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SOMMARIO. - La teoria d’omotopia di Eckmann e Hilton associata agli oggetti
proiettivi nella categoria dei moduli su un anello R, é stato uno dei primi es-
empt net quali la teoria dell’omotopia veniva considerata in un contesto non
topologico. Una mappa ¢ nullomotopica se e solo se puo essere fattorizzata
attraverso un modulo proiettivo. I moduli proiettivi sono percio gli oggetti
contraibili della teoria. Grazie alla struttura additiva la relazione d’omotopia
é determinata dagli oggetti contraibili: le mappe f e g sono omotopiche se e
solo se f — g é nullomotopica. Ci si puo chiedere se la classe degli oggetti
protettivi di una categoria non additiva determini essa pure una teoria d’o-
motopia. Interpretando gli “oggetti proiettivi” di una struttura proiettiva
nel senso di Maranda, diamo una risposta positiva alla domanda; per una
categoria puntata F che ha limiti e colimiti finiti ¢ dotata di una struttura
proiettiva, costrutamo una classe fib di fibrazioni e un’appropriata classe
we di equivalenze deboli tali che (F, fib, we) soddisfino gli assiomi di una
categoria di oggetti fibranti nel senso di K.S. Brown.

SUMMARY. - The homotopy theory due to Eckmann and Hilton associated with
the projective objects in the category of modules over a ring R was one of the
first examples in which homotopy theory was considered in a non-topological
context. A map is nullhomotopic if and only if it can be factored through a
projective module. The projective modules are the contractible objects in the
theory. Because of the additive structure, the homotopy relation is determined
by the contractible objects: maps f and g are homotopic if and only if f—g is
nullhomotopic. One may ask whether the class of projective objects of a non-
additive category also determines a homotopy theory. Interpreting ‘projective
objects’ in terms of a projective structure in the sense of Maranda, we give
a positive answer to the question: for a pointed category F with finite limits
and colimits and equipped with a projective structure, we construct a class
fib of fibrations and an appropriate class we of weak equivalences such that
(F, fib, we) satisfies the arioms of a category of fibrant objects in the sense
of K.S. Brown.

0. Introduction.

(*) Pervenuto in Redazione il 28 dicembre 1993.

(**) Indirizzo degli Autori: Department of Mathematics, University of Cape Town, 7700
Rondebosch (Sud Africa).
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The homotopy theory due to Eckmann and Hilton [5] associated with
the projective objects in the category of modules over a ring R was one of
the first examples in the literature in which homotopy theory was consid-
ered in a non-topological context. In this theory a map is nullhomotopic if
and only if it can be factored through a projective module; the projective
modules are the contractible objects in the theory. Because of the additive
structure, the homotopy relation is determined by the contractible objects:
maps f and g are homotopic if and only if f — ¢ is nullhomotopic.

One may ask whether the class of projective objects of a non-additive
category still determines a homotopy theory. To make the question precise
we Interpret ‘projective object’ in terms of a projective structure in the sense
of Maranda [6] and give a positive answer in the sense that, for a category F
admitting finite limits and certain colimits and equipped with a projective
structure, we construct a class fib of fibrations and an appropriate class we
of weak equivalences such that (F, fib, we) satisfies the first three axioms of
a fibration category in the sense of Baues [1]. We go further and show that a
category of fractions of F', together with associated classes of fibrations and
weak equivalences, satisfies all four axioms of a Baues fibration category.

Maranda projective structures are abundant. For example, to every
comonad in a category F, 1s associated a projective structure whose pro-
Jjective objects are those objects P at which the counit has a right inverse.
The ‘fibrations’ of the structure are those maps that are converted into
retractions by applying the functor part of the comonad. Thus to every
comonad in a suitable category F is associated a homotopy theory.

For example, if F is the category of modules over a ring R, the forgetful
functor to the category of sets has a left adjoint giving rise to a comonad in
F. The projective objects of the associated Maranda structure are exactly
the projective modules and the class of fibrations i1s exactly the class of
epimorphisms in F. The homotopy theory constructed as above coincides
with the classical projective homotopy theory of Eckmann and Hilton.

Dually, if a category C (admitting certain finite limits and colimits) is
equipped with a Maranda injective structure [6], the construction yields a
Baues cofibration category structure on C, so that each monad in C is asso-
ciated with an ‘injective’ homotopy theory in C. For example, the reduced
cone monad in the category of pointed topological spaces yields an injec-
tive structure in which the injective objects are the contractible pointed
spaces . We prove that the associated homotopy category is equivalent to
the pointed homotopy category of topological spaces. In this work there
is some conceptual overlap with the paper of Seebach [7] but our technical
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results are distinct.

1. Projective Structures.

We recall that a projective structure in the sense of Maranda [6] on a
category K is a pair (P,F), where P is a class of objects of K, the projec-
tive objects, and a class of maps F, the fibrations satisfying the following
axioms.

P1) P is the class of objects of K that are projective with respect to
all of the fibrations.

P2) F is the class of maps of K with respect to which each object of
P is projective.

P3) If X is an object of K there is a map p : P — X where pisin F
and P isin P.

The following result may be well known.

ProposiTION 1.1. If (C,¢,v) is a comonad in K then there is a pro-
Jjective structure (P, F), where

P ={Xl]eX : CX — X has a section}

and

F={f:X->Y|Cf:CX — CY has a section}.

Proof. Suppose that eX : CX — X has a section h, let f : A — B
belong to F and suppose that g : X — B is a map. Then if £ : CB — CA
is a section of C'f, the map ¢t = eA.k.Cg.h : X — A is such that f.t = g,
showing that each object of P is projective with respect to each member
of F. Suppose that an object @) of K is projective with respect to each
member of F. Then since v(@) is a section of Ce, €@ is a member of F.
But then there exists a map h : Q — CQ such that eQ.h = 1¢, so that @
is in P, verifying (P1). Next, observe that for any object B in K, vB is a
section of eC' B, so that each C'B belongs to P. Suppose that each member
of P is projective with respect to a map f : A — B. Then there exists a
map h : CB — A such that f.h = eB. Tt follows that C'’h.v B is a section of
C'f, so that f belongs to F, verifying (P2). Moreover, since ¢X : CX — X
is a fibration with C'X projective, (P3) is also satisfied.
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REMARK 1.1.1. The reader may note that the above argument uses
neither the associativity nor the naturality property of the comultiplication
V.

Recently Herrlich [4] has drawn attention to the notion of almost re-
flective subcategory. We recall that a full subcategory B of K is almost
coreflective if B 1s closed with respect to retracts and if, for each object X
in K there exists a map rx : RX — X, where RX belongs to B, and if for
each map f: B — X, where B is in B there exists

X
rx \
RX 7 B

in B a (not necessarily unique) map f such that rx.f = f.

ProPoOsSITION 1.2. There is a one to one correspondence between pro-
jective structures in K and almost coreflective subcategories of K.

Proof. Suppose that the full subcategory B of K is almost coreflective
with almost coreflector r. Note that, by the defining property of almost
coreflection, every B in B is projective with respect to rx for each X.
Applying the dual of [6; Proposition 2] we find that (P,F) is a projective
structure in K, where P is the class of all objects in B and F is the class of
all maps with respect to which each object of B is projective. Conversely
suppose that (P,F) is a projective structure in K. Tt follows from axiom
(P3) that an almost coreflector exists for the full subcategory B whose
objects coincide with those in the class P.

2. Homotopy Theories.

We recall that a fibration category in the sense of Baues [1] is a category
F with the structure (F, fib, we) subject to axioms (F1), (F2), (F3), (F4),
where fib and we are classes of morphisms in F called fibrations and weak
equivalences respectively :

F1) The isomorphisms in F are weak equivalences and are also fibra-
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tions. For two maps f: A — B, g: B — C if any two of f, g and
gf are weak equivalences, then so is the third. The composition
of fibrations is a fibration.

F2a)For a fibration p : A = B and map f : Y — B there exists the
pullback in F

I
(21) AXBY —_— A

T

. . Y . — . B . _—
and p is a fibration. Moreover if f is a weak equivalence, so is f.

F3) For amap f:Y — B in F there exists a commutative diagram
f

Y B
(2.2) \ /
A

in which g is a weak equivalence and p is a fibration.

F4) For each object X in F there is a trivial fibration M X 5 X,

where M X is cofibrant in F'| 1.e. each trivial fibration Y S Mx
admits a section.

We shall also be concerned with the notion due to K S Brown [2] of
a category of fibrant objects with structure (K, fib, we, e), where e is a
terminal object, which satisfies (F1), (F2a), (F3) and the further axiom :

(A) For all objects X of K the unique arrow X — e is a fibration.

Let K be a category which admits finite limits. Then K has a terminal
object e. Suppose also that K has a projective structure (P,F) and an
initial object ¢ (which need not coincide with e) satisfying the following
condition.

(K) For every P in P and every X in K, the following pushout (i.e.
coproduct) exists.

> — O
!

.

< <— "
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DEFINITION 2.3. Set fib = F and let we be the closure with respect to
axioms (F1) and (F2a) of the class of ‘generators’ satisfying the following
conditions.

G1) The isomorphisms of K are generators.
G2) For any P in P, the map P — ¢ is a generator.

G3) For any P in P and any object X of K, the mapj; : X = XV P
is a generator.

PROPOSITION 2.4. If the category K admits finite limits and has a pro-
Jjective structure and initial object satisfying condition (K) then the struc-
ture (K, F, we, ¢) satisfies arioms (F1) , (F2a) , (F3). If also there exists
a map e — ¢ then the structure satisfies ariom (A).

Proof. (F1) and (F2a) are certainly satisfied. To check (F3), suppose
that f : X — Y isamapin K, let p: P — Y be a fibration with P
projective. By the universal property of coproducts there exists a unique
map

(fip) : XVP-Y

with the property that (f,p).j1 = f and (f,p).j2 = p. It is easy to check
(from the defining properties of a projective structure) that (f,p) is a fi-
bration. Moreover j; is a we by condition (G3) so that (F3) is satisfied.
Since every retraction is necessarily a fibration, this completes the proof.

REMARK 2.4.1. Baues [1] has shown that, in the presence of axioms
(F1) and (F3), his axiom (F2b) is equivalent to (F2a). Tt follows that the
structure referred to in Proposition 2.4 also satisfies (F2b).

REMARK 2.4.2. The structure (K, F, we, ) obtained as above will
in general not also satisfy axiom (F4). The following (trivial but useful)
Proposition gives a sufficient condition for the exception to be the case.

ProPOSITION 2.5. Suppose that the pointed category K satisfies con-
dition (K) and admits a structure (K, Fib, We, e) which satisfies arioms
(F1), (F2a), (F3) and (F4) in such a way that every object is cofibrant.
Suppose also that F C Fib and that the generators of the class we belong
to We. Then the structure (K, F, we, e) also satisfies ariom (F4).
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Proof. Since FNweC FibN We, every object is cofibrant in (K, F, we,

e).

EXAMPLE 2.6. Let K be the category of modules over a ring R, let P
be the class of projective modules and let F = Fib be the class of surjective
homomorphisms. Let We be the class of homotopy equivalences in the sense
of Eckmann and Hilton. Tt is well known that the structure (K, Fib, We)
is a Baues fibration category structure in terms of which every object is
cofibrant. By [5; Theorem 13.6 (dual)] the generators of we belong to We.
It follows that every object is cofibrant in terms of (K, F, we, €). We shall
prove in section 4 that the homotopy categories coincide.

3. A Category of Fractions.

In this section we assume that (K, fib, we, e) is a category with finite
limits satisfying axioms (F1), (F2a), and (F3). Let ¥ denote the class of
trivial fibrations, that is to say let

(3.1) Y = fibN we.

Recall that the notation K[X™!] refers to the category of fractions obtained
from K by freely inverting the arrows of ¥ [4]. Modulo set theoretic diffi-
culties K[Y™'] exists (for objects X and YV of K, K[E7'](X,Y) may be a
proper class). The objects of K[X~!] are the same as those of K and the
morphisms from X to Y are obtained from chains of the form

(3.1.1) Xe—other ofhe o0 dnyy,

s1 So Sn
where the s; are all in X, subject to the replacement rule:

(3.1.2) if there exist ¢,w in K with f;.4 = s;.w and if s;_; € K then, in
3.1.1, the subchain

o%o%o%ojel—ﬂo can be replaced by e +— ofi;ﬂo .

s;—1 Si Si—1.t
Specifically, a morphism of K[X™!] is an equivalence class of chains of type
3.1.1, with composition of morphisms defined by concatenation of chains
subject to the equivalence relation. In K[X~!] we define classes fib and we
as follows.
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fib (respectively we) consists of the equivalence classes of chains of type
3.1.1 in which the forward arrows are all fibrations of (K, fib, we) (respec-
tively weak equivalences of (K, fib, we)).

REMARK 3.1.2. Since the pullback of a pair of arrows of forme — e «— e
always exists, each chain is equivalent to a chain consisting of exactly one
reverse arrow and exactly one forward arrow.

PROPOSITION 3.2. The structure (K[S™'], fib, we) satisfies arioms(F1),
(F2a), (F3) and (F4).

Proof. It may first easily be checked that the classes fib, we are well
defined in the sense that the replacement rule preserves chains of the rele-
vant type. The axiom (F1) follows directly from corresponding properties
of (K, fib, we) via Remark 3.1.2. To check (F2a), note that the following
diagram, in which f; (respectively g;) refers to the pullback in K of f; over
g1 (respectively of g1 over fi) indicates a pullback of (reduced) chains of
the type required.

« —— o 4fy
t1
(3.2.1) « — o I .
g1s1 [ 91[ 91
f1

[ ] — [ ] — [ ]
To check (F3), suppose that X & X' 1, ¥ is a chain from X to Y, where
sisin X, and let p: P = Y be a fibration in K with P in P. Then, as in

the diagram
5 f
X X' Y

X'VP

note that a factorisation of f in K induces a factorisation of the desired
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type in K[E71]. The Axiom (F4) is satisfied in K[X7!] since the trivial
fibrations are equivalence classes of chains of arrows in which both the
forward and the reverse arrows belong to X. Such classes are invertible.
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4. The Homotopy Relations.

We return to the situation of section 2 in which we have a category K,
with finite limits and initial object, equipped with a projective structure
satisfying condition (K). As indicated in the proof of Proposition 2.4 there
is a factorisation

A

X X x X
(4.1)
J1 (Ap)

XVP

of the diagonal map A, where p : P — X x X is a fibration with P
projective. Imitating Baues [1;1.1.6 dual] we may define maps f,g: A — X
to be homotopic, denoted f ~p g if there is a commutative diagram

(Ap)
XVP X x X

(4.2)
H (f.9)
A .

When the structure (K, F, we, e) satisfies axiom (F4) it follows from
the (dual of the) Baues theory of homotopy in a cofibration category [1;

Chapter II] that the homotopy relation ~p is an equivalence relation and
is independent of the choice of P. We can contemplate ~5, the smallest
equivalence relation containing ~p. Another way to obtain an equivalence
relation is to consider the functor @ : K — K[X~!] and define f ~5 g if
and only if Qf ~p Qg. It is clear that f ~5 ¢ = f ~x g. However these
relations coincide when (F4) is satisfied.

For example, in the situation of example 2.6, we have:

ProPosITION 4.3. The relation ~p associated with the class of projec-
tive modules and surjective homomorphisms coincides with the Eckmann-
Hilton homotopy relation.

Proof. Recall that maps f,g : A = X are homotopic in the sense of
Eckmann and Hilton if and only if the difference f — g factors through a
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projective object. Suppose that f ~p g. Then there exists a factorisation
4.2. Since the category enjoys a biproduct we have XV, P ~& X ® P. Hence
f—g=(m —m)o(A;p)oH = (m —m)oAoH+ (m —m)opo H =
(m — m3) o po H, thus factoring through the projective P. Conversely we
show that if f,g : A — X are homotopic then a factorisation 4.2 exists. Let
p = (p1,p2) : P> X X X. Then py — p2 = V(lx ® —1x)(p1,p2), being
a composition of surjective homomorphisms, is surjective. It follows that
f—9 = (p1 — p2)ha, for some hy : A = P. Let hy = f — prhy : A = X.
Then H = (h1, hs) : A = X V. P is the desired factorisation.

For our second example we compare the homotopy theory of pointed
topological spaces arising from the standard reduced cylinder functor 7
with the injective homotopy theory generated by the reduced cone monad.
Recall that the reduced cylinder IX on a pointed topological space X (we
will use * to denote the base point) is the space obtained from X x I,
the product of X with the closed unit interval I, by identifying (z,0) ~
(z,1) ~ (*,t) for all z in X and all ¢ in 7. Maps f and g from X to Y are
homotopic, i.e. f ~ g, if there exists F : IX — Y with F(z,0) = fr and
F(z,1) = gz and with F(x,t) = «, for all z in X and all ¢ in I.

The reduced cone functor C results by defining CX = X x I/ ~ where
(z,1) ~ % ~ (,t), for all z in X and all ¢ in I. For each space X there is an
embedding map nX : X — CX and a multiplication map uX : CCX —
CX, given by nX (z) = (2,0) and by pX((z,s),t) = (2,1 — (1 =s)(1 —1)).
Then 1 and u are respectively the unit and multiplication of a monad
(C,n, ).

With the reduced cone monad is associated an injective structure in
which the class Z of injective objects contains exactly the contractible
pointed spaces. It seems less easy to characterise the class cof = {i|Ci
has a right inverse}. However one may compare the relation ~7 with the
relation ~ associated with the reduced cylinder functor 7.

ProprosITION 4.4. The relation ~7 coincides with ~ and is an equiva-
lence relation. The associated homotopy categories are naturally equivalent.

Proof. Dual to 4.2, maps f,g : X — Y are homotopic via ~z if there is
a commutative diagram

(n,V)
XV, X C(XV.X)x X

(f.9) H
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Let i : X Vo X — I'X be the map given by the equations u(z;) = (z,0),
u(z2) = (z,1), where we are using z; and 23 to denote the corresponding
elements of a typical element z of X in the two components of the pointed
sum. We claim that the cylinders represented by p and (7, /) are equivalent
on the grounds that there is a commutative diagram

xvix % oxv,.x)xx

(4.5) I VHA

Xv,x & IX

where A and v are given by equations
A(z1,1),2") = (2',1/2),  A((za,1),2") = (2", 1 —1/2)

z1,2t), 0<t<1/2
v(z,t) = { Egm’glﬂ)),m) 51/2 <t< 13.

REMARK 4.6. In the case of a structure satisfying axiom (F4), Baues
[1; Chapter IT] proves that the class of weak equivalences we coincides with
the class of ‘homotopy equivalences’ determined by the homotopy relation.
In situations where the structure (K, F, we, €) does not satisfy (F4) there
i1s no reason to expect that we will contain all the homotopy equivalences
determined by ~5.

5. Projective Homotopy over a Fixed Object.

In this section, given a projective structure (P, F) in a category K, we
study associated homotopy theories in the comma category K/B, where B
is a fixed object of K. The objects of K/B are K-morphisms with codomain
B and the morphisms f : h — k of K/B are the commutative triangles

f
X Y
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where f : X — Y is a morphism of K. It may be noted that even in K is
additive the category K/B is generally non-additive. Consider the classes

P ={p:P— B|P P},

(5.1) Fp=A{f:h—=k|(f:domh — domk) € F} .

The following is easily checked.
LEMMA 5.2. The pair (Pp,Fp) is a projective structure in Kp.

Tt is well known that if K admits finite limits (respectively finite colim-
its) then so does K/B. It follows that if K and (P, F) satisfy the conditions
of Proposition 2.4 then the construction may be applied to yield a homo-
topy theory (K/B, Fp, wep, ep) satisfying axioms (F1), (F2a) and (F3).
However, if K is additive this is not the only possible construction of a
projective homotopy theory in K/B.

Suppose now that K is additive and equipped with a projective struc-
ture (P, F). These data induce the following homotopy relation in K/B.
Let f,g: X — Y be maps over B and set f ~p g if the difference f—g can
be factored (in K) through a member of P. It is easy to check that ~p is
an equivalence relation in K/B. If moreover we define a map f : X - Y
over B to be a weak equivalence if there exists a map g : ¥ — X over
B such that f;, ~p 1 and gf ~p 1, and set we to be the class of weak
equivalences then we may prove the following.

ProPosSITION 5.3. The structure (Kp, Fp,we, ep) satisfies the arioms
(F1), (F2a), (F3).

However the classes we and wep need not coincide. Indeed, ifp: P - B
is a member of Pp then the unique arrow

P B

B

bl

is, by definition, a member of wep. (The terminal object of Kp is the
identity B — B.) But it may not be the case that the arrow p — 1 lies



276

K.A. HARDIE and J.J.C. VERMEULEN

in we, since there may be no map over B from B to P. For example this
would happen in any situation where the image of p, as a subobject of B

was not B itself.
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