$ is complete then the functors Φ and Ψ induce an equivalence between the homotopy categories of $\mathcal B_{\mathcal F}$ and $\mathcal B_{\mathcal H}$.

Proof. The image of the \mathcal{F} -fibration (E, p, B) by the functor $\Psi \circ \Phi$ is the \mathcal{F} -fibration $(\overline{E} \times_H F, \widehat{\overline{p}}, B)$. The maps

$$\mu_E : \overline{E} \times_H F \to E, \quad \mu_E[(\alpha, x)] := \alpha(x)$$

determine a natural transformation $\mu: \Psi \circ \Phi \to \mathrm{Id}$. If (E, p, B) is \mathcal{F} -homotopy trivial it's easy to check that the map μ_E is \mathcal{F} -homotopy equivalence. On the other side, both functors Φ and Ψ clearly commute with restrictions so, for an arbitrary numerable \mathcal{F} -fibration, the map μ_E is \mathcal{F} -homotopy equivalence on all members of the numerable covering for B hence, by Theorem ?? μ_E is an \mathcal{F} -homotopy equivalence. We conclude that μ is a natural equivalence between $\Psi \circ \Phi$ and the identity on the homotopy category of $\mathcal{B}_{\mathcal{F}}$.

Applying the same method we obtain that for (D, p, B) in $\mathcal{B}_{\mathcal{H}}$ the maps

$$\nu_D: D \to \overline{D \times_H F}, \quad (\nu_D(d))(x) := [(d, x)]$$

determine the natural equivalence between the identity and $\Phi \circ \Psi$ on the homotopy category of $\mathcal{B}_{\mathcal{H}}$.

COROLLARY 2.4 Let \mathcal{F} be a complete category of fibres. Then the functors $k_{\mathcal{F}}$ and $k_{\mathcal{H}}$ are naturally equivalent.

Proof. We define a natural transformation $\varphi: k_{\mathcal{F}} \to k_{\mathcal{H}}$ as follows: for every $B \in \mathbf{kTop}$ and a class [(E, p, B)] in $k_{\mathcal{F}}(B)$ let $\varphi_B: [(E, p, B)] \mapsto [(\overline{E}, \overline{p}, B)]$. The previous theorem implies that this is indeed a well-defined transformation. Similarly we construct, using the functor Ψ , a natural

transformation $\psi: k_{\mathcal{H}} \to k_{\mathcal{F}}$ and it's easy to check that ψ is the inverse of φ .

By this corollary, if \mathcal{F} is a complete category fibres, we have reduced the classification of numerable \mathcal{F} -fibrations to the classification of their associated principal fibrations. For these it is possible to build a classifying space by exploiting the principal structure given by the action of the toplogical monoid H.

References

- [1] MORGAN C. and PICCININI R.A., Fibrations, Expo. Math. 4 (1986), 217-242.
- [2] Piccinini R.A., Lectures on Homotopy Theory. North-Holland, Amsterdam, 1992.