APPROXIMATE POLYHEDRAL RESOLUTIONS
WITH IRREDUCIBLE BONDING MAPPINGS (*)

by VLASTA MATLIEVIC (in Split)(**)

SOMMARIO. - Gli spazi normali finitistici sono caratterizzati come spazi che
ammettono risoluzioni approssimate (surgettive) consistenti in poliedri finito-
dimensionali. Gli spazi normali aventi dimensione < n sono caratterizzati
come spazi che ammettono risoluzioni irriducibili approssimate consistenti in
poliedri aventi dimensioni < n.

SUMMARY. - Normal finitistic spaces are characterized as spaces which admit ir-
reducible (surjective) approzimate resolutions consisting of finite-dimensional
polyhedra. Normal spaces having dimension < n are characterized as spaces
admitting irreducible approximate resolutions consisting of polyhedra having
dimension < n.

1. Preliminaries.

Recently, S. Mardesi¢ and N. Ugle§i¢ proved that every mapping of a
normal space into an arbitrary polyhedron can be approximated by an ir-
reducible mapping into some of its subpolyhedra ([5]). This important and
interesting result allows us to give a much better characterization of normal
finitistic spaces than the one in [7]. Irreducible mappings are very conve-
nient for the construction of surjective approximate resolutions of a normal
space ([3], [8]), and were successfully used for solving some problems in the
theory of commutative inverse systems. Till now only irreducible mappings
into compact polyhedra were considered, where irreducible approximation
is achieved in a few simple steps. Here we shall construct an approximate
resolution of a normal finitistic space, which consists of finite-dimensional
polyhedra and whose projections and bonding maps are irreducible.

We shall use the same terminology and notion as in ([6]). A normal or
numerable (open) covering of a (topological) space X is an open covering U
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of X which admits a subordinate partition of unity. The set of all normal
coverings of X is denoted by Couv(X). If U,V € Cov(X) and V refines U,
we write V < U. For two maps f,g : Y — X which are U-near (for every
y €Y there exists a U € U with f(y), g(y) € U), we write (f,g9) <U. The
order of U, denoted ord(l), is the largest integer n such that &/ contains
n elements with nonempty intersection, or co if no such integer exists. We
say that dim X < n if, for any & € Cov(X), there is a V € Cov(X) such
that V <Y and ord (V) < n+ 1.

A space X is called finitistic if for each normal covering Y € Cov(X)
there are a positive integer n and a normal covering V € Cov(X) such that
V < U and ord(V) < n. This means that for each & € Cov(X) of a finitistic
space X there exists a refinement V € Cov(X) such that [N (V)] is a finite-
dimensional polyhedron, where N (V) denotes the nerve of the covering V.
By the definition of finitistic spaces, it is clear that every compact space
and every finite-dimensional space 1s finitistic. Finitistic spaces need not
be finite-dimensional; any compact infinite-dimensional space provides an
example.

Let X be a topological space, K a simplicial complex and let f, g :
X — |K| be mappings into the geometric realization |K|, endowed with
the C'W-topology. We say that g is a K-modification of f if for every point
z € X and every (closed) simplex ¢ € K, f(z) € o implies g(z) € 0.
If K’ is a subdivision of K and g : X — |K’'| is a K'-modification of
f:X = |K'| =|K]|, then g is also a K-modification of f.

We say that a mapping f : X — |K| is K-irreducible if for every K-
modification g of f one has g(X) = |K|. Since f is its own K -modification,
every K-irreducible map f is onto. A mapping f : X — P into a polyhe-
dron 1s called irreducible if it is K-irreducible for some triangulation K of
P. Note that evey irreducible map f : X — P is onto.

An approzimate inverse system X is a collection {Xy,Ux, pax, A} con-
sisting of

i)  a preordered indexing set A = (A, <) (it needs not be antisym-
metric), which is directed and unbounded (i.e. has no maximal
element),

ii) for each A € A, X is a topological space and Uy € Cov(X3),

iii) for any two related indices A < N pax : Xor = X, is a (contin-
uous) map (pax = idx, is the identity map on Xy ).

Furthermore, the following three condition must be satisfied:
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(A1) for any three related indices A < X < N/,

(Paxpaam, pare) < Uy ;

(A2) for each A € A and each U € Cov(X}), there exists a A’ > X such
that
(PAa Pz, PAx,) S U, Whenever Ay > A >\

(A3) for each A € A and each U € Cov (X)), there exists a A’ > A such
that
Unn < pianld = {p5yn(U) : U €U} ,whenever A > X' .
An approzimate mappingp = {px : A € A} : X — X = { X\, U, prr, A}
of a topological space X into an approximate inverse system X is a family
of maps py : X — X, A € A, such that the following condition holds:

(AS) For any A € A and any U € Cov(X},), there exists a X' > A such
that (paxepar,pa) < U, for every A > X.

Let POL denote the class of all polyhedra (endowed with the CW-
topology).

An approrimate resolution of a space X 1s an approximate mapping
p=Apr : A€ A} X 5 X = {X,Ur,prx, A} of X into an approximate
system X satisfying the following two conditions:

(R1) For any P € POL,V € Cou(P) and mapping f : X — P there is
a A € A such that, for every A > X, there exists a mapping g : X)» — P
satisfying (gpr, f) < V.

(R2) For every P € POL and V € Cov(P) there is a V' € Cou(P)
such that for any A € A and any two maps ¢, ¢’ : X, — P, for which
(gpr, g'pr) < V', there exists a A’ > A such that (gparr, ¢'parr) <V, for
any A > X,

Let p = {px : A € A} : X = X be a polyhedral resolution (commutative
or approximate). Then p is called irreducible if all bonding maps pyx and
all projections py are irreducible. Note that each irreducible resolution has
surjective bonding maps and surjective projections.

2. Irreducible resolutions of finitistic spaces.
ProposITION 2.1. Let X be a normal space and U € Cov(X). Then

there exist a subcompler K < N(U) of the nerve N (U) of U and a canonical
map f: X — |K| of U, which is K-irreducible.
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Proof. Since U is a normal covering of X, there exists a canonical
mapping ® : X — |N(U)| of U. If ® is already N (U)-irreducible, we
put K = N(U) and f = ®. If not, there exit a subcomplex K < N(U)
and a N (U)-modification f : X — |K| of ®, which is K-irreducible ([5],
Corollary 1.) So, we only need to prove that f is a canonical mapping
of U, i.e. f1(st(U/N(U))) C U, for each U € U = NU)°. Let z €
F~L(st(U,N(U))). Then f(z) € st(U, N(U)), which implies that there ex-
ists a simplex 0 € N(U) 0 = [Uy = U,U;...Ug] such that f(z) € o.
Since f is a N(U)-modification of ®, there exists a simplex 7 = [Uy =
U, Ur,..., U, Ugy1,...,Us], n > k, such that ®(z) € 7. Note that
D(z) € 7N Ist(U, N(U)), for otherwise f(z) € 9st(U, N(U)). So ®(z) €
st(U, N(U)), which implies z € ®~(st(U, N({)) C U. Consequently,
F~1(st(U, N(U)) C U, which shows that f is canonical for U.

The proof of the next lemma is obtained by appropriate changes in the
proof of Lemma 3.4 of [7].

LEMMA 2.2. Let X be a normal finitistic space, let Py, ..., P, be poly-
hedra, let f1 + X — Pi,...,fn : X — P, be mappings and let U; €
Cov(P1),...,U, € Cov(P,) be open coverings. Then there erist a finite-
dimensional polyhedron P, an irreducible map f : X — P and P L-mappings
p1: P — P,...Py: P — P, such that (fi,p;if) < U;, fori=1,...,n.
Moreover, if for a given i the polyhedron P; is finite-dimensional and f; 1s
wreductble, then the corresponding mapping p; s also irreducible. In that
case it 1s possible to choose a triangulation K; of P; such that f; and p; are
K;-irreducible.

Proof. For each ¢ = 1,...,n choose a triangulation K; of P; so fine
that the covering S; formed by all the closures of the members of S; =
{st(v,K;) : v € K?} € Couv(P;) refines U; i.e. Si < U; ([4], Theorem 4,
Appendix 1). If for a given i, P; is finite-dimensional and f; is irreducible,
let M; be a triangulation of P; such that f; is M;-irreducible. Let L; be
a common subdivision of M; and K;. Put now 8; = {st(v,L;) : v € L) :
v € L} € Covu(P;). Note that f; is L;-irreducible and also Si < U;.
In order to simplify notations rename the triangulation L; again by Kj;.
Now choose a normal ¥V € Cov(X) such that V < fl-_l(Si), 1=1,...,n.
Since X is a finitistic space there exist an integer n and a normal covering
U € Cou(X) such that ¥ <V and ord(U) < n. Then, by Proposition 2.1
there exist a finite-dimensional polyhedron P = |K| and a K-irreducible
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(U)|, which is a canonical mapping of U.

Now, we define mappings m; : N(U)* =U — K, i = 1,...,n, in the
following way. To a vertex U € N(U)® we assign a vertex v; = m;(U) € K}
such that U C 7 (st(vi, K;)),i=1,...,n

Cramm 1. Foreach i = 1,...,n, m : NU)" — K} is a simplicial
mapping.

Let Uy,...,Un be vertices of N(U)?, which span a simplex of N (/).

Then U1N. . .NU,, # 0 and therefore, § # U1N...NU,, C fi_l(st(ﬂ'i(Ul), K2))n

0T (st (mi(Um), K9)) = £ (st(mi(U), KOY 0.0 ost(mi(Un), KD)).

However this implies st(m; (U1), K?) N ... N st(mi(Un), KY) # 0, which
shows that the vertices m;(Uy),. .., m;(Up) indeed span a simplex of K.
For each i = 1,...,n the mapping 7; induces a mapping |m;| : | N (U)]| —

|K;|. Put p; = |m||P : P — P;. Note that each p; : P — P; is a PL-
mapping.

CLAM 2. Foreachi=1,...,n, p;f : X — |K;| is a K;-modification of
fi.

Let € X be an arbitrary point of X and o = [vy,...,v] € K; a
simplex of K; such that f;(z) € . We need to prove that p;f(z) € o.
Let Uy, ..., U be all the members of the covering ¢/, which contain z , i.e.

reUiN...NUs. Then f(z) € 7 =[U1,...,Us] € KNN(U) and p; f(z) €

pi(U1), .., 0i(Us)] = [mi(Un), ..., mi(Us)]. Put mp({Ux, ..., Us}) = {wn, ...,
K? t S s, and therefore, pzf( ) € [wy,...w¢]. Since z € Uy N...N
Us C f7i(st(m(Uh), K9) n... 0 ft(st(mi(Us), KP)), we obtain f;(z) €
st(wy, K?) N N
st(wg, KP). Now we have fi(z) € o N st(wy, KY) N ...N st(w, KY) and
therefore, [ve, ..., vg] N st(w;, K) # 0, for each j = 1,...,¢. But this im-
plies that each w; is some vg,i.e. {w1,...,ws} C {v1,..., vk} This means

that [w1, ..., w:] is a face of [vy, ..., vg] and therefore p; f(z) € o.

Cramm 3. (pif, fi) < U;.

Because of Claim 2, for each # € X there exists a simplex ¢ € K;
such that p; f(2), fi(z) € 0. Then p; f(z), fi(z) € st(v, K?), where v is any
vertex of 0. Since S; < U;, there exists a U € U; such that p; f(z), fi(z) € U

wi} C
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Cram 4. If f; is K;-irreducible, then p; is K;-irreducible.

We shall first prove that p;f i1s K;-irreducible if f; 1s K;-irreducible.
Let h : X — |K;| be any K;-modification of p;f. Then h is also a K;-
modification of f;. Since f; 1s Kj-irreducible, we conclude that h is a
K| — | K|
be any K;-modification of p;. Then hf is K;-modification of p; f. Since p; f

surjection. This proves that p; f is K;-irreducible. Now, let h :

is K;-irreducible, we conclude that hAf is surjective and thus, A must also
be surjective. This completes the proof of Lemma 2.2.

REMARK 2.3. Let X be a normal space with dimension dim X < m.
Then 1t is possible to achieve that the polyhedron P in Lemma 2.2 has dim
P <m.

Using Lemma 2.2 in the construction, described in [1], we get the fol-
lowing theorem, which is an improvement of Theorem 3.5 of [7].

THEOREM 2.4. Let X be a normal space. Then the following statements
are equivalent.

i) X is finitistic.

ii) X admits an approximate irreducible resolution p = {px : A €
A} X — X = {X\,Ux,prx, A} such that all X, are finite-
dimensional polyhedra, all bonding maps are PL and A is cofinite.

iii) X admits an approximate resolution p = {px : A € A} : X —
X = {X,,U,,pr», A} such that all X, are finite-dimensional
spaces.

In the special case, when X is a normal space with dim X < m, we
obtain the following theorem.

THEOREM 2.5. Let X be a normal space. Then the following statements
are equivalent.

i) X hasdimX < m.

ii) X admits an approximate irreducible resolution p = {p) : A €
A} X — X = {X\,Uy,prr, A} such that all X, are polyhedra
with dim X < m, all bonding maps are PL and A is cofinite.
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iii) X admits an approximateresolutionp = {py : A€ A} X - X =
{Xx, U, prr, A} such that all X are spaces with dim X, < m.

REMARK 2.6. Theorem 2.5 is a generalization of Theorem 1 of [2]
(where a similar statement was proved for compact Hausdorff spaces) and
an improvement of Theorem 1 of [9], for normal finite-dimensional spaces
(see also [1], §5.). Note that Theorem 1 of [2] was not proved using ir-
reducible mappings, and the construced approximate resolution does not
have surjective bonding maps. This defect could be avoided using the con-
struction of irreducible representations in the sense of [8].
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