A NOTE ON THE CLASSIFICATION OF F-FIBRATIONS (*)

by PETAR PAVESIC (in Ljubljana)(**)

SOMMARIO. - Il concetto di una F-fibrazione viene definito richiedendo che le
fibre appartengano ad una fissata categoria F di spazi topologici. In questa
nota sono descritte alcune costruzioni sulle F-fibrazioni che vengono usate
per ridurre la classificazione, a meno di equivalenza omotopica fibrata, delle
F-fibrazioni alla classificazione delle loro fibrazioni principali associate.

SUMMARY. - The concept of an F-fibration is defined by requiring that the fibres
belong to a fized category of spaces F. We describe several constructions on
F-fibrations and then show how to reduce, under suitable conditions, the clas-
sification up to fibre homotopy equivalence of F-fibrations to the classification
of their associated principal fibrations.

1. Preliminaries on F-notation.

We recall some standard terminology used in the theory of F-fibrations.
All spaces and maps will belong to kTop, the category of compactly gener-
ated spaces. In particular, let F be a non-empty subcategory of kTop. A
triple (E,p: E — B, B) is an F-arrow if p is onto and all fibres are objects
of F. A map (9,79) : (D,q,A) = (F,p, B) between F-arrows is an F-map
if the restriction of g to every fiber is in F. Two F-maps are F-homotopic
if there exists a homotopy (G,G) : (D x I,p x 11,A x I) — (E,p, B)
between them, which is an F-map. Two F-arrows are F-homotopy equiva-
lent if there is an F-map between them, that has an F-map as F-homotopy
inverse.

An F-arrow is an F-fibration if it has the covering homotopy property
with respect to all F-arrows, i.e. if for every F-arrow (D, q, A), every F-
map (g,7) from p to ¢ and every homotopy G : A x I — B of g, there is
an F-homotopy G : D x I — E of g covering . Because of the
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ProposiTION 1.1 ([2], Lemma 7.2.7) F-fibrations are fibrations

all fibres of an F-fibration over a connected base have the same homotopy
type. To reflect this structure we will require in the sequel that in F all
maps are F-homotopy equivalences and that there exists a distinguished
object F € F such that F(F,X) # @ for all X € F. We call such an
F a category of fibres. Clearly, the pullback of an F-fibration is again an
F-fibration.

An F-fibration is numerable if there exists a numerable covering for its
base space such that the restriction of the fibration to every element of the
base is F-homotopy equivalent to the trivial F-fibration with fibre F'. We
denote by Br the category of all numerable F-fibrations over connected
spaces in kTop and of all F-maps between them.

THEOREM 1.2 (Dold-May [2], Th.7.2.4) If a map between two F-fibrations
over the same base i1s an F-homotopy equivalence when restricted to every
element of some numerable covering of the base, then this map s an F-
homotopy equivalence.

ProposiTION 1.3 ([2], Th. 7.2.13) The pullbacks of an F-fibration

along two homotopic maps are F-homotopy equivalent.

We denote by kx the cofunctor from the homotopy category of kTop
to Set that assigns to every B € kTop the set of F-homotopy equivalence
classes of numerable F-fibrations over B, and to every homotopy class of
maps in kTop the pullback along it.

Just as for fibre bundles, associated principal fibrations play a funda-
mental role in the study of F-fibrations. Let H be the image of the category
F via the functor F(F,—) : kTop — kTop (where kTop is considered as
enriched over itself). Tt’s easy to check that #H is again a category of fi-
bres with distinguished object H := F(F, F). Note that H is a topological
monoid with the property that all translations in H are homotopy equiv-
alences. We call H the associated principal category of fibres for F. A
principal H-fibration is an H-fibration together with a continuous fibrewise
right action of the distinguished fibre H on the total space.

We will use the following construction to pass from principal H-fibrations
to F-fibrations. Given a right H-space A and a left H-space B over a topo-
logical monoid H form the amalgamated product A x g B as the quotient
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of the product A x B modulo the equivalence relation, generated by the
requirement that (a - h,b) is equivalent to (a,h-b) for all a € A,b € B and
heH.

In particular if F is a category of fibres with the distinguished fibre F',
X an object in F and H = F(F,F) then F(F, X) is right H-space and
F is left H-space. Their amalgamated product F(F, X) xg F is of the
same homotopy type as F. In fact, take ¢ € F(F, X) # (§ and let @ be its
F-homotopy inverse. The maps

fiF=F(FX)xg F, f:z0[(p2)]

and

FrF(F,X)xg F—F, f[(a,2)]~ pafz))
are both well-defined. Moreover the compositum
Ff U 2)] = [(, Ba(x))] = [(¢Pa, )]
is homotopic to the identity, while
Ff iz Pp(x)

is even F-homotopic to the identity. As we want to use this construction
to obtain F-fibrations from #H-fibrations, we must assure that these amal-
gamated products are in F so we define a category of fibres F to be a
complete category of fibres if the space F(F, X) xy F is in F for every
X € F, the map F(F, f) xg F is in F for every F-map f and moreover,
the evaluation map

ev: F(F,X)xg F = X, ev[(e,z)]— a(z)

is an F-morphism. It’s easy to check that all examples given in [1] are
indeed complete categories of fibres.
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2. Associated Principal Fibrations.

As a first step toward the homotopy classification of F-fibrations we
reduce 1t to the classification of their associated principal fibrations.

First, we define a functor ® : Bx — By as follows: given (E,p, B) in
Br let E be the subspace of all maps g € kTop(F, E), such that (g,7) :
(F,pr,*) — (E,p, B) is an F-map, that is, the image of g is contained in a
fibre of p. Define p: E — B as p(g) := p(g(z)) for any z € F.

ProprosiTioN 2.1 ([1], Lemma 5.8) (E,p,B) is a numerable
H-fibration.

Moreover, for (g,9) : (F,p, B) = (E',p', B') we put ®(g9,9) := (9°—,7)
which is obviously an #-map and that yields the functoriality of ®.

Now we construct a functor ¥ : By — Br using the amalgamated
products. Given an arrow (D, p, B) in By there is the fiberwise right action
of H on D so we have the space D x g F' and the projection p: Dx g F — B
is determined by p[(d, z)] := p(d). For an H-arrow map (¢,7) : (D, p, B) —
(D', p', B') we put ¥(g,3) := (g,9) where g[(d, z)] := [(9(d), )]

PROPOSITION 2.2 Suppose the category of fibres F is complete. Then
(D xg F,p,B) is a numerable F-fibration, and ¥(g,q) is a map of F-
arrows.

Proof. That (D xg F,p, B) is an F-arrow and that ¥(g,7) is a map
of F-arrows follows from the completeness of the category of fibres F.
Assume now that the arrow (D, p, B) is F-homotopy trivial, with (g,9) :
(D,p,B) = (B x H,pr, B) the H-homotopy equivalence.

Then W(g,g) is clearly an ZF-homotopy equivalence between
(D xg F,p,B) and ((B x H) xg F,p, B). On the other side the maps

(Bx H)xg F— BxF, [(bh),z]— (b h(z))

and
BxF—>(BxH)xgF, (bz)—][(be)x]
(where e is the unit in H) are mutually inverse fiber-homeomorphisms.

In D x g F the amalgamated product is fiberwise so it obviously commutes
with restrictions. Tt follows that (D xp F,p, B) is locally F-homotopy
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trivial with respect to the same covering as (D, p, B).

&

For a category of fibres F there is the homotopy category of the category
Br with the same objects, but with maps the equivalence classes of maps
in Br with respect to F-homotopy and similarly for By. We can now
formulate our main result.

THEOREM 2.3 If the category of fibres F 1s complete then the functors
® and ¥ induce an equivalence between the homotopy categories of By and

By .

Proof. The image of the F-fibration (E,p, B) by the functor ¥ -® is
the F-fibration (E x g F, i B). The maps

pp:Exg F— E, pplla, )] = a(z)

determine a natural transformation g : ¥ed — Id. If (F,p, B) is F-
homotopy trivial it’s easy to check that the map ug is F-homotopy equiv-
alence. On the other side, both functors ® and ¥ clearly commute with
restrictions so, for an arbitrary numerable F-fibration, the map pug is F-
homotopy equivalence on all members of the numerable covering for B
hence, by Theorem ?? pp is an F-homotopy equivalence. We conclude
that p is a natural equivalence between W e® and the identity on the ho-
motopy category of Br.

Applying the same method we obtain that for (D, p, B) in By the maps
vp:D—=DxgF, (vp(d))(z):=](d, )]

determine the natural equivalence between the identity and ® ¥ on the
homotopy category of By. &

COROLLARY 2.4 Let F be a complete category of fibres. Then the func-
tors kr and ky are naturally equivalent.

Proof. We define a natural transformation ¢ : kx — kg as follows: for
every B € kTop and a class [(F,p, B)] in kx(B) let ¢p : [(E,p, B)] —
[(E,p, B)]. The previous theorem implies that this is indeed a well-defined
transformation. Similarly we construct, using the functor ¥, a natural
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transformation ¢ : ky — kx and it’s easy to check that 1 is the inverse of

®. &

By this corollary, if F is a complete category fibres, we have reduced the
classification of numerable F-fibrations to the classification of their associ-
ated principal fibrations. For these it is possible to build a classifying space
by exploiting the principal structure given by the action of the toplogical
monoid H.
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