COINCIDENCE POINTS OF MAPS ON Z,.-SPACES (*)

by NEZA MRAMOR-Ko0sTA (in Ljubljana)(**)

SOMMARIO. - Sia X uno spazio con una azione libera del gruppo ciclico Zpe ed
f X — M una mappa continua. Lo scopo di questo articolo é stimare per
mezzo dell’indice Zpa la cardinalita dell’insieme

Af={z € X|f(gz) = f(z) for all g € Zpa}

quando Uindice dello spazio X ¢é noto ed M wverifica opportune proprieta.

SUMMARY. - Let X be a space with a free action of the cyclic group Zpe and
f: X — M a continuous map. The purpose of this paper is to estimate by
means of the Zya -index the size of the set

Af={z € X|f(gz) = f(z) for all g € Zpa}
when the index of the space X is known, and the space M satisfies certain

conditions.

1. Introduction.

Let X be aspace with a free action of Z,«, p an odd prime, and f : X —
M a continuous map. The index of X is an invariant of the action, defined
originally by Conner and Floyd [3] for Z; actions, and later generalized
by various authors to actions of other compact (and also noncompact) Lie
groups (one possible definition, due to Fadell and Husseini [4] is given in
paragraph 2). We will be concerned with the following questions: if the
index of X is known, under what conditions on the space M and on the
map f does there necessarily exist an orbit in X which is mapped to a
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single point in M, and, more generally, what can be said about the size of
the set A; of such orbits.

In case p = 2 and a = 1 this question is related to the classical Borsuk-
Ulam theorem, which says that Ay # @ if X is the sphere S”, and M is
the euclidean space R™, m < n. Conner and Floyd in [3] showed, that this
is true if M is any differentiable manifold of dimension m < n. On the
other hand, Jaworowski [5] gave an example of a complex Y of dimension
2n — 1 (which is not a manifold), and a map f : S* — Y with Ay = 0,
which proves that the restriction that M is a manifold is neccessary in the
estimate of Conner and Floyd.

If p# 2 and o = 1, it is known that dim A > n — (p — 1)m in the
following cases. Newman [10], proved this for maps f : S® — R™, where n
is odd and m(p — 1) < n. Munkholm and Nakaoka [7] extended this to the
case where X is an n-dimensional (n odd) differentiable homotopy sphere
with a free differentiable action of Z,, and M is a differentiable manifold,
Volovikov [12] to the case where X is a Z,-space with index n, M is an
m-manifold, and f* is trivial (or, more generally, takes the Wu classes of
X to 0), and Necochea [9] to the case where X and M are Poincaré duality
complexes, and a certain cohomology class is trivial. Cohen and Lusk
[2] studied the sets Ay, C X containing all orbits from which precisely
q points, 2 < ¢ < p are mapped to a single point, and estimated their
dimension in terms of certain numbers depending on M, ¢ and p (which
they computed for M = R™), and obtained the above estimate for the set
Afp = Ay in case X is a Z,-orientable n-manifold with trivial cohomology
in dimensions < m(p — 1) — 1.

In this paper we prove several restrictions on the size of Ay which are
valid under quite general conditions. We also generalize our results to the
case &« > 1. The case a > 1 was considered by Munkholm and Nakaoka in
[7] and they proved that

dimAy >n— (p* —1)m — (m(a — 1)p® — (ma + 2)p*~ '+ m 4+ 3)

whenever X is an n-dimensional (n odd) homotopy sphere, and M is a
differentiable manifold. We prove a different estimate which is also valid
under more general conditions.

2. The Z,«-index.

Throughout this paper, “a space” will be a finitistic (compare [1]) para-



COINCIDENCE POINTS OF MAPS ON Z,«-SPACES 381

compact Hausdorff space. The cohomology will be Chech cohomology with
coefficients in a field (usually Z,). The Zpo-index which we will use is a
special case of the ideal-valued G-index introduced by Fadell and Husseini
[4], which is defined on spaces with an action of a compact Lie group G and
is a generalization of the index of Yang [13], and the Z3-index of Conner
and Floyd [3].

Let EG —> BG be the classifying bundle for G, Xg = X x¢ EG
the twisted product, and H(X) =2 H*(X x EG) the Borel equivariant
cohomology. The index, index®X, is the kernel of the homomorphism
induced on ordinary cohomology by the projection pg : X¢ — BG, so it
is a homogenuous ideal in the cohomology ring H*(BG) of the classifying
space of G. We will work only with free actions, and in this situation the
index has a simpler description. Since X is free, X — X/G is a G-bundle,
(compare [1, p.88]) so there exists a classifying map ¢ : X/G — BG,
which is covered by an equivariant map ¢ : X — EG. The index of X is
in this case simply the kernel:

index®X = ker(¢* : H*(BG) — H*(X/G))

It is easy to show, that this index has the following properties, which
in a sense characterise the concept of an index function:
Monotone property: If f : X — Y is an equivariant map between
G-spaces, then
index®(Y) C index®(X)

Additivity: f X = A B, where A and B are closed invariant subspaces
of the G-space X, then

index®(A) - index®(B) C index(X)

Continuity: Let H*(BG) be a Noetherian ring, and let H*(X/G) be
finitely generated as a module over H*(BG). If X is an invariant sub-
space of a paracompact G-space Y, then there exists a closed invariant
neighbourhood N of X in Y, such that X C in#(N), and

inde:EG(X) = inderG(N) .

Proofs of these properties are in this setting just simple exercises. They
can be found in [4] in a much more general setting.

As an easy consequence of these properties we obtain the following
statement (compare also [5]):
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ProrosiTiON 1. If f: X — Y is an equivariant map, A C Y is a
closed invariant subset, and A; = f~!(A4) C X, then

indexG(Af) -index®(Y — A) C index%(X) .

Proof. Let N be the closed invariant neighbourhood of Af in X which
exists by the continuity of the index. By the additivity,

indexG(N) ~indexG(X —int(N)) =

= indexG(Af) ~indeXG(X —int(N)) C indexG(X) .

Since f maps X —int(N) equivariantly to (Y — A), the monotone property
implies that
index?(Y — A) C index (X — int(N))

and thus the proposition follows. &

Obvioulsy, proposition 1 provides a lower bound for the set Ay in terms
of its cohomological dimension. It can be viewed as a very general Borsuk-
Ulam type theorem in the following way. Given a map f from a certain
G-space X (for which the index is known) to a representation space Y for

G, let
Avf = /G 0~ f(gz) dg

be its average, which is an equivariant map. For any invariant subspace
A CY (for example the origin), such that the action of G is free outside
A, the above result gives an upper bound for the size (in terms of the
cohomological dimension) of the set A; = Avf~!'(A). For example, if
G=175,X=5"Y=R" and A=0C R" it follows that the set A; is
nonempty which is exactly the classical Borsuk-Ulam theorem (compare,
5], [4)).

Let p be an odd prime. A model for the classifying bundle of Z,a
is S%° — S%/Z,e = L3 where S is the direct limit of unit spheres
S#n=1 C C™ with the standard action of Z,. (multiplication with the p*-
th roots of unity), and Lpa is the lens space. The Z,a-index of a Z,a-space
X is therefore an ideal in the cohomology ring

H*(L3%; Zy) = Zyla,b]/(a* = 0) = Zy[b] ® Alal;



COINCIDENCE POINTS OF MAPS ON Z,«-SPACES 383

a€ H'Y(LX), be H* (LX) .

This is a graded ring with one generator in each dimension and its
homogenuous ideals are generated by either a power 4", a product ab” or
by a pair (b, ab®). If the space X is finite dimensional, the second case is
not possible.

Let 7,, denote the ideal

I_{(bk) if n=2k

(abk, bk+1) if n=2k=1

which contains precisely all cohomology groups lT{q(L;;’O)7 q>n.

EXAMPLES.

1. Consider the sphere S?»~! C C™ with the standard action of Z,a.
This can be considered as the (2n — 1)-skeleton of the universal space S,
thus the index is kergp = ker:*, where 7 is the inclusion ¢ : Lgﬁ_l — Lya, so

index?r> §27-1 = (0") = ILry.

Actually this is true for any free action of Z,= on the sphere S**~! because,
as can be shown by obstruction theory, there exists an equivariant map
from the sphere with an arbitrary free action of Z,« to the sphere with the
standard action. Therefore

Is, C indexZr® (52”_1) .

The opposite inclusion follows because the dimension of S?®~! and there-
fore also of the quotient space is 2n — 1, and so (b™) C ker ¢*.

2. Let X3, be the space obtained by glueing p™ copies of the 2n-disk
along the boundary S?"~!. If one describes the disks as cones over the
boundary sphere, then

Xon = {(I,t;i),l‘ € SQn_l:t € [0: 1]’

i=1,...,p%}(2,0;i) ~ (2,0;7), (&, 1;9) ~ (y, 1;19),

and any free action of Z,« on the boundary can be extended to a free action
on Xa,, where the generator £ € Z,« acts in the following way:

o (€x,050),
£(Iat!l)_{ (Ez,t;(1+ 1) mod p*), t>0.
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For any such action,
index?»* X, = (ab™) = Inpy1.

If the action on the sphere is the standard one, this is true because Xs, is
the (2n)-skeleton of the lens space Ly in the standard cellular decomposi-
tion. For any other free action on the sphere, an equivariant map into the
standard sphere can be extended in an obvious way to an equivariant map
to the standard Xs,.

3. Maps from Z,.-spaces.

Let f: X — M be a continuous map from a Zpo-space X to some
space M, and let MP° denote the p®-fold product, MP* = M x ... x M, on
which Z,« acts by cyclic permutations of the coordinates. The fixed point
set of this action is the diagonal A(M). Every map f : X — M induces
an equivariant map fP° : X — MP" defined by

o

P77 (2) = (f(2), f(€), .. f(€7" ~Ma)),
where ¢ is a generator of the group Z,«. Then,
Ar={z € X | f(gz) = f(z) for all g € Z,a } = (fpa)_l(A(M)).

If & = 1, this action is free on M? —A(M), and if index?» (MP —A(M))
is known, Proposition 1 can be directly applied to obtain a lower bound for
the size of As. If @ > 1, the action on M? — A(M) is not free, but MP*
can be expressed as a union of a nested sequence od “diagonals”:

AM)=A¢CAIC...CAL_1 CAy=M"

where A; = A(Mpi) C (MPP""" = MP". There is an obvious isomor-
phism A; = M?" which is an isomorphism of Zys-spaces for all j <1, and
all these actions are free on the complement A; — A;_1, while the groups
ZPi+l  Z,e all act on A; trivially.

On the other hand, A; can be expressed as the intersection of a de-
scending sequence

Ao—1 = (fpa)_l(Aoc—l) B) Ag_a =

(7" " Mauss) H(Aam2) 2 ... 2 Ao = (f7]a,) " (Ao) = Ay,
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i

where fpa_l C A = A = MPTT

ProrosITION 2. Let M be a Hausdorf space. For any ¢ < a:
1. If M is finite dimensional of dimension m,

Impoz+1 g indeXZP’ (Mpa - Aa_l).

2. If M is compact and satisfies the following duality property: there
exists an “orientation class” U € H™ (M x M, M x M — A(M)), such that
the map vy : H"~9(M) — Hy(M) defined as the slant product with U is
an isomorphism (compare [11]), then

Ipe C index?»! (Mpa —Ago1).

If in addition to the assumptions above H;(M) = 0 for all j, 0 < j <
k < m, (for example if M is k-connected), then

Impo‘—k: g indeXZPi (Mpa — Aa—l).

3. If M is a differentiable manifold of dimension m, then in addition to
the above,
index?»i (Mpa —Au—1) C Iypa—pa-1y-

LEMMA 1. Let X be a free Zpa-space with H'(X;Z,) = 0 for all i > nq.
Then also H(X/Zyo; Z,) = 0 for all i > ng.

Proof. We will prove the lemma by induction on «a. If a = 1, it follows
from the Smith exact sequence that

rank H! (X) < Z rank H’(X),
i

where HE(X) are the special Smith cohomology groups of X (compare
[1]). Since X is free, HL(X) = H'(X/Z,). Tt obviously follows that
rank H'(X/Z,) = rank H.(X) = 0, and so H(X/Z,) = 0 for all i > k. If
a > 1, there is a canonical homeomorphism X/Z,a = (X/Z,a-1)/Z,, and
the statement immediately follows from o — 1 to a. &
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REMARK. The lemma can be proved in a similar way also if the action
is not free.

PROOF OF PROPOSITION 2.

1. This is obvious: dim M?" = mp®, and so Hi(Mpa — A) =0 for all
A C MP" and all i > mp®.

2. By the lemma it is enough to show that Hi(Mpa — Aqoq)
0 for all i > mp® — k. Since coefficients are in a field, Hi(Mpa —Auxo1)
Hj(MP* —Ay_q). Let U € H™(M x M, M x M — A(M)) be the “orienta-
tion class” andlet UP* = U ®...QU € (H™(M x M, M x M —A(M)))P =
H™P® (MP® @ MP®, MP* @ MP® — A(M)). The slant product with the re-
striction of UP” defines an isomorphism Hmpa_i(Mpa yAgoq) = HZ'(MPa —
Agy—1). Onthe other hand, by the Kiinneth formula, H?(A,_;) = Hq(Mpa_l) =
Hy(Aa—1) =0forall ¢, 0 < ¢ <k < m, and it follows from the exact se-
quence of the pair (M?", A,_1) that HI(MP" A,_1) =0 for all ¢ < k, so
Hi(MP" — A,_1)) =0 for all i > mp — k.

1

3. The last inclusion follows from the fact, that there exists an equivari-
ant embedding S$™(* P71 ey MP® — A,y of the sphere into a regular
neighborhood of A,_; as the fiber of the normal sphere bundle.

&

THEOREM 1. If for some n, index?»* X C (™) = Iy, for all i < «, then

1. If M is finite dimensional and dim M = m,
index?» Ay C Iy _mpe and

dimA; > 2n — mp® — 1.

It follows, that the set A; is necessarily nonempty, if 2n > mp®.

2. If M is compact and satisfies the duality property stated in Proposi-
tion 2 and H?(M) = 0 for all 0 < ¢ < k (for example if M is ¢g-connected),
then

index?r A tC1I

n—mpE=lika and

pr—1

o

1
dim Ay Z?n—mpp 1 + ka —1.
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In this case, A is necessarily nonempty, if

o

2n > mpp 1 + ka.

Proof. We will prove only the second statement since the first follows
rather obviously by the same kind of arguments. First let « = 1. By
Proposition 1,

( index?» A)( index?» (M? — A(M))) C index?? X.

Leta £0 € HQ”_mP_k_l(L;O), and 3 #£0 € HmP—k(L;O). By Proposition
2, B € index?r (M?P" — A(M)). Notice that one of the two degrees 2n —
mp — k — 1 and mp — k must be even, since their sum is odd, so either a or
A is a multiple of some power b*, and therefore their product is nonzero. If
a € index?r Ay, it would follow from Proposition 1 that aUg € index?r X
which is impossible, since index?? X contains no nonzero element of order
q < 2n. Therefore, ¢*(a) € H*»~mP~F=1(A;} is nonzero.
If @ > 1, then by Proposition 2,

Ipe—k C index?»* (Mpa —Aq1) Clppe ; 1<i<a,
and by Proposition 1
index?r* Ay_1(f) C Ion—mpotk -
Now consider the restriction f: Ay_1(f) = Aa—1. By Proposition 2,
Inpo - C index”?* (Ag—1 — Ag—2) C Lypa-1,
and by Proposition 1
index”rt Aq_s(f) C Ton—mpogk)—mpe-14k = Ion_m(pagpa—1)42k-

After a — 1 steps of this procedure, we obtain the estimate in the the-
orem.
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