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SOMMARIO. - Sia F = {X; : 1 € I} una famiglia (quasi) ordinata di spazi
topologici ove X; < X; ogniqualvolta X; é omeomorfo ad un sottospazio di
X e si consideri il seguente problema: dato un insieme ordinato S é possibile
determinare una famiglia di spazi F(S) tali che (F(S),<) é ordinatamente
tsomorfa ad S? Si vede essere un esercizio non banale anche solo otltenere
un esempio “concreto” di famiglia ordinata persino in una maniera semplice
come gli interi negativi. Fstendendo e modificando un argomento di Watson e
Matier si mostra come 'induzione transfinita possa essere usata per costruire
famiglie di spazi con prescritti tipi d’ordine. In particolare emerge che ogni
insieme ordinato con la potenza del continuo pud essere modellato (in questo
senso) su una famiglia di sottospazi della retta reale.

SUMMARY. - Let a family F = {X; : i € I} of topological spaces be (quasi)
ordered by writing X; < X; whenever X; is homeomorphic to a subspace of
X, and consider the problem: given an ordered set S, can we exhibit a family
F(S) of spaces such that (F(S), <) is order-isomorphic to S? It appears to
be a non-trivial exercise to obtain a ‘concrete’ example of a family ordered in
even such a simple way as the negative integers. By extending and modifying
an argument of Watson and Matier we show how transfinite induction can be
used to construct families of spaces which have certain prescribed order-types.
In particular it emerges that any ordered set on continuum-many elements
can be modelled (in this sense) by a family of subspaces of the real line.

(*) Pervenuto in Redazione 1'8 ottobre 1993.
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Introduction.

When topological spaces are ordered by (homeomorphic) embeddabil-
ity, it 1s rather a delicate task to devise a family of them whose inter-
relationships match a given ordered set. For instance, an unthinking at-
tempt to model the order-type N™ of the negative integers using subspaces
of the real line R might be to try X,, = R\{1,2,3,...,n}. Certainly X, 4,
can be embedded in X, here but, since also X,, is embeddable into X, 41,
what we have modelled is in fact not N* but a countable ordered set in
which every two elements are comparable both ways round. The root of
the difficulty, as this example suggests, is that the embeddability ordering
is not a partial order but merely a quasi order: given only that X is em-
beddable into Y and not homeomorphic to it, we cannot deduce that Y is
non-embeddable into X. The subset X,, 11 of X,, needs to be selected in
such a way that every attempt at embedding X,, into it must fail.

The literature contains at least one direct procedure for doing such a
selection - but in the context of ordered sets rather than of topological
spaces. It arose from an impromptu talk given by Professor Stephen Wat-
son to the second author and Julie Matier, was elaborated in the latter’s
doctoral thesis [3] and an article [4] arising therefrom, and is further anal-
ysed in [1]. The first author has refined and extended it to deal with a much
wider range of order structures [5]. Each time, the fundamental idea is to
use well-ordering on the sets X; being constructed and on the mappings
f which could effect an embedding, so that whenever there is a risk of f
‘inappropriately’ embedding X; into X;, an element z is adjoined to Xj
where f(z) is not in X; and will never be subsequently added in.

The purpose of the present note is to abstract the construction of [5]
so as to allow its interpretation for topological spaces, thus constructing
families as delineated in the title.

Construction.

Let o be an infinite cardinal number. Suppose that we can find
a set C' of cardinality «,
a non-empty subset @) of C' of cardinality § < «a,
a family Z of subsets of C' and
a family F of partial mappings from subsets of C' into C
such that conditions (i) to (vi) below are all satisfied.
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Firstly, for each f € F whose domain dom(f) = @ we classify the ele-
ments of C\@ into four types as follows:

we call z in C\Q a

non-ezxtension point of f if there is no f* in F, extending f, with dom(f*) =

Qu{z},
multi-extension-point of f if there is more than one such f*,
Q-extension-point of f if there is exactly one such f* and f*(z) € @,

unique-extension-point of f if there is exactly one such f* and f*(z) € C\Q.

Now we postulate that
i) if K C C then the identity mapping idg € F,

ii) whenever @ C dom(f),f € F and z € dom(f)\@Q then the re-
strictions f|g and flouiz} € F,

iii) the set 7* = {f € F : dom(f) = @} has cardinality not exceed-
ing «,

iv) @ intersects every member of Z,

v) when f € F and f has fixed points in every member of Z then
J = 1ddaom(s),

vi) for each f € F*,
etther f has a non-extension-points
or each I € 7 contains a unique-extension-points of f.

Next, let S be a given qoset with o elements. We denote by Pg(C') the
family
(X:Qcxcol

and impose on it a relation < thus:
X1 <Xy 3df: X1 = Xy where f € F.
Observe from (i) that < is at least reflexive. We shall obtain a mapping
6:5— Pgo(C)

such that (6(S5), <) is a qoset order-isomorphic to S under . Since F* x S
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has cardinality « (see (iii) above) we can label its elements with those of
the ordinal number a:

F*xS={(fs,s3): 0 € a}l.

Make an arbitrary choice of ¢, € Q. We inductively construct three a-
sequences (z3), (yg), (28) (B € a) such that

a) zp,ys € (C\Q)U{go}, 25 € C\Q,
b) apart from repetitions of ¢,, all the terms are distinct,
c) whenever fg = idg we have 23 = yg = ¢, and

d) whenever fg # idg then
either x5 is a non-extension-point of fg and y3 = ¢,
or xg is a unique-extension-point of fz and yg = f;(mg)

For a given v in a we suppose that the elements z5,ys, 25 for § < v
have been chosen in a way that satisfies (a) to (d). In order to select 2., y,
and z, we examine the map f,.

If f, isidg we choose £y = ¢,, Yy = ¢o, 2y to be an element of C'\@Q which
differs from all previous choices. (This is possible since the cardinality of
C\@ is « whereas at most 3y earlier choices have taken place.) Clearly (a)
to (d) are now valid to the 4™ terms.

If f, is not idg we use (v) to yield I, in Z which contains no fixed point
of f,. Then by (vi) one of the following cases arises:

(I) fy has a non-extension-points: here we select as z one of these,
ensuring that it differs from all preceding choices, put ¥, = ¢, and z, =
any ‘unselected’ point in C\Q; or

(I) I, contains a set J of o unique-extension-points of f: now if

B ={y € J:yor f;(y) has already been chosen as a term
in one of the three sequences}

it is evidently possible to select as z, an element of J\B; the choice of
L, ensures that y, = fJ
both are distinguishable from all earlier terms. Again pick z, as any unused
member of C\@, and note that throughout (I) and (IT) conditions (a) to

(d) have been preserved. An appeal to transfinite induction establishes the

(z) is distinct from z, that of B guarantees that

existence of the three a-sequences satisfying (a) to (d) for all values of g
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in a.
For each s € S put

6(s) = QU {zs,25 : 55 < s}.
Since r < s implies #(r) C 6(s), condition (i) shows that
r<s=0(r) <0(s).

Conversely, if 8(r) < (s) we can find f € F such that f : 0(r) — 0(s). The
pair (f|g,r) belongs to F* x S and was therefore enumerated as (f3, sg)
in the transfinite listing of that set (for some § € a). There are again two
cases to examine:

(I) If f3 = flg is idq, then (iv) and (v) combine to make f = idg(,) from
which 6(r) C 8(s) follows. Now since sg = r, we do have sg < r whence zg
belongs to §(r). Bearing in mind that zs is distinct from every term of the

x’ sequence, its consequent membership of f(s) entails that sg < s, that
is, r < s.

(I) If fz = f|o is not idg, we notice that z3 cannot be a non-extension-
point for fz since
zp € B(r) = dom (f)

whence (ii) shows that the restriction of f to QU {zg} is an extension in F
of fs. So g must be a unique-extension-point for fg, and yg = f;(mg) =
Flougesy(®s) = f(xp). Thus ys € 0(s) which, however, contradicts its
membership of C\@ and its distinctness from the terms of the ‘2’ and ‘2z’
sequences. Only (T) is therefore viable, and we have proved that

O(r) <0(s) = r<s.

In summary so far, we have:

PROPOSITION. Under the stated assumptions on C,Q,Z and F, every
qoset on « points can be embedded into Pg(C).

Interpretations.

ExAMPLES. (i) The simplest instance of this arises by taking o =
¢, C = the ordered set R of real numbers, Q = the set QQ of rationals,
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7 the collection of open intervals and F the family of strictly increasing
real functions. In this context, non-extension-points do not occur, and
conditions (i) to (v) are trivial. Matier, in effect, verified (vi) and deduced
(taking S to be the positive integers in reverse order) that there is an infinite
descending chain of subsets of R, ordered by sub-chain embeddability.

(i1) The present authors extended Matier’s argument to the situation where
C' is an infinite chain all of whose open intervals have cardinality a and
which possesses an order-dense subset () having cardinality 3, where a =
27 again taking Z as the family of open intervals in C' and F the collection
of strictly increasing partial maps from C' to C'. They concluded that each
poset on « points (or fewer) can then be embedded in Pg(C), and also
pointed out that if the generalized continuum hypothesis is assumed, then
for every successor cardinal a such a chain C' may be found.

The main purpose of this note is to obtain versions of the above in
which Pg(C) is a family of topological spaces (rather than ordered sets)
and the ordering is characterized by homeomorphic (rather than order-
isomorphic) embeddability. Notice first that a rather artificial form of this
can be derived directly from the preceding: for suppose that

6:5 — Po(C)

has been contrived so that

r<s=0(r) Cé(s) and

r £ s = there is no strictly increasing map from 6(r) into 0(s).

Let each f(s) be made into a topological space 6:(s) by giving it the topol-
ogy 7(1) of increasing subsets. The identity map on #;(r) (whenever r < s)
continues to embed 6;(r) homeomorphically into ;(s). Yet if r £ s and
there were even a continuous one-to-one mapping g : 6:(r) — 6:(s), the
choice of topology forces g to be strictly increasing - a contradiction. In
other words, the ordering on Pg(C') given by

X7 < X5 & X is homeomorphic to a topological subspace of X,
still allows us to ‘realise’ every qoset on at most a elements within the
family of subspaces of the topological space (C, 7(1)).

It might be considered more interesting to obtain analogous conclusions
about chains endowed with less trivial topologies, such as the real line with
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its usual metric topology. The formulation here presented does indeed per-
mit this, as we now show.

Accordingly let us take C' as the real line (naturally topologised), @
the set of rationals, Z the family of open intervals and F the collection of
continuous injections from subsets of C' into C. It is clear that conditions
(i) to (v) are satisfied by these choices; we confirm also (vi).

LEMMA. Let f: Q — R be a continuous injection. Then either f has ¢
non-extension-points or every open wnterval I includes ¢ unique-extension-

points of f.

Proof. Multi-extension-points cannot of course occur for continuous
functions with T5 co-domain, so essentially our task is to show that the set
@ x of @-extension-points for f is “small”. For each rational number £ put

E, = {j e R\Q : j is a Q-extension-point of f and f*(j) = k}.

If ¢ is rational and f(¢) # k then we can find ¢ > 0 such that

r€QN(g— gt = (@) k> 51f(a) k| >0

which implies that no point of (¢ — €, + €) can belong to Ej; bearing in
mind that f is one-to-one on (Q, this means that Ej contains at most one
rational number, so Ej is nowhere-dense in R.

Choose an enumeration

Q = {k11k21k31k41 .. }

of the rationals. Within 7 choose two disjoint (non-degenerate) closed
intervals I, = [a,, bo], I1 = [a1, b1] disjoint from Ej,; withinint I, = (a,, b,)
and int Iy = (@1, b1) choose pairs of disjoint intervals Ing, Io1 and Ig, [11
disjoint from FEj,; within the interiors of each of these four, choose a pair
of intervals disjoint from FEj,, and so on. The usual ‘nested interval’

argument serves to produce, for each of the 2%° possible sequences of zeros
and ones, a distinct point of I which cannot belong to any FEj,, that is,
which is excluded from @ x. Thus I contains ¢ non- or unique-extension-
points of f. (This way of determining the cardinality of the complement of
a first-category set is taken from Hobson [2], page 136. We should like to
thank Professor D.H. Armitage for invaluable conversations in this area.)

Thus, we have:

THEOREM. Let the family of subspaces of the real continuum be quasi-
ordered by homeomorphic embeddability. Within this family we may find
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order-isomorphic copies of every quasi-ordered set on 2%° (or fewer) points.

(1]
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