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SOMMARIO. - Un’analogia fra la categoria derivata dei moduli su un anello e

la categoria omotopica stabile degli spettri viene sviluppata in modo da evi-
denziare una piu stretta analogia fra la categoria derivata dei moduli Foo su
un’algebra E« € la categoria derivata degli spettri di moduli Foo su uno spet-
tro di anelli E« . Sta nel contesto algebrico che in quello topologico queste
nuove categorie derivate permettono di studiare “moduli a meno di omotopia”
su “algebre a meno di omotopia”, in maniera analoga a come si studiano gli
usuali moduli nell’algebra omologica classica. Molteplici sono le applicazioni
in topologia algebrica, K -teoria algebrica e geometria algebrica. Questa breve
esposizione illustra le idee e fornisce un sunto delle definizioni rilevanti in
entrambi i contesti.

SUMMARY. - An analogy between the derived category of modules over a com-

mutative ring and the stable homotopy category of spectra is elaborated to
a much closer analogy between the derived category of FEoo modules over an
Fe algebra and the derived category of Fo module spectra over an Fo ring
spectrum. In both the algebraic and topological contexts, these new derived
categories allow one to study “modules up to homotopy” over “commutative
algebras up to homotopy” in much the same way that one studies ordinary
modules in classical homological algebra. There are many applications in al-
gebraic topology, algebraic K -theory, and algebraic geometry. This expository
note explains the ideas and gives a brief summary of the relevant definitions
in both contexts.
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I will give a philosophical overview of some joint work with Igor Kriz
(in algebra), with Tony Elmendorf and Kriz (in topology), and with John
Greenlees (in equivariant topology). T will begin with a description of some
foundational issues before saying anything about the applications. This is
not the best way to motivate people, but I must explain the issues involved
in order to describe what we have done. Let me just say that the emphasis
I shall give to an analogy between algebra and topology is not just an
expository device. The algebraic work that I will describe both illuminates
the deeper topological theory and has applications to algebraic geometry.

We begin by displaying an analogy that is familiar to topologists. It is
the starting point of our work.

ALGEBRA TOPOLOGY
a commutative ring k the sphere spectrum S
differential graded k-modules spectra
tensor product smash product
internal hom Hom(X,Y') function spectrum F(X,Y)
dual DX = Hom(X, k) dual DX = F(X,S)
projective k-module CW spectrum
finitely generated projective finite CW spectrum
Hom(X,Y)® E =2 Hom(X,Y ® E) F(X,2YYAE~F(X,Y ANE)
DX ® E = Hom(X, E) DX ANE~F(X,E)
(X or E fin. gen. projective) (X or E a finite CW spectrum)
hyperhomology EX)=nm(X AE)
hypercohomology EYX)=rn_qF(X,E)

Note that the right column already encodes the important topological
theory of Spanier-Whitehead duality: if X is a finite CW spectrum, then

E.(DX) = E™*(X).

Provisionally, we regard the columns as providing ground categories in
which to study homotopical algebra. The usual starting point in algebra
is a commutative differential graded k-algebra, or DGA, A. The usual
starting point in topology is a commutative ring spectrum R. This is an
algebraic structure defined not in the ground category of spectra but rather
in its “derived category”, which is called the stable homotopy category of
spectra and denoted by hS. A map of spectra is called a weak equivalence
if it induces an isomorphism on homotopy groups, and AS is constructed
from the homotopy category of spectra by formally inverting the weak
equivalences. Thus a ring spectrum is a spectrum R together with a product
¢ : RAR — R and unit  : S — R such that the following diagrams
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commute in hS:

SAR L + RAR M RAS

\M/

R
and RARAR 2%+ RAR
S
RAR —2 R

365

The unlabelled equivalences are canonical isomorphismsin AS that give
the unital property, and we have suppressed such an associativity iso-
morphism in the second diagram. Intuitively, these diagrams commute
only up to homotopy. Similarly, there is a transposition isomorphism
7:EANF — FAFE in hS, and R is commutative if the following di-

agram commutes in AS:

RAR u RAR

I

R

An R-module is a spectrum M together with a map p: RAM — M

such that the following diagrams commute in AS:

SAM A RAM RARAM £+ RAM

\T;\\\l” and wl\

M RAM —2%
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The analogin algebra is a (differential graded) module M over a DGA A.
A map of A-modules is a quasi-isomorphism if it induces an isomorphism on
homology. The derived category D4 = hM 4 of A-modules is constructed
from the homotopy category of A-modules by formally inverting the quasi-
isomorphisms.

The categories M 4 of A-modules and § of spectra admit suspension
functors and cofiber, or mapping cone, constructions that lead to long exact
sequences of homological or homotopical invariants. Foramap f: M — N,
the sequence

MIN S of — M

is called an “exact triangle” and leads to a “triangulation” of the derived
category. Analogously, in topology, we would like to have a triangulated
category of R-modules for a ring spectrum R. However, this fails hopelessly
with the definitions just given. The cofiber of a map f : M — N of R-
modules need not be an R-module. We can find a map RAC' f — C'f such
that the following diagram commutes in hS, but the map depends on a
choice of homotopy making the left square commute, and the associativity
diagram that we required of R-modules generally fails to commute for C'f.

RAM ——> RAN——> RACf—— RAXM

b

M N Cf M

More deeply, when R is commutative, we would like to construct a
smash product M Ar N analogous to the tensor product M ®4 N of A-
modules in algebra. It is far from clear how to begin. The algebraic con-
structions are easy because of the good properties of the concrete underly-
ing category of k-modules. Specifically, My is symmetric monoidal in the
sense that its tensor product is associative, commutative, and unital up to
coherent natural isomorphism. The smash product in the category S of
spectra is not associative, commutative, or unital. It only becomes so on
passage to the derived category hS, which is symmetric monoidal. Tt is this
limitation on the smash product that forced the homotopical definitions of
ring and module spectra that we gave above.

There is a significant difference in paradigm: algebraic topologists are
entirely comfortable working with fuzzy objects in the stable homotopy
category, with no point-set level models in mind. Algebraic geometers work
with more concrete objects, and they wouldn’t dream of taking a “ring in
the derived category” seriously, as topologists routinely make use of ring
spectra.
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The theory that T will describe gives both a new point-set level topo-
logical theory of rings and modules and a new algebraic theory of algebras
and modules up to homotopy. These allow a far more precise analogy than
the one displayed above. The new topological theory allows the wholesale
importation of techniques of commutative algebra into stable homotopy
theory. Applications include:

e A homotopical replacement for the Baas-Sullivan theory of manifolds with
singularities as a tool for the construction of new spectra from cobordism
spectra.

o New generalized universal coefficient and Kunneth spectral sequences.

e New constructions of topological Hochschild homology and topological
cyclic homology.

e The construction of equivariant versions of such module spectra over the
complex cobordism spectrum MU as the Brown-Peterson and Morava K-
theory spectra.

e A completion theorem analogous to the Atiyah-Segal completion theorem
in K-theory that applies to module spectra over MU.

The new algebraic theory leads to the construction of a sensible site
in which to define “integral mixed Tate motives” in algebraic geometry,
realizing a program that was proposed by Deligne.

These applications are described in our announcements [1] and [2]. How-
ever, those notes say nothing about the actual constructions, and my pur-
pose here is to give an intuitive introduction to the foundations that lead
to these applications.

I shall sketch some topological definitions to give substance to the dis-
cussion. This 1s a distillation of an introduction to the stable homotopy
category and is intended to give some feeling for the issues involved. Recall
that the smash product X AY of based spaces X and Y is the quotient
X xY/X VY, we write F(X,Y) for the function space of based maps
X =Y.

A “universe” U is a countably infinite dimensional real inner product
space. It suffices to think of 7 = R™. If V and W are finite dimensional sub
inner product spaces of U and V C W, we let W —V denote the orthogonal
complement of V in W. For a based space X, we let 3V X = X A SV and
QVX = F(SV,X), where SV is the one-point compactification of V.

A “prespectrum” T is a collection of based spaces T'V and based maps

o : VYTV 5 TW
that satisfy an evident transitivity condition. We write
F:TV - QVVTW

for the adjoint of ¢. A prespectrum is a “spectrum” if each map & 1s
a homeomorphism. (We generally write E for a spectrum and T for a
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prespectrum.) A map of prespectra is a collection of maps f: TV — T'V
that are strictly compatible with the structure maps o; a map F — FE’ of
spectra is a weak equivalence if each f : FV — E’V is a weak equivalence
of spaces.

Let PU and SU denote the categories of prespectra and of spectra in-
dexed on U. There is a “spectrification” functor L : PU — SU that is left
adjoint to the forgetful functor £ : SU — PU. This is analogous to sheafi-
fication from presheaves to sheaves. Constructions made on prespectra are
transported to spectra via (L,#). For example, the smash product of a
prespectrum T and a based space X is given by (T'A X)(V) = (TV) A X.
The smash product of a spectrum £ and a based space X 1s then EA X =
L({E A X). Typically, this procedure is necessary for functors that are left
adjoints, whereas functors that are right adjoints preserve spectra. For ex-
ample, F(X,T)(V) = F(X,TV) gives the function prespectrum of a based
space and a prespectrum; if T is a spectrum, then so is F(X,T).

Since we have based cylinders E ATy, where the plus denotes adjunction
of a disjoint basepoint, we have the notion of a homotopy between maps
of spectra. There results a homotopy category hSU of spectra indexed on
U, and we obtain ASU by adjoining inverses to the weak equivalences; we
abbreviate hSU to hS when U is understood. The suspension and loop
functors, S E = E A St and QF = F(S!, E), become inverse equivalences
of categories on hS. It is in that sense that hS is a “stable category”.

There is a functor X from based spaces to spectra specified by X*° X =
{QTV X}, where QY = UQYEVY. Tt is left adjoint to the zeroth space
functor Q®°F = F(0). We think of ¥*X as the stabilization of the space
X . Spaces of the form F(0) are called infinite loop spaces.

There is a theory of CW-spectra that is analogous to the theory of CW
complexes. The only twist is that we have negative dimensional spheres and
our cells must be allowed to take positive and negative dimensions. The
stable category AS is equivalent to the homotopy category of CW spectra
and cellular maps.

We now come to the crux of the matter: the construction of smash
products of prespectra and spectra. The obvious definitions would seem to
be

(TATYVeV)Y=TVATV" and EAE' = L({E ANE').

This makes sense and works, provided that it is interpreted in the right
way. In fact, this constructs A as a functor SU x SU' — S(U & U’) for
a pair of universes U and U’. Similarly, we can define explicit function
spectra F(E', E"), where F is a functor SU’ x SU" — SU. The changes
of universe are essential. We refer to this operation as an “external” smash
product; it is associative and commutative.

To internalize, we choose a linear isometry f : U @ U — U and con-
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struct a functor f. : S(U ® U) —> SU. We then define an internal smash
product by A = f.oA. Two choices of f give equivalent functors on passage
to stable categories, and this independence of the choice leads to the proof
that the stable category level smash product is associative and commuta-
tive. It is this internal smash product that was relevant to the product
R A R — R in our original definition of a ring spectrum.

We can collect all choices of f into a single parameter space for smash
products and so eliminate the apparent dependence on f. More generally,
we can construct such parameter spaces for j-fold smash products. Thus
let £(j) = Z(U?,U) be the space of linear isometries U/ — U. This is a
contractible space with a free action of the symmetric group X;. We have
a system of maps

L(k) x L(j1) x - x L(jr) — L(J1 + -+ Jx),

(9. frooo o fe) —go(fi® @ fr).

These maps are suitably associative, unital, and equivariant. These laws
are codified in the general notion of an operad, and an operad whose jth
space is X;-free and contractible for each j is called an E, operad.

We can construct “twisted half-smash product” functors £(j) x EU),
where EU) denotes the j-fold external smash power of E. These are func-
tors SU — SU. They are the spectrum level analogs of the evident
functors

L(j) x XU = £(j)4 A X

on based spaces X, and we have
£ (£(j) % X)) = £(j) x (5% X)),

We can now give the fundamental definitions [4, 3]: an E. ring spec-
trum is a spectrum R together with maps

6, :L(j) x R — R

that are suitably associative, unital, and equivariant on the point set level.
This is as close to a commutative and associative ring spectrum as one can
hope to get. A module (or Fs module) over R is a spectrum M together
with maps

A L) (RITVAM) — M

that, with the §;, are suitably associative, unital, and equivariant.

Most of the important cohomology theories in algebraic topology are
represented by F, ring spectra. Examples include the sphere spectrum S;
the Eilenberg-MacLane spectra H A for discrete commutative rings A; the
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Thom spectra MO, MU, and M Sp; the connective K-theory spectra kO
and kU; and the algebraic K-theory spectra K A of discrete commutative
rings. Many other examples are constructed via multiplicative infinite loop
space theory [5]; that theory allows one to construct Eo, ring spectra from
E, ring spaces, which in turn arise from suitable categories with & and ®.
Recent work of Hopkins, Miller, McClure, Kriz, Elmendorf, Vogt, Schwanzl,
and others has given still more examples. A very rich theory of E, rings,
including “cell theory” (Hopkins) and “Postnikov systems” (Kriz), is now
emerging. Much of it depends on the theory I am about to describe.

The definitions just given are the right ones, but they are rather hard
to work with. Our recent breakthrough recasts these notions in a far more
conceptual and workable form. To explain the idea, we return to our anal-
ogy and consider its algebraic side.

Operads of (differential graded) k-modules are defined by replacing
Cartesian products of spaces with tensor products of k-modules. They
can be obtained, for example, by applying the normalized singular k-chain
functor to an operad of spaces. An operad C of k-modules is an Fo, operad
if C(j) is a free k[X;]-resolution of k for each j; the chain operad of an F
operad of spaces is an example. To fix ideas, we agree to let C denote the
chain operad so obtained from our topological E., operad L.

We define an F, k-algebra to be a k-module A together with maps

0; : C(j) ® AY) — A,

where AU) denotes the j-fold tensor power of A; these maps must satisfy
associativity, unity, and equivariance relations exactly like those in the
definition of F, ring spectra. Modules over such algebras are defined
similarly in terms of maps

A C(j) @ (AV=Y @ M) — M.

These definitions are forced by examples from algebraic geometry. Deligne,
seeking foundations for an integral theory of mixed Tate motives, asked
me if Bloch’s Chow complex of an algebraic variety, which is a simplicial
abelian group with a partially defined product, might give rise to a quasi-
isomorphic F, algebra, and, if so, if there might then be a good derived
category of modules over an F, algebra. Kriz and I gave positive answers
to these questions. Unless £ is a field of characteristic zero, one cannot hope
to replace the resulting E., algebras by quasi-isomorphic genuine DGA’s.
The present level of generality is essential. As an aside, the topological the-
ory applied to the algebraic K-theory spectra of fields gives an alternative
site for a possible theory of mixed Tate motives.

As another digression, operads and their actions are now playing a
serious role in differential geometry and mathematical string theory. Here
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FE, operads, related to n-fold loop spaces, play a fundamental role. Different
types of discrete operads define different types of algebras, such as Lie
algebras, and Lie algebras up to homotopy characterized by actions by
appropropriate Lie-like chain operads are also playing an important role.
Recall that a module over a Lie algebra is the same thing as a module over
its universal enveloping algebra, which i1s an associative algebra. Precisely
mimicking the proof, one can show that, for any operad C and C-algebra
A, there is an associative universal enveloping DGA U(A) such that an
A-module is the same thing as a U(A)-module.

Now return to our particular operad C. The ground ring k is a C-
algebra via augmentations, and its universal enveloping algebra turns out
to be U(k) = C(1). That is, as one can easily check directly from the
formal definitions, if we regard k as an F, k-algebra, we find that an Eo,
k-module is the same thing as a C(1)-module. Analogously, in topology,
S is an F ring spectrum, and an Fo S-module is the same thing as
a spectrum with an “action of the monoid £(1)” defined in terms of an
associative and unital action map £(1) x M — M.

A fundamental idea at this point is to switch ground categories from
k-modules and spectra to Fy, k-modules and S-modules. Here a miracle
occurs. We define a new tensor product of Fo k-modules in algebra or
smash product of £, S-modules in topology. In algebra, the definition is:

MKN = C(Z) ®C(1)®C(1) M ® N.
In more detail, instances of the operad structure maps
C(k) x C(j1) x - x C(jr) —> C(j1 + -~ + Jjr)

give a left action of C(1) and a right action of C(1) ® C(1) on C(2). The
latter action is used to make sense of the displayed tensor product, and the
former action gives the new tensor product a structure of C(1)-module. This
is already remarkable: the algebra C(1) is not commutative, so it is rather
surprising to have an internal tensor product on its modules. This much
would be true for any operad. The real miracle is that, with our particular
choice of operad C, this tensor product turns out to be associative and
commutative, with a natural unit quasi-isomorphism A : kX M — M.

We can now define an Fo, k-algebra A to be a C(1)-module together
with a product ¢ : AR A — A and unit 5 : £ — A such that the evident
associativity, commutativity, and unit diagrams (like those displayed at
the start) are commutative. Similarly, we define an A-module M to be
a C(1)-module together with an action gy : AK M — M such that the
evident associativity and unit diagrams commute. Moreover, we can define
the tensor product of A-modules M and N with actions g and v to be the
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coequalizer (or difference cokernel) displayed in the diagram

uRId

MXAXRN —= MKRN— MK,y N.
IdRy

There is a concomitant internal hom functor Homa (M, N); it is defined as
an appropriate equalizer.

Actually, one can be more categorically precise about this. For C(1)-
modules M with a given “unit map” n : k — M, we can define a variant, [
say, of the product & which is not only associative and commutative, but
also unital with unit k. The modified product is defined by the pushout
diagram

kX NUpge M Xk MU, N
nRId+TdRn

MXN MUON.

An F, k-algebra is precisely the same thing as a commutative monoid in
the symmetric monoidal category of unital C(1)-modules. There is a similar
way to be more precise about the notion of an A-module.

The topological theory works just the same way. For (Fo) S-modules
M and N, we can make sense of the definition

M As N = E(?) X L(1)x£(1) M AN.

This is again an S-module, and this smash product over S is an associative
and commutative operation with a natural unit equivalence A : S Ag M —
M. We redefine an E, ring spectrum to be an S-module with a product
¢: RAs R— R and unit  : S — R such that, with A replaced by Ag,
the diagrams that we gave at the start commute. The point is that the
commutation now makes sense and is required on the point set level, that
is, in the category of S-modules. We define R-modules similarly in terms
of action maps u : RAg M — M, and we define the smash product over
R of R- modules M and N to be the coequalizer

unId
M ANs RAg N I?: MAs N— M AgrN.
Av

There is a concomitant right adjoint function R-module Fr(M, N).
Again, there is a variant of the smash product over S, xs say, that is
defined on S-modules M with unit maps n : S — M and that is associative,
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commutative, and unital. It is defined by a pushout diagram just like that
defining . An E., ring spectrum is precisely a commutative monoid in
the symmetric monoidal category of unital S-module spectra. There is a
similar way to be more precise about R-modules. Here another miracle
occurs: these simple conceptual definitions turn out to be equivalent to the
pre-existing definitions in terms of actions by the linear isometries operad
L. This allows use of the older theory to supply examples, which can then
be studied algebraically by means of our new theory.

In particular, we can mimic the theory of cell spectra to develop a the-
ory of cell R-modules. A map of R-module spectra is said to be a weak
equivalence if it is a weak equivalence as a map of spectra. The derived
stable homotopy category of R-modules, hMp, is constructed from the
homotopy category of R-modules by formally inverting the weak equiva-
lences, and it is equivalent to the homotopy category of cell R-modules. It
is a triangulated category, and it is symmetric monoidal under the derived
smash product of R-modules. Tt provides the starting point for the various
applications that we listed at the start.

We think of the sphere spectrum S as a universal ground ring. For any
FEo ring spectrum R, R-modules are S-modules by neglect of structure.
The stable homotopy category hMg provides an improved substitute for
the stable homotopy category hAS that we started with.

THEOREM 1. The forgetful functor Ms — & induces an equivalence
of categories hMs — hS. For S-modules M and N, there are natural
isomorphisms in AS

MAN~MAsN and F(M,N)~ Fs(M,N) .

The topology now feeds back into algebra in a most amusing fashion.
The standard treatment of tensor products and internal hom functors in the
derived category of differential graded modules M over a DGA A entails the
use of suitable projective resolutions of such modules. These are awkward
to deal with for general, unbounded, modules. These difficulties disappear
if one mimics the topologists’ treatment of smash products and function
spectra in the stable homotopy category. There is a very simple theory of
cell A-modules which provides a substitute for projective resolutions. Here
free A-modules on one generator substitute for sphere spectra as the do-
mains of attaching maps of cells. Topological results such as Whitehead’s
theorem and Brown’s representability theorem transcribe directly into al-
gebra. Every A-module M is quasi-isomorphic to a cell A-module, and
the derived category D4 is equivalent to the homotopy category of cell A-
modules. Moreover, this treatment works equally well in the more general
context of modules over E., k-algebras A. Here again, the derived cate-
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gory D4 of A-modules is triangulated, and it is symmetric monoidal under
the derived tensor product. It is just such a generalized derived category
that is needed to realize Deligne’s program for defining a good category of
integral mixed Tate motives.

To summarize, we display the more sophisticated and precise analogy
between algebra and topology that emerges from our discussion.
(differential graded) k-module M, write

For a

M, = Hq(M) =M1

For a spectrum M, write

ALGEBRA
Eo k modules = C(1)-modules
“tensor product” X
internal hom Homg (X, Y)
F k-algebra A
= commutative monoid in the
category of unital C(1)-modules
A-module

quasi-isomorphism

TOPOLOGY
Eo S-modules = £(1)-modules

smash product over S

function spectrum Fs(X,Y)

F rting spectrum R
= commutative monoid in the
category of unital £(1)-modules

R-module

weak equivalence

stable homotopy category hMg
cell R-module
finite cell R-module
smash product over R
function R-module Fr(M, N)
dual Dr(M) = Fr(M, R)
FR(X,Y) Ar E ~ FR(X,Y/\R E)

derived category Da
cell A-module
finite cell A-module
tensor product over A
internal hom Hom (M, N)
dual D4(M) =Homa(M, A)
Homa(X,Y)®a E ~ Homa(X,Y ® E)

DiaX@a E~ HomA(X,E)
(X or E a finite cell A-module)

DrX AR E ~ FR()(7 E)
(X or E a finite cell R-module)

spectral sequence

Tor?* (My, Ni) => (M ®a4 N)a

spectral sequence

Torf* (M., N.) = (M Ar N).

spectral sequence

Exta, (M., N*) => Hom 4(M, N)*

spectral sequence

Extr, (M., N*) = Fr(M,N)*

In one important case, the analogy reduces to an equivalence of derived
categories in algebra and topology.

THEOREM 2. Let A be a commutative ring. Then A-modules M can be
realized functorially by Eilenberg-Mac Lane spectra H M that are modules
over the F, ring spectrum H A, and

Tord (M, N) = (HM A4 HN), and Ext’, (M, N) = Fy(HM, HN)*
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as A-modules. Further, the stable homotopy category of H A-modules is
equivalent to the derived category of A-modules.

The essential point is that HM Aga HN and Fyga(HM, HN) are equiv-
alent to derived tensor product and Hom functors in the category of chain
complexes of A-modules. The spectral sequences at the end of our displayed
analogy are the appropriate generalizations to F, algebras and F, ring
spectra of the isomorphisms of the theorem. In topology, they specialize to
give generalized Kunneth and universal coefficients spectral sequences.
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