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SOMMARIO. - Cosa dovremmo intendere dicendo che uno spazio topologico ¢

“minimale” in una famiglia di spazi? QOuvviamente la risposta dipende dalla
natura della famiglia di spazi e, criticamente, dalla relazione d’ordine consid-
erata tra gli spazi in oggetto che, nei casi significativi non é un ordinamento
parziale ma solo un quast ordinamento. Identificheremo due modi per definire
la minimalita degli oggetti in questo contesto; il primo é adottato da Ginsburg
e Sands mentre Ualtro é (apparentemente) pid debole.
Sia P un invariante topologico. Uno spazio si dira “anti-P” (in accordo con
Bankston) quando i suoi soli P sottospazi sono quelli la cui cardinalita da
sola garantisce che essi sono P. Quando anti-P é equivalente a @ diremo
che P é un “pre-anti” per (). Esamineremo le relazioni tra l'esistenza di vari
pre-anti estremali per @ e esistenza, in particolari famiglie, di spazi che
sono minimali in un senso opportuno.

SUMMARY. - What should we mean by saying that a topological space is “minimal”
among a family of spaces? Obviously it depends on the nature of the family
and, critically, on the ordering relation being considered between the spaces
in question which, in important cases, is not a partial order but only a quasi-
order. We identify two ways to assign minimality to objects in such a context;
one is that adopted by Ginsburg and Sands, the second is (apparently) weaker.
Let P denote a topological invariant. A space is called “anti-P” (following
Bankston) when its only P subspaces are those whose cardinalities alone guar-
antee that they must be P. When anti-P is equivalent to Q@ then P is called a
“pre-anti” for Q. We shall explore relationships between the existence of var-
tous extremal pre-antis for Q@ and the occurrence, within particular families,
of spaces that are minimal in one sense or the other.

(*) Pervenuto in Redazione 1'8 ottobre 1993.

(**) Indirizzo degli Autori: Department of Pure Mathematics, The Queen’s University
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1. Introduction.

The mechanisms by which the topological invariants connected, com-
pact, perfect give rise to diametrically opposed invariants totally discon-
nected, pseudofinite [7], scattered are in essence identical. This was realised
by Paul Bankston who used these instances as guidelines for a general pro-
cedure [1], the “anti-” operation, which may be applied to any invariant in
topology (and in other contexts: see [5]). To be explicit: given a property
P, one first identifies the three classes of cardinals
spec(P) = {a : every space on « points is P},
proh(P) = {a : no space on « points is P},
ind(P) = {a : some but not all spaces on « points are P}.

Then the “total negation of P” is the property anti-P described thus:
X is anti- P iff whenever Y is a subspace of X and Y is a P space, then
the cardinality [Y| of Y belongs to spec(P).

In other words, an anti-P space is one which forbids its subspaces to be
P, necessarily excepting those whose cardinalities oblige them to be P.

The correspondence P — anti-P is not onto since, for example, a non-
hereditary property can never be of the form anti-P. If, however, we restrict
our attention to the class of hereditary properties then it is ‘very nearly
onto’ (see [1] for details); such a restriction of the discussion may therefore
be helpful in investigating certain aspects of the total negation operation.
In contrast, no reasonable limitation on the generality of discourse will force
it to be one-to-one: Matier and McMaster [3] have given a simple exam-
ple of an invariant which, even in the context of finite topological spaces,
coincides with anti-P for almost 1,500,000 distinct hereditary P! Conse-
quently, a major objective in any attempt to achieve full understanding of
Bankston’s operation will need to be an investigation, for each P, of the
structure of the class

anti=}(P) := {Q@ : anti-Q = P}

of so-called pre-antis for P; or, at least, of a significant portion of that
class, for example the hereditary pre-antis.

Such an investigation was carried out in [3] for the special case where
the least cardinal in ind(P) is a positive integer n, the main conclusions
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(for hereditary P) being:

i) P possesses hereditary pre-antis iff each non-P space has an n-
element non-P subspace;

ii) anti-P is then the (implicatively) weakest hereditary pre-anti for
P, while the strongest is composed of the n-element non- P spaces
together with all spaces on fewer than n elements;

iii) if @1 and Q2 are hereditary pre-antis for P then so is any hered-
itary property intermediate in logical strength between (); and

Q2.

Taken together, these findings furnish a complete description of the
hereditary pre-antis of P, as forming an interval [Amin, Amax] in the implica-
tive lattice of hereditary topological invariants. Notice the importance in
(i) and (ii) of the minimal character of the n-element non-P spaces: min-
imal not merely in the cardinality sense, but also in the sense of being
embeddable into every non-P space.

A parallel analysis of the case where the least member of ind(P) is R,
is facilitated by the elegant and surprising result on minimal countably in-
finite spaces obtained by Ginsburg and Sands [2]. They listed five simple
topological spaces on X, points, each of which is ‘minimal’ in the sense of
being homeomorphic to all of its equicardinal subspaces, and they estab-
lished that every infinite space contains an embedded copy of at least one of
these five. Now if P has N, as its ‘least indecisive cardinal’ and possesses
any hereditary pre-antis, it has been shown [4] that they again constitute
an interval [Amin, Amax] Of hereditary invariants, where hmi, is anti-P and
hmax comprises those of the five Ginsburg and Sands spaces that are not
P, together with all finite spaces. Again the minimality with respect to
embeddability of certain non- P spaces is the key idea of the demonstration.

Turning now to the case where the least member of ind(P) exceeds R,,
we find that the quest for further such results is hampered not only by the
absence of a ‘Ginsburg and Sands’ analogue for uncountable spaces but
also by the difficulty of interpreting the term ‘minimal’. Since the ordering
relation between topological spaces that is implicit in the “anti-” operation
is the one sub described by

X sub Y iff X is homeomorphic to a subspace of Y

the root of this difficulty lies in the fact that subis only a quasi-order rather
than a partial order: that is to say, it is reflexive and transitive but not
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generally anti-symmetric - for instance, (0, 1) sub [0, 1] and [0, 1] sub (0, 1)
yet (0,1) and [0, 1] are substantially different spaces. (Of course sub does
act as a partial order on the (homeomorphism classes of) finite topological
spaces, which is why the first case discussed above is so relatively straight-
forward.) We have addressed the question of minimality in a quasi-ordered
setting in a previous article [6] from which the following definitions and
observations are taken.

2. Minimality and the ‘anti’-operation.

DEeFINITIONS. Let F denote a family of topological spaces, X an ele-
ment of F and sub as defined above. We call X
strongly quasi-minimal in F if Y sub XY € F imply Y homeomorphic to
X,
weakly quasi-minimal in Fif Y sub X, Y € F imply X sub Y.

The abbreviations sqm, wqm will be employed. Further, if G is a subfamily
of F, we say that

G supports F if for each X € F there is Y € G such that Y sub X.

NOTES.
i) sqm in F implies wqm in F.
ii) The converse to (i) is not generally valid.

iii) In any F which is partially-ordered by sub the sqm, wgqm and
minimal elements coincide.

iv) [2] Take T as the family of all infinite topological spaces, GS the
class of five spaces singled out by Ginsburg and Sands. Then the
sqm/wqm elements of 7 are precisely the members of GS. Also
GS supports 7.

Now let P be a given hereditary invariant. QOur objective here is to
indicate how the above ideas can be used to explore the questions:

1) Does P possess pre-antis of a particular kind?

2)  When does a class of pre-antis for P possess maximum/maximal ele-
ments?
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3) How do such ‘extremal’ pre-antis relate to the other elements of the
class?

Answers to these questions naturally depend very much on the type
of property P given and on the type of pre-anti sought. In the present
note we shall restrict attention to an important special case by making the
additional assumptions

ind(P) # ¢,

proh(P) = ¢.
(As an illustration, when P is hereditary compactness, we have spec(P) =

[1,R,), ind(P) = [N,, ), proh(P) = ¢.)

ProposiTiON 1. [1, page 242] The property non-P is a pre-anti for P.

ProPoOSITION 2. [3, prop. 3] Call a space ‘critical’ when its cardinality
is the least member of ind(P) and put

C ={Y :Y is critical and every critical subspace of Y is non-P}.

Then P has hereditary pre-antis if and only if C supports non-P.

LEMMA 3. Let W denote the class of wgm members of non-P. If P has
a mazximal pre-anti then W supports non-P.

Proof. Suppose that W does not support non-P, that is, there is a
non-P space X such that whenever Y sub X and Y is non-P, there is a
non-P space Zy sub Y where no subspace of Zy is homeomorphic to Y.
We shall show that the assertion ‘@ is a maximal pre-anti for P’ leads to
a contradiction.

Notice first that spec(Q)) = ¢: for otherwise, those @ spaces whose
cardinalities belong to ind(@Q) would form a pre-anti for P strictly stronger
than Q. It follows that any space possessing a () subspace is non-P. Now
as X is not P, i.e. not anti-@), we can choose Y sub X with Y € @ and
|Y| € ind(Q). The space Y is non- P since it contains itself as a @) subspace,
so a corresponding Zy can be found. Define a property @* thus:

Q" =Q\{v}.
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We now verify that @* (which again is strictly stronger than @) is another
pre-anti for P. On the one hand, a P space cannot contain a * subspace,
since such a subspace would of course be ). On the other, for any non-P
space W, W is not anti-@Q so there exists U/ sub W where U is Q;if U #Y
then U is Q*, while if U = Y then we have Zy sub W where Zy is Q*:
thus in both cases we find a * subspace of W whose cardinality cannot
belong to spec(@Q*) = spec(Q) = ¢, which shows that W is not anti-Q*.
Hence P = anti-Q* as claimed.

In order to access a converse to Lemma 3 it is convenient to employ the
following equivalence relation = on W:

X=Yiff XsubY (X, Y e Ww).

LEMMA 4. Suppose that a subclass W' of W supports non-P and that ()
is a given pre-anti for P. Each member A of the partition 1 of W' induced
by = includes a @) space. However the space Un € QQ N A s chosen, the
property

Qn = {UA A€ H}

1s a marimal pre-anti for P.

Proof. For each A € II select any space Va in A. Since P = anti-@), Va
is not anti-@ so there exists Wa sub Va with Wa € Q and |[Wa| € ind(Q).
Since Wa cannot be P, it follows that Wa € W: for if Z sub Wa where 7
is non-P then Z sub VA € W so Va sub Z also, yielding Wa sub Z. Thus
Wa € ANQ.

No P space can contain a @ subspace since P is hereditary and Qm =
non-P, so P implies anti-Qq. If X is non-P we can choose W sub X where
W € W, identify the member A of IT which includes W, and observe that
Ua sub W sub X gives Ua sub X. Now since Ua is non-P and proh(P) =
spec(non-P) = ¢ we see that |[Ua| € ind(P), so some spaces of cardinality
|Ua| are P (and consequently cannot be Qm); hence |Ua| € ind(Qm) and
X 1s not anti-Qrr. This establishes Q1 as a pre-anti for P.

If it were not maximal, there would necessarily exist a proper subclass
IT" of TI such that

Qm I{UA:AEHI}

satisfies anti-Qrv = P. Select A, € TI\IT; the space Ua, is not P so it
must have a subspace Ua, which is Q. Then, however, Ua, = Ua, which
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forces Ua, and Up, to belong to the same member of the partition II,
contradictory to the choice of Ag.

ProrosITION 5. The following assertions are equivalent:
(a) W supports non-P,
(b) P has a mazimal pre-anti,
(c) for each pre-anti Q of P there is a mazimal pre-anti stronger

than Q).

Proof. Lemma 3 shows that (b) = (a) while Proposition 1 makes it
obvious that (¢) = (b). Let us now assume that (a) holds. By applying
Lemma 4 to the case W/ = W we construct the maximal pre-anti @ and
observe that @ implies @ : hence (c).

LEMMA 6. Let W € W and denote by [W] the =-class which includes
W. Then W is sqm in non-P iff [W] = {W}.

Proof. Almost immediate from the definitions.

ProrosITION 7. P has a mazimum pre-ant: if and only if non-P 1s
supported by
S={5:S is sqgqm in non-P}.

Proof. Let P have a maximum pre-anti. By Lemma 3 non-P is sup-
ported by W. If some =-class were to include two distinct elements, Lemma
4 (with W = W and @ = non-P) shows how to form two distinct maximal
pre-antis for P, producing a contradiction. So each =-class is a singleton
and & = W supports non-P.

Conversely if § supports non-P then Lemma 4 (with W = S§) and
Lemma 6 jointly show that § itself is a pre-anti stronger than any of the
pre-antis for P, that is, § is a maximum pre-anti.

In summary so far:

THEOREM 1. Let P be a hereditary property where ind(P) # ¢ and
proh(P) = ¢. Then P has

1) a mazimal pre-anti if and only if non-P is supported by its wqm
members,
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il) a marimum pre-anti if and only if non-P is supported by its sqm
members.

PrROBLEM. For which properties P are wqm and sqm distinct within

non-P?

As a final illustration of the ideas here employed, we quote from [6] the

following extension of Proposition 2:

THEOREM 2. Let P be a property which has hereditary pre-antis and

satisfies ind(P) # ¢. Then it possesses a mazimum hereditary pre-anti

if and only if the class of critical non-P spaces is supported by its wgm

members.
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