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SOMMARIO. - La nozione di sistemi inversi ¢ un elemento importante nel definire
e studiare gli spazi, specialmente gli spazi compatti. In particolare, si tenta
di rappresentare gli spazi come limite di sistemi inversi di poliedri riducendo
cosi il problema allo studio di tali sistemi. Quest’articolo illustra alcuni re-
centi progressi in quest’area. In particolare, si discutono sistemi di gauge,
risoluzioni e sistemi approssimati. I sistemi di gauge sono sistemi inversi
dove ogni membro é dotato di un ricoprimento che determina una nozione
di prossimita. Le risoluzioni si possono vedere come sistemi inversi dotati di
buone proprieta con possibili applicaziont agli spazi non compaltti. Infine, @
sistemi approssimati condividono tutte le buone proprieta dei sistemi inversi
usuali oltre ad una maggiore flessibilita poiché la condizione funtoriale sulle
mappe di bordo ¢é sostituita da una richiesta pitu debole: le mappe poo'parqr €
Paar, a < a' < a’ possono differire di una quantita adeguatamente control-
lata.

SUMMARY. - The notion of inverse system is an important tool in defining and
studying spaces, especially compact spaces. In particular, one iries to rep-
resent spaces as limils of inverse systems of polyhedra and thus reduce their
study to the study of such systems. This paper surveys some recent develop-
ments in the area. In particular, gauged systems, resolutions and approximate
systems are discussed. Gauged systems are inverse systems, where each mem-
ber is endowed with a covering, which determines nearness. Resolutions can
be viewed as inverse systems with particularly good properties, which makes
the application to noncompact spaces possible. Approrimate systems share
all good properties with usual inverse systems, but are more flexible, because
the functorial condition on the bonding mappings is replaced by the weaker
requirement, that the mappings peg'Parer and paqr, a < a' < a', may differ
by a properly controlled amount.
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1. Introduction.

1.1. The notion of an inverse system of spaces (groups) and its limit
developed gradually, beginning with the work of P. S. Aleksandrov [2], [3],
L. Vietoris [67] and S. Lefschetz [19], followed by the work of Cech [10], L.
S. Pontryagin [56], A. G. Kurosh [18], N. Steenrod [59] and H. Freudenthal
[13]. In this survey, we use the standard definition, first given in [19], [20].
Also see [14], [4], [15], [37].

1.2. An inverse system of spaces X = (X, paa, A) consists of a directed
preordered set (A, <), called the index set, of spaces X,, for a € A, called
the members of the system, and of mappings psa : Xoo — Xg, for a <
a’ < a”, called the bonding mappings, which must satisfy the following
conditions: p,, is the identity mapping 1x, on X, and

(I) Paa'Pa’a’ = Paar, for a < a < a".
If A= N, one speaks of an inverse sequence of spaces.

The limit p : X — X of X consists of a space X = lim X and of
a collection of mappings p, : X — X,, a € A, called the projections. X
is the subspace of the direct product HaEA X,, formed by all the points
z = (2,4), zo € X, satisfying pea'(24') = 24, for a < @'. The projections

pa are the restrictions of the natural projections [] X, — X4. They

a€EA
satisfy the condition

(L) Paa'Pa’ = Pa, for a < a.

Tt is readily seen that whenever another collection of mappings p) :
X' — X, satisfies condition (L), then there exists a unique mapping f :
X' — X such that p,f = p!, for all a € A. Consequently, (L) is the
universal property, which determines the limit.

1.3. One also considers mappings between inverse systems. A level-
preserving mapping f = (f2) : X — Y between systems X = (X,, paar, A)
and Y = (Y4, qqar, A), indexed by the same index set A, consists of a
collection of mappings f, : Xq — Ya,a € A, such that fapaar = qaa’ far,
for a < a’. Clearly, f determines a unique mapping f : X — Y between
the limits, such that fyp, = q.f, for a € A. This mapping is denoted by

f=lmf

If we have another level-preserving mapping g : Y — Z, given by
mappings gq : Yo = Z,,a € A, then the composition gf : X — Z is
defined as the collection of the mappings gofs : Xa — Za4, a € A. The
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identity mapping 1x is given by the identity mappings 1x, : Xqg = X,. In
this way, for a fixed A, one obtains a category denoted by TOpA. Moreover,
limly = lx and limgf = limglim f, so that lim : TOpA — Top is a
functor.

1.4. A more general situation occurs if X and Y are indexed by different
sets, say, if X = (X4, paar, A) and Y = (Y4, qper, B). Then one defines
an order-preserving mapping f = (f, f») : X — Y, which consists of an
increasing function f : B — A and of a collection of mappings fo : X)) —
Yy, b € B, such that, whenever b < o', one has Jopsw)s(01) = qob for. The
composition of (f, fo) with (g, g.) is defined by (fg, gcfy(c))- In this way
one obtains a category inv-Top. There is a unique mapping f = lim f :
X — 'Y, which satisfies the condition

(LM) Jopsy = aof, b € B,
and lim : inv-Top — Top is a functor.

1.5. The next level of generality is attained by allowing f : B — A to
be an arbitrary function. Then f= (f, f;) : X — Yis called a mapping
of systems provided, for b < b’, there is an a > f(b), f(b'), such that the
following condition holds:

(M) JoPsbya = Qoo fo' Py (b')a-

In this case too, f induces a unique limit mapping f = limf: X = Y
satisfying condition (LM).

Composition of mappings of systems is defined as in 1.4. Furthermore,
one defines an equivalence relation ~ between mappings of systems f, f' :
X — Y putting f ~ f’ provided, for each b € B, there is an a >
F(b), f'(b), such that

(E) Fops(v)a = JoPsv)a-
It is easy to see that f~ f/ and g ~ g’ implies gf ~ @' f', so that com-
position of equivalence classes is well-defined by [g][f] = [gf]. Moreover,
f ~ f/ implies lim f = lim f’ and one puts lim[f] = lim f. In this way
one obtains a category pro-Top and a functor lim : pro-Top — Top (see
e.g., [37]).

1.6. By a polyhedron P we understand the geometric realization |K|
of a simplicial complex K, endowed with the CTW —topology. It is well-
known that polyhedra are paracompact and therefore, topologically com-
plete spaces (see, e.g., [37]). If K is a finite complex, P = |K| is a metric
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compact space. In view of the combinatorial nature of simplicial complexes,
polyhedra can be considered as relatively simple objects. Therefore, it is
natural to try to express more general spaces as limits of inverse systems
of polyhedra and express mappings between spaces as limits of mappings
between inverse systems of polyhedra. This idea is present ever since the
introduction of inverse systems.

1.7. We now state some results concerning polyhedral expansions of
spaces and mappings, which explain why the method of inverse systems
can be useful in studying spaces.

THEOREM 1. The limit X of an inverse system (sequence) X of com-
pact polyhedra is a compact Hausdorff (compact metric) space. The limit
X of an nverse system of arbitrary polyhedra is a topologically complete
space. (see, e.g., [37]).

THEOREM 2. Every compact Hausdorff (compact metric) space X is the
limit of an inverse system (sequence) X of compact polyhedra. Every topo-
logically complete space X is the limit of an inverse system X of polyhedra
(see [14], [1], [5], [53], [37]).

THEOREM 3. Ewvery mapping f : X — Y between compact Hausdorff
(compact metric) spaces is the limit of a mapping of systems (sequences)
[ : X = Y consisting of compact polyhedra. Fvery mapping f : X =Y
between topologically complete spaces is the limit of a mapping f: X =Y
between systems of polyhedra ([26], [16]).

We now state three natural questions to which one would like to have
a positive answer.

QUESTION 1. Let f: X — Y be a mapping and let p = (pa) : X = X
and g = (qv) : Y — Y be limits of polyhedral systems. Is there a mapping
of systems f: X = Y such that f = lim f?

QuesTION 2. Let X = (X4,paar, A) and X' = (X%, p' ., A') be poly-
hedral systems having the same limit X. Are the Cech homology groups
Hy(X) = lim(Hn(Xa), (Paar)«, A) and Ho(X') = im(Hp(X}), (Phar)«, A')

tsomorphic?
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QUESTION 3. Let X be a compact Hausdorff space with covering dimen-
ston dim X < n. Is X the limit of an nverse system of compact polyhedra
X = (X4, Paar, A) with dim X, < n.

Unfortunately, using the classical notions of inverse system and limit,
all three questions have a negative answer (see [32]).

This situation recently led to modifications of the classical concept of
an inverse system and its limit and three new notions emerged: gauged
systems (see §2), resolutions (see §3) and approzimate systems (see §4).
The main purpose of this paper is to describe these notions and outline the
main results obtained up to now. In particular, using the new notions, all
three of the above questions have a positive answer.

2. Gauged Systems.

2.1. The only way to avoid the difficulties related to Question 1 is
to allow as mappings of systems f also collections of mappings f,, which
need not satisfy equality (M). Instead, the two sides of (M) can differ
by an amount controlled in such a manner that f still induces a limit
mapping. For metric compacta and inverse sequences, one finds this idea
in [51]. However, it was T. Watanabe [70], who introduced and developed
in full generality the needed notion of a gauged inverse system, i.e., an
inverse system X = (X,,Ug, paa’, A), where each term X, is endowed with
a normal covering U,, called the mesh at a. The introduction of meshes
enables one to measure discrepancy from commutativity in the mappings
forming f.

2.2. The essential condition to which meshes are subject is condition

(A3) (Va € A)(VU € Cov(X,))(Fa' > a)(Va" > d')
ua” = p(;al” (u))

where C'ov(7) denotes the set of all normal coverings of Z.

In this paper we always denote systems with boldface characters and
gauged systems with script characters.

2.3. Now one can define an approzimate mapping f : X — Y from
one gauged system X to another one Y = (Y4, Vb, qosr, B) as a collection
consisting of a function f : B — A and of mappings fy : X;4) — b, b € B,
such that the following condition is satisfied
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(AM) (¥ < ¥)(3a > 7, J(B))(Va' > a)
(qebr forps(vryars JoPg(byar) < stVe,

where (¢,1¥) < U means that the mappings ¢, are Y —near and st} de-
notes the star of the covering V. (Note that in the above definitions the
meshes of X' have not been used so that it also makes sense to speak of an
approximate mapping f : X — Y from an inverse system X to a gauged
system Y.)

2.4. THEOREM 4. If systems X and Y consist of topologically com-
plete spaces (e.g., polyhedra) and f: X — Y is an approrimate mapping,
then there exists a unique mapping f : X — Y, called the limit of f, and
characterized by the following condition

(LAM) (Vb € B)(YV € Cou(Y3))(3V > b)(Vh" > V)
(061 forpp oy, o f) <V
(see [70], [45]).

One also defines equivalence of approximate mappings, f ~ f', by
requiring that, for each b € B, there is an a > f(b), f'(b), such that

(AEM) (fbpf(b)a’; fépf’(b)a’) < Vb; for a’ 2 a.

One proves that the limit depends only on the equivalence class [f] of

F ([70], [45).

25. If f: X - Y and g : Y — Z are approximate mappings, it
is natural to attempt to define their composition b = gf as in the case
of mappings of systems, i.e., by putting b = (h,h.), where h = fg and
he = gefy(c). Unfortunately, h does not satisfy condition (AM), i.e., is
not an approximate mapping h : X — Z. Nevertheless, T. Watanabe [70]
succeeded in defining composition of equivalence classes of approximate
mappings between systems over cofinite index sets. He proved that for
given f and g, there exists a @' : Y — Z such that g’ ~ g and g'f is
an approximate mapping X — Z. Furthermore, g’ is uniform, i.e., Vg(c) <
g ' (W,), for each ¢ € C. Finally, for any other such g, one has g’ f ~ g" f,
which makes possible the definition of [g][f]. Watanabe also proved that
in this way one obtains a category, which he named Appro-Top.

If one restricts Appro-Top to cofinite systems of topologically complete
spaces, one obtains a subcategory Appro-CTop. Watanabe showed that
lim : Appro-CTop — CTop is a functor to the category CTop of

topologically complete spaces and mappings.
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2.6. There exist inverse systems X, whose terms cannot be endowed
with admissible meshes, i.e., meshes which will turn X into a gauged sys-
tem X. Indeed, for systems X consisting of compact Hausdorff spaces X,
and surjective bonding maps p,q4’, the following is a necessary condition in
order that X admits meshes [41]:

(C) (Va € A) card(A) > weight(X,).

A generalization to topological spaces is given by the following theorem

[41].

THEOREM 5. Let X be an inverse system of topological spaces X4,
whose Lindelof numbers [(X,) satisfy the inequality

(D) 21(Xa) < card(A),

and let each paq(Xar) be dense in X,. If X admits meshes, then the fol-
lowing condition holds:

(C)* (Va € A) card(A) > cw(X,),

where cw(Z) > Vg denotes the covering weight of 7, i.e., the least cardinal
of a basis of normal coverings of Z.

2.7. Conversely, condition (C)* is sufficient for the existence of admis-
sible meshes on an arbitrary cofinite inverse system X. In particular, cofi-
nite inverse systems of metric compacta over unbounded index sets admit
meshes, because cw(X,) equals the weight w(X,) = Rg, and therefore, (C)*
is satisfied. Moreover, with every inverse system X = (Xg, paa, A) one can
associate an inverse system X = (Xa*,Pasas, A*) and an increasing sur-
jective function s : A* — A, such that A* is cofinite and antisymmetric,
Xae = Xs(a*), Pavrarr = Ps(a*)s(a*r), and X" has property (C)*, so that it
can be endowed with admissible meshes. Moreover, if p = (p,) : X — X
is the limit of X, then g = (gs+) : X — X" is the limit of X", where
Ga* = Ps(a+) (Theorem (3.7) of [70]; also see [31] and [64]).

2.8. There is a natural candidate for the definition of approximate
mappings f : X — Y between nongauged inverse systems. One defines
it using the same data as before. However, condition (AM) is replaced by
the requirement that, for each b € B and each V € Cou(Y}), there exists
by > b such that, for all &', 6" > by, there exists a > f(b’), f(b") having the
property

(AM)* (be’fb’Pf(b’)a’,be”fb”Pf(b”)a’) ~ V, fOI' all (l/ Z a.
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There is also a natural candidate for the definition of equivalence of
approximate mappings. One puts f ~ f/, provided, for each b € B and
each normal covering V of Y3, there exists a by > b having the property
that, for each b’ > bg, there exists an a > f(b'), f/(b’) such that

(AEM)* (qobr forpr(vryars Qobr fLipproryar) <V, for a’ > a.

If systems X,Y do admit meshes, i.e., are obtainable from gauged sys-
tems X' and Y by forgetting their meshes, then there is a bijection between
the set of equivalence classes of approximate mappings f: X — Y, in
the sense just defined, and equivalence classes of approximate mappings
f: X = Y, as defined in 2.4. However, S. Mardesi¢ and N. Uglesi¢ [42]
have recently produced an example showing that in general, it is impossible
to define a composition of equivalence classes of approximate mappings (in
the above sense) yielding a category of nongauged inverse systems on which
lim would be a functor. This shows that meshes are indeed indispensable.

3. Resolutions

3.1. One can answer affirmatively Question 1, for compact spaces X,Y
and cofinite systems of compact polyhedra X,, Y3, provided one endows the
systems with admissible meshes and uses approximate mappings f. Unfor-
tunately, the analogous result for gauged polyhedral systems with noncom-
pact limits does not hold. Furthermore, it is well-known that, for an inverse
system of compact polyhedra X = (X, paar, A) with limit X = lim X, the
Cech homology group HP(X) is the limit of the induced inverse system of
groups H,(X) = (Hp(X4), Paars, A) (see e.g., [37]). However, this assertion
fails if one omits the compactness assumption. This is a very special case
of the well-known phenomenon in shape theory of noncompact spaces, that
one cannot replace spaces X by arbitrary polyhedral inverse systems X
with X = lim X . These and other difficulties with limits of noncompact
spaces were the reasons for introducing the notion of resolution, which can
be viewed as a well-behaved type of inverse system. This notion was in-
troduced and developed in several papers by P. Bacon [5], K. Morita [52],
[53], [54] and S. Mardesié [25], [26].

3.2. According to [26] (also see [37]), a resolution of a space X consists
of an inverse system X and of a collection p : X — X of mappings
pa: X — Xq, a € A, satisfying condition (L). In addition one requires that,
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for any polyhedron P and any V € Couv(P), the following two conditions
be satisfied:

(R1)* (Vf:X = P)(3ae A)(Va' > a)(Fg : Xoo = P)
(gpar, F) < V;
(R2)* (V' € Cov(P))(Va € A)(Vg,9' : Xo — P)

(gpd’g/pd) < V= (HCLI > Cl)(va” > a/)(gpaa”ag/paa”) < V.

An inverse system X is said to be a resolution provided there exist a
topologically complete space X and a resolution p : X — X of X.

A resolution of a mapping f : X — Y consists of two resolutions of
spaces P : X — X and q : Y — Y and of a mapping of systems f: X —
Y, which satisfies condition (LM).

3.3. The relationship between resolutions and limits is given by the next
theorem.

THEOREM 6. If p : X — X is a resolution consisting of completely
reqular spaces (in particular, a polyhedral resolution) and the space X is
topologically complete, then P is also a limit of X. If all X, and X are
compact Hausdorff spaces, also the converse holds, i.e., if P is a limit, then

P is a resolution [53], [26].
3.4. For resolutions, Theorems 1, 2 and 3 assume the following form.

THEOREM 7. If a completely reqular space X admits a resolution con-
sisting of compact polyhedra, then X is pseudocompact [23], [30].

THEOREM 8. FEwvery pseudocompact space X admits a resolution P :
X — X, where X consists of compact polyhedra. Every topological space
X admits a resolution p : X — X, where X consists of polyhedra. [23],
[26], [30].

THEOREM 9. Every mapping f : X — Y between pseudocompact spaces
admits a resolution consisting of compact polyhedra and mappings. FEvery
mapping [ : X — Y between topological spaces admits a polyhedral resolu-
tion ([26], [16], [30]).

3.5. A gauged resolution p : X — X of a space X is a resolution
p: X = X, where X is obtained from the gauged system X by forgetting
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the meshes. A gauged resolution of a mapping f : X — Y consists of
gauged resolutions p : X — X and q : Y — Y and of an approximate
mapping f: X — Y, which satisfies condition (LAM). Both notions were
introduced by Watanabe [69], [70].

Clearly, the gauged analogues of Theorems 7, 8 and 9 remain valid.
More important is the next result, which gives the desired affirmative an-
swer to Question 1 and is referred to as the Ezpansion theorem [70].

THEOREM 10. Letp: X — X andq : Y — Y be gauged resolutions and
let f: X =Y beamapping. If Y is cofinite and all Y, are polyhedra, then
there exists an approrimate mapping f: X — Y, which satisfies condition
(LAM) and one has an approzimate resolution of f.

It is a consequence of Theorem 10, that lim defines an equivalence of cat-
egories between the category Appro-Top restricted to cofinite polyhedral
resolutions and the category of topologically complete spaces and map-
pings. This shows that gauged polyhedral resolutions are indeed a suitable
tool for studying topologically complete spaces and their mappings.

Recently, S. Mardesi¢ and N. Uglesi¢ produced examples showing that
the analogue of Theorem 10 for nongauged resolutions (using approximate
mappings as defined in 2.8) is no longer true [42]. This demonstrates again
the importance of meshes.

3.6. It is well-known that, inverse systems of non-empty compact Haus-
dorff spaces always have a non-empty limit. However, for systems of non-
compact spaces this i1s no more true, even when one assumes surjectivity
of the bonding mappings (see e.g., Exercise 2.5.A.(b) of [15]). Tt is also
well-known that for systems (Xg, pga’, A) of compact Hausdorff spaces of
covering dimension dim X, < n, the limit X has dimension dim X < n.
Neither this result generalize to non-compact spaces. Indeed, M. G. Char-
alambous [7], [8] has produced inverse sequences of 0-dimensional Lindel6f
spaces having a normal limit X of dimension dim X > 0. These anoma-
lies cannot happen if limits are replaced by resolutions, which is another
advantage of resolutions over limits.

3.7. Let Ho-Pol denote the homotopy category of polyhedra. In shape
theory one defines shape morphisms between spaces F' : X — Y as mor-
phisms in the pro-category pro-Ho-Top between adequate objects asso-
ciated with X and Y respectively. If p : X — X = (X,,paar, 4) and
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q:Y — Y= (Y, qu, B) are polyhedral resolutions, then such adequate
object are (X4, [Paa’], A) and (Ys, [ges], B), where [¢] denotes the homotopy
class of the mapping ¢ (see, e.g. [37]).

Polyhedral resolutions (or ANR-resolutions) are fine enough tools to
allow the description of morphisms in the strong shape theory and strong
homology [21], [22], [28], [29], [6], [12]. Another non-trivial application
of resolutions is in the theory of shape fibrations for arbitrary topological
spaces [26], [76]. T. Watanabe has successfully used resolutions in the
theory of approximate absolute neighborhood retracts, fixed point theory
and the Vietoris-Smale type theorems [71, 72, 73].

4. Approximate Systems.

4.1. In view of 3.6. and Theorem 1, it is natural to ask if every compact
Hausdorff space X with dim X < n can be expressed as the limit of an
inverse system of compact polyhedra X, with dim X, < n? Surprisingly, a
negative answer has been given long ago [55], [24]. This defect of inverse
limits was corrected by S. Mardesi¢ and L. R. Rubin [34], who in 1989 intro-
duced, a more flexible type of inverse systems of metric compacta, which
need not satisfy condition (I) from 1.2. The members of these approxi-
mate systems are endowed with numerical meshes, subject to conditions,
which weaken condition (I). The notion was generalized by Mardesié¢ and
Watanabe to systems of arbitrary spaces as follows [45].

An approzimate system is a collection X = (X4,Uq, pa, A) consisting of
the same data as a gauged system, subject to condition (A3) from 2.2, and
two additional conditions:

(A1) (Va < @’ < a”) (Paa’Parars Paar) < Ua;
(A2)  (Ya€ A)(VU € Cov(X4))(3a' > a)(Yas > a; > d')
(pa(llpd1d21pa(l2) =< L{

As in the case of usual inverse systems, the imit p : X — X of X
consists of a space X = lim X" and of a collection of mappings p, : X —
X,, a € A, called projections. If all X, are completely regular spaces, X
is the subspace of the direct product [],., Xa, formed by all the points
z = (z4), x4 € X,, satisfying the condition

(AI) hma’Za Paa/(ma/) = x,4, for each a € A.
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The projections p, are the restrictions of the natural projections HaEA Xo —
X, . They satisfy the condition

(AL) (Va € A)(VU € Cov(X,))(Fa' > a)(Va" > a)

(paa”pa” 3 pa) < U.

This condition is universal and characterizes the limit. If X’ is commutative,
i.e., if by forgetting the meshes one obtains a usual inverse system X, then
the limits of X and X coincide.

Approximate systems of metric compacta with numerical meshes as in
[34] always admit coverings U, € Cov(X,), which make them into gauged
approximate systems. Conversely, members of a gauged approximate sys-
tem of metrizable compacta can always be provided by suitable metrics
and numerical meshes to become systems in the sense of [34] (see [36] and

[75]).

Approximate resolutions, approximate mappings, as well as equivalence
and composition of approximate mappings are defined as for commutative
systems, i.e., using the same conditions (R1), (R2), (AM), (AEM) and
(LAM). In spite of greater generality, one can prove the analogues of all
the results stated before for commutative (usual) systems or resolutions.
In particular, one obtains a category Apres of cofinite approximate reso-
lutions, formed by topologically complete spaces and lim is a functor from
this category to the category CTop of topologically complete spaces. If
one restricts Apres to polyhedral approximate resolutions, lim becomes
an equivalence of categories [45].

4.2. Due to greater flexibility of approximate resolutions, one can prove
results, whose analogues were not true for commutative systems.

THEOREM 11. A compact Hausdorff space X has dimension dimX < n
if and only if it is the limit of an approzimate system X = (Xq4,Uq, Paa’, A)
of compact polyhedra with dim X, < n [34].

THEOREM 12. A topological space X has dimension dim X < n if and
only if it admits an approzimate resolution p : X - X = (X4, Uq, Paa’, A)
consisting of polyhedra with dim X, < n [74].

THEOREM 13. A topological space X 1s finitistic if and only if it admats
an approzimate resolution p : X — X = (Xq4,Uq, Paa, A) consisting of
finite-dimensional polyhedra [49].
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Using some recent results on irreducible mappings [43], Vlasta Matijevié
[50] proved the following theorem, which can be viewed as a generalization
of a classical result of H. Freudenthal [13].

THEOREM 14. A normal space X with dim X < n admits an approxi-
mate polyhedral resolution P = (pq) : X = X = (Xo,Ua, Paa’, A) such that
dim X, < n and the mappings paar, pa are irreducible.

4.3. Let P be a class of polyhedra. A space X is said to be P — like
provided, for every normal covering U of X, there exists a polyhedron P € P
and a Y—mapping f : X — P such that f(X) is dense on P.

THEOREM 15. If P is a class of connected locally compact polyhedra,
then X is P—like if and only if there exists an approrimate resolution
p:X = X = (X4,Us,Paar, A) such that all X, € P and all paqr are
surjective [38],[33].

4.4. Another result, which holds for approximate systems and fails for
commutative systems is given by the following theorem.

THEOREM 16. If an approzimate cofinite resolution p = (pq) : X —
X = (Xq,Uqg,paar, A) of topologically complete spaces satisfies condition
(C)* of 2.6, then it is stable, i.e., for each pair a < a', there exists a normal
covering Voo of Xq such that, for any choice of mappings pl, : Xor = Xa,
satisfying (Paa’, Phg') < Vaa', P = (pa) : X = X' = (Xo,Uq, Py, A) is also
an approrimate resolution. Moreover, X and X' are isomorphic objects of

Apres.

This theorem was first established for systems of metric compacta [39]
and it was then generalized to the present form [63]. The proof uses a
criterion, which gives necessary and sufficient conditions in order that two
objects of Apres be isomorphic [61], [62].

In 1991 M. Charalambous [9] considered nongauged approximate sys-
tems (of uniform spaces) using only condition (A2) of 4.1. This notion
was further investigated by Mardesié [31], Uglesié¢ [64] and Matijevié [48].
These authors showed that one can indeed develop a satisfactory theory of
such systems. However, as we have already pointed out, this approach does
not extend to mappings and one cannot build a category like Apres [42].

4.5. We now give two theorems, whose statements do not involve in-
verse systems of any kind, but their proofs essentially use the techniques
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of approximate systems.

THEOREM 17. A compact Hausdorff space X has integral cohomological
dimension dimy X < n, n > 1, if and only if there exist a compact Haus-
dorff space Y with covering dimension dimY < n and weight w(Y) < w(X)
and a CE—mapping f :Y — X [35].

In the special case when X is a compact metric space, this 1s an impor-
tant theorem of R. D. Edwards and J. J. Walsh [68], which is an essential
ingredient in the recent solution of the C'E— dimension raising problem
[11]. In the nonmetric case, the proof required the construction of Y and it
is here that the extra flexibility of approximate systems was crucial. The
proof given in [35] does not use the result in the metric case but gives an
alternate proof for that result.

THEOREM 18. For a locally connected Hausdorff continuum X the hy-
perspaces 2% of nonempty closed subsets of X and C(X) of subcontinua of
X have the fized point property [58].

Until now, this was known only for metrizable X.

4.6. Finally a word of warning. If X = (X, ,Un, Pnn', N) is an approx-
imate inverse sequence of metric compacta, it is natural to consider the
usual inverse sequence X = (X, P, N), where p;7n+1 = Pn,n41 and
Phnt = Pnngl---Pnim1nt, for n 4+ 1 < n'. It can well happen that the limit
X of X and the limit X’ of X' are not homeomorhic [60], [65]. However,
according to [9], there exists always a cofinal subset M C N such that the
same construction applied to the subsequence (Xp,, Um , pmm, M) yields an
inverse sequence whose limit 1s homeomorphic to X.
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