CUBICAL MONADS AND THEIR SYMMETRIES (*)

by MARco GRANDIS (in Genova)(**)

SOMMARIO. - Si presenta un’impostazione dell’algebra omotopica basata su un
endofuntore cilindro I, e pit: precisamente sulla nozione di diade (I, 3™, 3T,
e, g9, g+), o monade cubica. Questo quadro di base puo essere arricchito di
simmetrie, come Uinversioner : I — I e linterscambio s : I* — I? del caso
topologico classico, e anzi di simmetrie generalizzate, applicabili anche, ad es-
empio, agli oggetti cubici e alle algebre graduate differenziali. Le due monadi
associate ad una diade, il cono inferiore e il cono superiore, sono ottenute
mediante collasso di una base del cilindro; le simmetrie sono importanti per
il loro studio.

SUMMARY. - This work is concerned with a setting for homotopical algebra based
on a cylinder endofunctor I, and more precisely on the notion of diad (I,
o=, 0%, e, g, g+), or cubical monad. This basic frame can be enriched
with symmetries, as the reversion r : I — I and interchange s : I* — I?
for the classical topological case; or with generalised symmeltries, applying
also, for instance, to cubical objects or differential graded algebras. The two
monads associated to a diad, lower cone and upper cone, are obtained by
collapsing one base of the cylinder; symmelries are relevant for the study of
their properties.

Introduction.

A dioid, or cubical monoid, is here a set equipped with two monoid
structures, such that the unital element of each 1s absorbant for the other;
every lattice with 0 and 1 is so.

The “category-theoretical version” produces the notion of diad (or cu-
bical monad, or I-category) in the same way as the diagrammatical axioms
for a monoid can be turned into the axioms for a monad. However, the as-
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sociativity of the two operations is not assumed for a diad, as its relevance
in the present context is limited.

An I-category is thus a category A equipped with a cylinder endofunctor
I:A — A, two faces (or units) 97, 9% : 1 — I, a degeneracy e : [ — 1
and two connections (or operations) g=, gt : I? — [ satisfying rather
obvious coherence axioms (1.5). Tt is a “homotopy system” in the sense of
Kan [Ka], but enriched with connections. The prime example, of course,
is the cylinder endofunctor for topological spaces, I(X) = X x [0, 1], with
connections defined by the lattice operations of join and meet in [0, 1]. The
dual notion, codiad or cubical comonad or P-category, has again a well-
known representative for topological spaces, the path endofunctor P(X) =
X101 right adjoint to 7. Finally, in an TP-category, one has an adjunction
I - P transforming one structure into the other; and in a symmetrical
monoidal closed category, every dioid determines such an TP-structure (1.9;
5.3-5).

Important enrichments of this setting concern symmetries, correspond-
ing to nvolutive and commutative dioids. For the topological cylinder, we
have thus a reversion r : I — I (exchanging the lower structure (07, g7)
with the upper one) and an interchange s : I — I? (exchanging 19° with
0°I and invariant under the connections). This also happens for chain com-
plexes (5.1). For the P-categories of cubical objects or differential graded
algebras (2.1-3) we need more general notions, a generalised reversion (R, r)
and a generalised interchange (S, s), consisting of involutive endofunctors
R, S with natural transformations r : RP — PR, s : SPSP — PSPS
(2.4-5).

For a cubical object X, one obtains RX by exchanging the lower and
upper structure, SX by reversing the indexing (i’ = n+1—14, in degree n).
For cochain algebras, RA is the opposite algebra while SA = A.

A few homotopical properties of an I-category are briefly considered
in ch. 3, 4 and will be further developed elsewhere. In the presence of
pushouts and a terminal object, every I-category has two associated mon-
ads, the lower cone (C~,0,g) and the upper cone (C*,d,g), obtained by
collapsing, respectively, the upper or lower base of the cylinder (3.5, 3.7);
their operations are induced by the non-collapsed connections of 7. An in-
terchange supplies the homotopical invariance of I,C~ and Ct (3.3, 3.8),
while a reversion produces an isomorphism between the lower and upper
cone, C~ and C*t (3.9). More generally, under a generalised interchange
(S,s) the functors I,C~ and C* are invariant up to I-homotopy, where
I = SIS is the secondary cylinder; under a generalised reversion the re-
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versed lower cone RC~A is isomorphic to the upper cone CtRA of the
reversed object.

This work inserts in the study of categories with a cylinder endofunc-
tor (or “homotopy system”), originated by Kan [Ka] and pursued also by
Kamps [Km1, 3] and Baues [Ba]. Tt is also related with the notion of cate-
gory with a “generalised homotopy system” [Km2] or h-category [G1, G2],
since a semidiad (I, 07, 0%, €) is the same as an h-category with homotopy-
corepresenters (3.2). But here the second-order homotopy properties, to be
investigated in the sequel, are to follow from connections and symmetries
rather than from a vertical composition of homotopies as in [G1, G2], which
can fail in important cases like differential graded algebras.

Connections in cubical objects are investigated in works of Brown-
Higgins [BH1-3]. A recent result, analogous to the classical Moore’s one for
simplicial groups [Mo], proves that a cubical group with lower connections
is automatically Kan (Tonks [To]).

Relations can also be found with the use of monads for homology and
derived functors (cf. [BB] and references therein), and more closely with
the cone-setting for additive homotopical algebra introduced by Rodriguez
[Rd]. Note that in the additive case the cone endofunctor describes the
whole homotopical structure, since homotopies f ~ g are determined by
nullhomotopies 0 ~ g — f, which are co-represented by the cone (3.5). Note
also that the associativity axiom is not required in [Rd], but there is an
interchange s : C? — C? exchanging the faces C'9 and dC of the double
cone C?.

The links among adjunctions, (associative) monads and their algebras
are well-known and important (see Mac Lane’s text [M1]). Such topics seem
not have a counterpart here.

A formal argument in this sense can be based on the following result (I
thank D. Bourn for pointing it out to me): The category AT of algebras for
a monad T over A can be obtained as the lax limit in CAT of a diagram
naturally formed of the data of the monad itself ([Bo, Gr]). But the lax
limit of the diagram so obtained from a diad is trivial (A itself), because
of the presence of the degeneracy e.

OUuTLINE. Chapter 1 introduces dioids and diads, the dual notions
and the selfdual case of IP-categories. Ch. 2 is concerned with symmetries.
Homotopies defined by the I-structure and the associated lower- and upper-
cone monads are considered in ch. 3, together with their relations with
symmetries. Finally, ch. 4 treats homotopies in IP-categories and the
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cone-arc adjunction for the pointed case, while ch. 5 briefly sketches the
IP-structures of chain complexes, categories and reflexive graphs.

1. Dioids and Diads.

A dioid is a set equipped with two monoid structures, so that the uni-
tal element of each is absorbant for the other. The “category-theoretical
version” produces the notion of a diad, or cubical monad, or I-category.

1.1. Dioids.

A dioid will be an algebra X = (|X],1,0, . ,*) such that
a) (1,-) and (0, *) are two monoid structures over the same set |X|,

b) 0 is absorbant for . and 1 is absorbant for *: 2.0 = 0 = 0.z,
rxl=1=1x%x.

A dioid is commutative if both its binary operations are so. Given
a dioid X, the opposite dioid is obtained by exchanging the two monoid
structures

(1) RX = X" = (|X|,0,1,%,.) ,

a procedure which will be referred to as op-duality.
An involutive dioid is equipped with an involution r : [X| — |X]| ex-
changing the two monoid structures

(2) r(1) =0, r(z.y) =rzxry,

or, in other words, with a dioid-isomorphism r : X — X°. Then X
can be equivalently described as X = (| X/, 1,r,.), where (1,.) is a monoid
structure, r is a set-theoretical involution and the element 0 = r(1) is
absorbant for the product. The second operation is reconstructed as xxy =
r(rz.ry).

The category Did of dioids and homomorphisms is obvious; it is com-
plete and cocomplete. Its terminal object is the one-element dioid T = {x},
the only case where the zeroary operations coincide; the initial object is the
two-element dioid S° = {0,1}. R : Did — Did is an involutive endofunc-
tor; restricted to involutive dioids, R is isomorphic to the identity via r.
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Every unital ring A has an associated structure of involutive dioid
(3) (AL 1,7, ), r(e)=1—2, zxy=r(rzry) =z+y—z.y .

In particular the real field R has an involutive subdioid consisting of the
interval [0, 1]; and these operations ., * on [0, 1] are often used in homotopy
theory.

1.2. Lattices and idempotent dioids.

However, we shall currently use a different structure on [0, 1], which
will be called the standard-interval involutive V-dioid

(1) I=([0,1],0,m,V), r(#)=1-1t, tVt =max(tt),

its opposite being the standard interval involutive
A-dioid I°P = ([0, 1], 1,7, A).

More generally, any lattice X (with 0 and 1) has an associated V-dioid
X = (|X[,0,1,V,A) carrying the same information. As well known, the
dioids one obtains in this way are characterized by the fact that their
binary operations are commutative, idempotent and satisfy the absorption
laws.

Similarly, any involutive lattice X (equipped with an involutive anti-
automorphism) has an associated involutive V-dioid X = (|X],0,r,V). X
is a complemented lattice if moreover xVrx = 1, zx Arez = 0, and a Boolean
algebra if its two operations are mutually distributive.

Among the above examples, {*} and S° are Boolean dioids. The n-
cube involutive V-dioid I™, i.e. the cartesian power of I in Did (or in the
category of involutive lattices)

2) = ([0,1]",0,7",v), 0=(0,...0),

Tn(tl,...tn) = (1 —tl,...l —tn),

(3) (tl,...tn)\/(sl,...sn):(tl\/sl,...tn\/sn),

is a non-complemented distributive involutive lattice (for n > 1). I", en-
dowed with the euclidean topology, is a topological involutive dioid, meaning
that the involution and join are continuous.

A spectral measure for the Banach space W can be seen as a dioid-
homorphism F : X°°? — BW defined over the involutive A-dioid X°? =
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(IX],1,7,A) of a Boolean algebra X, with values in the involutive dioid
(|IBW|,1,r,.) associated to the unital ring of bounded endo-operators of
w.

1.3. Non-idempotent examples.

Besides the dioids associated to non-idempotent rings (1.1.3), a stan-
dard non-idempotent example (again on the compact real interval) is the
dioidal half-line, i.e. the Alexandroff compactification H! = [0, 4+00] of
the additive monoid [0, +oo[, with the extended sum and the involution
r(z) = ='. The opposite operation

(1) exy=(z""+y )",

can be called inverse sum, or also harmonic sum (since 1/nx1 = 1/(n+1)).

P'R = Ru {o0} and P'C = Cu {oo} have a similar structure of
involutive dioid. But H' is a topological dioid, as the sum is proper over
[0, +oo], while P'R and P'C are not.

The dioid H' has an interpretation referring to electric circuits of pure
resistors. Interpret its elements as resistances, “+” as their series combi-
nation, “x” as their parallel combination (where conductances, the inverses
of resistances, are to be added), “0” as the perfect conductor, “+o0” as
the perfect insulator. Similarly, the dioid P'C formalizes the calculus of
impedances (and their inverses, admittances) for networks of resistors, in-
ductors and capacitors in steady sinusoidal state. The operation * of H' is
also of use in geometrical optics, where p* ¢ = f is the well-known formula
relating corresponding points for a lens of focal length f.

More generally, one can consider the dioitdal n-orthant H” = Ri U{oo}
as the compactification of the additive monoid Ri, with the extended sum
and the involution, r(z) = z/||z||?. Tt is a topological dioid, since the sum
s proper over RT_IL_. Note that H™ is not a cartesian power of H', and H?

is not a subdioid of P'C (whose inverse sum is given by the involution
r(z) = 27t = z/|z]?).

Finally, if M is any topological (additive) monoid, equipped with a con-
tinuous involution r over the subspace |M| — {0}, one gets a topological
involutive dioid X = M U {oco} through one-point compactification, pro-
vided that the sum M x M — M is a proper map and that r(z) — oo for
xr — 0.
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1.4. Diagrammatic description.

Actually, we are not interested here in the algebraic theory of dioids,
but in its category-theoretical transposition. A dioid can be described as a
diagram (1) in the (cartesian) monoidal category Set

o A
(1) (1=X° == X = X? (¢=0,lor—+)

such that some diagrams, expressing the algebraic axioms, commute. And a
topological dioid is such a diagram in the cartesian category Top. One can
similarly define a dioid-object in any monoidal category (various examples
are considered in 5.3-5). It should be noted that the map e : X — X° is
determined by X (and redundant) in the cartesian case, where the neutral
element X% = {x} is the terminal object, but not generally.

1.5. Diads.

A diad, or cubical monad, or I-structure over the category A will be
a similar setting in the category EndA of endofunctors of A and natural
transformations, with respect to the monoidal structure given by the com-
position of such endofunctors. However, we do not require the associativity
axiom, which seems not of basic interest here.

In other words, a diad is a collection (I,07,9% e,97,g%) of an endo-
functor I : A — A (the cylinder endofunctor) with natural transformations,
respectively called lower face or lower unit (9~ or °), upper face (0% or
d'), degeneracy (e), connections or main operations (g~, g*)

i g°
(1) idA=1=1° = T = I? (¢=0,lor —,+)

e

making the following diagrams commutative (& # 7)

a° Ie el

1 — I I — 17 —— |

o N\ - ol

1 ] — 7 —5% 1
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18°% 81 18° 81

1 — > 7 — ] ] —— 7 —— ]
(4) \\ \f // (5) -« J \gn \
1 1 o, I LA 1

A semi-diad (or I0-category) has reduced data (7,9, €) satisfying (2).

An involutive diad is further equipped with a reversion r : I — 1
exchanging the lower and upper structure, while a symmetrical diad has an
interchange s : I1? — I? exchanging 19° with 9T and invariant under the
connections. The formal definitions will be given in ch. 2. An associative
diad verifies the associativity axiom, ¢°.1¢° = ¢.¢°1 : I> = I.

1.6. The topological cylinder.

The main example of a symmetrical involutive (and associative) diad
is the standard topological cylinder 7 : Top — Top, I(X) = X x I (with
operations V, A)

0" : X > X x1, z— (z,0),
) ot X 5 X x1I, z = (z,1),
e: X xI—>X, (z,t) — z,

VX x5 X xI, (
) AXxI?P=XxI, |

r: X xI—>XxI, (z,t) — (2,1 —1),
) s (

X x P = X x I?,
Note that our endofunctor is — x I, and all the above natural trans-

1)
1/
2)
3)
3/
4)

e —

4

formations derive from the mere structure of the standard interval I as a
commutative involutive dioid in Top (1.2.1). Similarly, any dioid-object in
any category with finite products (resp. monoidal category) produces an
associative cartesian (resp. monoidal) diad.

For instance, the real field R, with the dioid-structure considered in
1.1.3, defines a cartesian symmetrical involutive diad in the category of
differentiable manifolds, which determines the diffeohomotopies.

The category Top ' of pointed topological spaces has a similar, non-
cartesian structure, with 7(X) = (X x [0,1])/{0x} x [0, 1]; it is a pointed
structure, in the sense that I preserves the zero-object. And it is produced
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by the standard interval dioid I of Top, through the action of Top over
Top' by smash product

(5) Top' x Top = Top', (X,A) = X AA= (X x A)/({0x} x A) .

Similarly, any dioid-object in a monoidal category A produces an as-
sociative A-monoidal diad in any category equipped with an action of A.

1.7. Codiads.

Dually, a codiad, or cubical comonad, or P-category (P, 0%, e, g%) con-
sists of an endofunctor P : A — A (the path endofunctor) with natural
transformations

8¢
(1) idA=1=P° = P :=P2

€
satisfying the dual conditions. A semi-codiad (or PO-category) (P, 9~ , 8%,
e) has just a path endofunctor with faces and degeneracy verifying 9e = 1.

The standard example of a symmetrical involutive codiad is the path
functor P : Top — Top of topological spaces, right adjoint to the cylinder

endofunctor
(2) P(X)=X! (with compact-open topology),
(3) 8 :PX =X, 9" A=A0), 8t:PX =X, 9tx=A(1),
4) e: X > PX, (ex)(t)=u,
(5) ~ 2 PX = PIX, (g7 ANt t) = At V),
(3") g7 : PX = P2X, (g7 N, ) = At AY),
(6) r:PX —=>PX, (rA)(t)=A(1—1),
(6 s:P?X — P2X, (sa)(t,t') = a(t'1)

This codiad is also produced by the standard dioid 7, through the in-
ternal hom-functor given by the compact-open topology on the space X4
of continuous functions from A to X

(7) Top” x Top — Top, (A, X)— X4

and the canonical isomorphism X7*7 = (XT)I However, since Top is
not cartesian-closed, some restriction on the domain of the contravariant
variable A may be useful (1.9).
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Again, Top' has a pointed codiad, with P(X) = X', based at the
constant path at Ox. It is produced by the standard dioid I of Top,
through the functor

(8) Top®” x Top' — Top', (A, X) — X4,

where X4 is based at the constant map at Ox.

1.8. IP-categories.

Clearly, in Top and Top', the adjunction of the cylinder and path
functors is consistent with their natural transformations, so that the I- and
P-structure determine each other. An IP0-category is a category equipped
with adjoint endofunctors 7 4 P and 10, PO-structures

(1) I:A—>A P:A—>A wu:1—-Pl v:IP—>1

(vI.Ju =1,Pv.uP = 1),

(2) 11, n:I—->1, nd =1,
(2" 0 :P—=1, e:1—=> P 0Oe=1,
which are consistent with the adjunction (an adjoint map is denoted by a
£Cprime77)
(3) eA = (nA) = PnAuA:A— PIA— PA,
(3" nA = (eAd) =vA.leA:JA— IPA - A,
(4) 0°A=vAJd*PA: PA—IPA— A,
(4" 0FA=0TAuA: A— PIA - TA.

More simply, if not symmetrically, an TP0-category can be presented
as an l10-category where the endofunctor I has a right adjoint P; then the
latter is determined (up to isomorphism) and, defining e and 9¢ via (3), (4)
it is easy to prove that we get natural transformations verifying (2'), (3'),
(4"). Dually, one can start from the P-structure.

The cubical categories constructed from I or P are canonically isomor-
phic; an n-morphism A = B is equivalently determined by a map I"A — B
or by the corresponding map in the adjunction, A — P”B.
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Similarly, an IP-category is a category equipped with adjoint endofunc-
tors I 4 P and consistent I- and P-structures. We have thus connections
for I and P, satisfying their axioms (1.5; 1.7) and consistent with the ad-

Junction
(5) NI 1, ¢ :P— P
(6) ¢ A= PwA.(¥°)PA: PA— P’IPA = P?A,

VA= (¢°)TA.TPuA : I’A — I’PIA — A,
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1.9. Monoidal closed IP-structures.

Let A be a symmetrical monoidal closed category [EK, Ke], with tensor
product — ® — and internal hom-functor [—, —]; write F the identity of ®.
A dioid-object T of A (1.4)

o° g
(1) E=T = Il
produces an IP-structure over A, which will be called monoidal closed (and
cartesian closed if the tensor product is the categorical product)

(2) IA=A®I, PA=][IA4],

where, for instance, °A : A — [ A is defined by A0 AQF -5 A® I,

through the composition
(3) A=A AQE > AT =1A).

Some examples are considered in 5.3-5.

The standard TP-structure on Top is of a slightly more general nature,
as Top is not cartesian closed; it can be thought to be produced by the
standard dioid I in (Top, x), through the adjunctions X x K - Y¥,
with K variable in a suitable full subcategory K (containing the standard
interval and closed under finite products), e.g. compact, or locally compact

Hausdorff spaces. Similarly the standard IP-structure on Top " is produced
by the same dioid 7, through the functors

(4) Top' xK—=Top', (X,K)— X AK = (X x K)/([0x] x K),

(5) K? x Top' — Top', (K,Y)—[K,Y]=YX,

and the adjunctions X x K 4 Y ¥ with K variable in K.
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2. Other Examples and Symmetries.

Two well known and important P-categories are considered, cubical
objects (with connections) and differential graded algebras, also in order
to motivate our definitions of generalised symmetries. In the first case, the
associativity of cubical comonads is of interest.

2.1. Cubical objects.

A cubical object X = ((Xn),(05;), (eni), (¢95;)) is here assumed to be
equipped with faces (92,) and degeneracies (ep;), and also with lower and
upper connections

(1) 9 Xny1 = X (1=1,...,n;,=0,1)

verifying the obvious axioms (see in [BHI] the axioms for the lower con-
nections (g,,)).

Formally, this inclusion is prescribed by our definition of diad and more
consistent with the notion of simplicial object. As a matter of fact, cubical
groups (with lower connections, at least) are Kan [To].

For a category C, the category Cub C of cubical objects over C has
thus an associative cubical comonad (P; 0%, e, g°) where P shifts the cubical
object X “one degree down”, and the components of the natural transfor-
mations are obtained from the maps of X made “superfluous” from the
shifting

(1) P:CubC — Cub C,

(2) P((Xn), (0ni); (eni), (90:)) =

= ((XTL-H)’ (arab+1,i+1)’ (6ﬂ+1,i+1)’ (g;+1,i+1))’

FX:PX 5 X, (FX)n =041, Xnp1 = Xn,(3)eX : X > PX,  (eX), =
ent1,1 : Xn = Xnt1, (4)g° X ¢ P?X — PX, (¢°X)n = Int11 P Xng2 =
Xnt1 -(5)

With this structure, Cub C is the cofree associative P-category gen-
erated by C (with respect to the forgetful functor | - | from associative
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P-categories to categories). The counit of the adjunction is

(6) Vo i |Cub C] = C, Ve((Xn), (05:), (eni), (9n:)) = Xo,

whiletheunito ftheadjunction, foranassociative P—categoryA , isthe P— functorturningeveryobject

AofAintothecubicalobjectwithcomponentsP™ A and maps produced by the
natural transformations of the codiad

(7)  Ua=P.: A= CublA], P.(A) = ((P"A),(05:), (eni), (975)) -

Clearly, there is no reversion r : P — P exchanging the lower and
upper transformations of P, and no interchange s : P2 — P? exchanging
Po* with 9°P.

But we do have an ezternal reversion and an external interchange (2.4-5)
surrogating them and consisting of involutive endofunctors R, S: Cub C —
Cub C. The former exchanges the lower and upper maps of a cubical
object, giving RP = PR and RG~ = 8% R. The second reverses the indices
i according to the transformation ¢’ = n+1—i and verifies SPSP = PSPS
and SPS.0° = 9°.SPS; it produces a secondary path-functor P = SPS
which discards 0}, ,4 instead of 954 ;.

2.2. Differential graded algebras.

Let K be a commutative unital ring. We sketch now, here and in the
next section, the homotopical properties of the category Dga of dg-algebras
(differential graded unital K-algebras), as a P-category with interchange
and a generalised reversion. The proofs, which are not given here, consist
of standard but long calculations.

An object A = ((A"), (™)) is a positive cochain complex of K-modules
(indexed over Z, with A" = 0 for n < 0) with a product of graded K-
algebra consistent with the differential 97 : A® — An+!

(1) d(z.y) = dz.y+ (—l)lxlmﬁy .

The path endofunctor P : Dga — Dga is described as follows, with
e = (=1l

(2) (PA"=A"@A 'gA", 1=(1,0,1)e A" A" @ A,
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(a, h,b).(c, k,d) = (ac, hd + cak, bd),
(3) d(a, h,b) = (0a,—a + b — Jh, db),

(4) O~ (a,h,b)=a, %(a,h,b)=0b,

S(a,h,b)=h (§:07 =0t :PA— A).

The PO-structure is given by the above transformations §=,9% : P — 1,
together with

(5) e:1—= P, e(a)=1(a,0a).

2.3. The second order structure for Dga.

A generic element & = (a, h, b;u, z,v; ¢, k, d) of the second order path-
object
(1) (P2A)" =

(An @ An—l @ An) D (An—l D An—? D An—l) D (An EBAn—l EBA”) ;

will be represented as a square diagram, so that its faces 9°P and P9°
respectively appear as horizontal or vertical edges

(2) T 2 %U O~ P(&) = (a,h,b), O0FP(&) = (c,k,d),
b PO~ (¢) = (a,u,c), PI*+(€) = (b,v,d)

With the above representation, g~ and g% are given by

b -5 b a 5 b
(3) hT 0 To (4) OT 0 Th
a — b a — a
h 0
(5) g (a,h,b)=(a,h,b;h,0,0;b0,04),

(6) gt(a,h,b) =(a,0,a;0,0,h;a,h,b).
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The interchange s : P2A — P?A is obtained through a reflection with
respect to the “main diagonal” (in bold character), with a sign-change in
the middle term

e £ oa b o d
(7) UT zZ TU — hT —7Z Tk
2o ! S

s(a,h,b; u,z,v; ¢, k,d) = (a,u,c; h,—z,k; b,v,d).

Finally, it can be proved that a reversion r : P — P turning 9~ into
0% can only exist under very restrictive conditions on the ring K. But
we always have an opposite dg-algebra RA = A°P over the same graded
module

(8) a*.b* = (b.a)*, d(a*) = (=1)*l(da)* ,

and a generalised reversion (R, r)

(9) r:(PA)P = P(A), r(a,h,b)* = (b*, (=1)1"n* a)

which turns the lower structure of (PA)° into the upper structure of

P(AP).

2.4. Reversion.

Coming back to the general theory, an nvolutive diad I is equipped
with a reversion r : I — I exchanging the lower structure (07, ¢~ ) with
the upper one (9%, g%)

1 r I ¢ I 1 i» T <L I?
(1) \\\\ { r / (2) a\ \ r { Irrl
I AN

An external reversion (as -dually- in the P-category Cub C, the proce-
dure of exchanging the lower and upper maps of a cubical object), consists
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instead of an involutive (covariant) endofunctor R : A — A such that

RI = IR and

Re RO™ Rg™ 9
RI — R R — RI «—— RI
3 4
(3) ‘ % ) a;\ ‘ ‘
gtR
IR IR —— I’R

For Dga 1t is necessary to generalise both these notions. A generalised
reversion (R,r : RI — IR) consists thus of an involutive endofunctor
R : A — A with a natural transformation r verifying the following axioms
(note that r is iso, with r=! = RrR)

RrR Re RO~ Rg~

R 2L g L g r 2, R < Rgp

(5) \\ \ Aj (6) m\\ \ \
+

IR r <% pp

where r" = Ir.rl : (RI? — IRI — I?R) is the reversion of the double
cylinder. For an I0-category one should discard the diagrams concerning
the connections.

2.5. Interchange.

A symmetrical diad I is equipped with an (internal) interchange s : I? —
I? exchanging the faces 19° with 9°I and invariant under the connections

s Ie 18° g°

. R A

NN

I? I?
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In a symmetrical involutive diad the reversion has to be consistent with
the symmetry: s.Ir = rl.s.

An external interchange (such as, in Cub C, to reverse the index i)
consists of an involutive endofunctor S : A — A such that SIST = ISIS
and

(3) SISe =eSIS : SIST = 1SIS — SIS,

SISO* = 9°SIS : SIS — SIST =1SIS .

A generalised interchange can now be defined as a pair (S,s : SIST —
I1SIS) consisting of an involutive endofunctor S : A — A and a natural
transformation s verifying the following axioms (again, s is iso, with s=! =

Ss.5)

ISIs %S, sisr  _STSe 7 82751 SIST

I .
) \ { ’ %;15 (5) Isak\ J ’

I1S1S I1S1S

As in the case of cubical objects, it is of interest to note that A can
be provided with a secondary semi-diad I, and that the axiom (5) can be
rewritten in the two equivalent forms of (7)

(6) I=_SIS, e=2SeS:1—1, O =89°S:1—-1,

(7) sOT=10:T—1II, (SsS)FT=10:T—1I.

We do not have -here- examples not belonging to the simpler situations
above; nevertheless this generalised notion consents a unified treatment of
their consequences.

2.6. IP-categories and symmetries.

Let A be an TP-category (1.8), with structural adjunction 7 4 P, u :
1= PI,v:IP — 1. Wejust treat the case of strict symmetries, existing in
various examples we consider here: Top, Top ", chain or cochain complexes
(5.1); the argument extends to the generalised ones.
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A (strict) reversion p : I — I for the cylinder (2.4) produces a reversion
r : P — P for the path-endofunctor, and conversely

1) r=@Lrp™ PP Py, p=uBrpr™prdn.

Similarly, there i1s a biunivocal correspondence between interchanges o :
I? = 1%, s : P2 — P? for the cylinder (2.5) and for the path-endofunctor,
through the composed adjunction I? — P2

P?oP?

(2) s=(P? = P*I*P? P21?P? — P?),

125712

(2) o= (" - I’Pr? I*P*r* = 1% .

3. Homotopies and Cone.

We briefly treat the homotopy structure defined by a cubical monad,
the associated lower and upper cone monads and some consequences of the
symmetries on the homotopical properties of the cylinder and cone functors.

3.1. I0-categories and homotopies.

Let A be an I0-category, with semidiad
(1) F:1 = T:e, ed* =1.

A homotopy a : f — g : A = B, between parallel maps f, ¢ is given by
a map a with

(2) a:IA — B, ad” = f, adt =g .

Every map f has a vertical identity 1¢ : f — f (represented by f.eA =
eB.If : IA = B) and there is a “reduced” horizontal composition o of
cells and maps (also written by juxtaposition)

(3) koaoh=k.a.ldh:kfh — kgh: A — B,

forh: A" > Aandk:B— B .
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The homotopy relation (for f,g: A — B)
(4) f ~ g if there exists a homotopy f —g or f — g .

is reflexive and symmetrical, generally non transitive, but consistent with
composition of maps

(5) f ~ g implies kfh ~ kgh (where h : A" - A, k: B— B') .

A homotopy equivalence u : A — B is a map admitting somev : B — A
such that vu ~ 1 and uv ~ 1. Since this notion need not be stable under
composition, a finite composition u, . .. us.u; of homotopy equivalences will
be called a composed homotopy equivalence.

Under op-duality, i.e. exchanging &~ and d%1 in the semidiad, the ver-
tical domain and codomain of homotopies are inverted, while the other
notions above are invariant.

If the semidiad has a generalised interchange (S, s : SIST — ISIS), the
secondary semidiad I considered in 2.5.6 produces a notion of I-homotopy

(6) a:SIS(A) = B, a.S9"S=f aS0tS=g.

3.2. h-categories.

The above definitions of homotopies, vertical identities and reduced hor-
izontal composition make A into a “category with a generalised homotopy
system” [Km2; def. 2.1], or h-category [G1, G2].

This structure can be formally described as a category enriched over
reflexive graphs (5.5). Concretely, it consists of a category, of cells between
its maps (called homotopies) and of a reduced horizontal composition of
cells and maps verifying obvious axioms of identities and associativity:

(1) lpoaocly=a, kolfoh=I1gs,

k'o(koaoh)oh' = (k'k)oao (hh').

On the other hand, given an h-category A, define the cylinder object T A of
A to be the corepresenter of homotopies from A. In other words, it comes
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equipped with a cell ¢

o~ 10T 0t A TA

? A _/ TA

at

verifying the universal property: For every every cell ¢ : f=g: A - X
there is precisely one map F': A — X such that F o+ = ¢ (and therefore
F&~ = f, FO% = g). This also means that the square (2) is an h-pushout,
or standard homotopy pushout, or co-comma square for the h-structure.

Note that ¢ is epi on maps: F ot = G o¢ implies F = G. The map
e: IA — A is obtained by representing the vertical identity of 14.

It is now easy to verify that an I0-category is the same as an h-category
where every object has a cylinder or, equivalently, where homotopies can
be corepresented by maps.

3.3. Proposition. Homotopies and Symmetries.

Let A be an I0-category. a) In the presence of a generalised interchange
(S,s: SISI — ISIS), as defined in 2.5, the cylinder functor I is invariant
up to I-homotopy (3.1.6); hence up to homotopy in the strict case (S = 1).
b) In the presence of a generalised reversion (R,r : RI — IR), as defined
in 2.4, every homotopy a : fy — f; produces a reversed homotopy a” :
Rfi1 = Rfg; hence, from fi to fg in the strict case (R = 1).

Proof. a) Take an I-homotopy «a : I(A) = B, with a.0° = f.. Then
the following diagram commutes

s To

ITA LN mAa = IB

(1) 5’IT TI(’;’ TIf!
IA _— IA _— IA

because of the axiom 2.5.7. The diagram shows precisely that the composed
map Ta.s in the upper row is an I-homotopy from Ify to If;.
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b) The reversed homotopy a” : Rfi — Rfq is represented by the upper
row of the diagram

IRA R gra  £4  RB

(2) Ta"R TRB‘ TRJ’E (n#e).
RA — RA RA

3.4. I-homotopical categories.

Tt is well known that the basic topics of right homotopical algebra (con-
cerning homotopy cokernels) can be established in categories with cylinder
functor and pushouts. It is useful to distinguish between two levels, corre-
sponding to semidiads and diads, and respectively supplying first or second
order homotopy properties.

An I-semihomotopical category will thus be an I0-category (A, I, 97, e)
with terminal object T and pushouts. More particularly, an I-homotopical
category is an I-category (A,7,0% e, ¢g°) with terminal object T and I-
preserved pushouts. The assumption of a (generalised) interchange and a
(generalised) reversion is useful (see 3.8-9), but the latter can be avoided
by working with both the lower and upper cone associated to 1.

Let A be always I-semihomotopical. The object T is automatically 2-
terminal — for every object A there is exactly one cell A — T, the identity
oft =tA: A— T. Amapa: T — X is called a point of X, while a map
f=atA: A— X factoring through T is called a constant or T-null map.

Every morphism f : A — B has a cokernel Cok f, the pushout of the
maptA: A — T alongf, equipped with two structural maps e, ¢’ (verifying
cf =c"tA)

c=cok f: B — Cok f, T — Cok f.
A is pointed if the terminal object T is also initial; then it is also written
0 and called a zero object; note that A, having pushouts and initial object,

is finitely cocomplete. More particularly, A is I-pointed if T is initial and
preserved by I (or, equivalently, 2-initial), as it happens in Top .

3.5. The cone endofunctor.
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The T0-structure (I, 9%, e) of the I-semihomotopical category A produces
a semimonad (C,0 : 1 — (), where C = C~ = A will be called the

assoclated lower cone functor

(1) CA=Cok (0t : A TA), 6:TA—CA, d:T—CA

(2) OA=60":A—CA .

In particular, ast: T — T isiso, also 6 T : I'T — C'T is so.

The name of lower cone comes from the fact that the structure (i.e.
the face 9, but also the connection g in the I-homotopical case considered
below) is induced by the lower structure of I.

Actually, we get a based semimonad (C, d,d), where d : T — C'A (the
vertezr of the cone) is a natural transformation from the constant functor
A T to C. If A is pointed, d 1s the zero map and can be ignored.

From the homotopical viewpoint C'A is the corepresenter of (lower)
nullhomotopies. In other words, equipped with the maps 0, d and the cell

8:A—=CA d:T—=CA,

)
/ J §:0=>dtA: A= CA

T - CA
d

it verifies the universal property: For every point z : T — X and every
cell p 1 f — ot : A — X there is precisely one map g : CA — X such that
90 = f, gd =z and ¢ = ¢.

Op-dually, we also have an upper cone semimonad (C*,9 : 1 — Ct),
where

(4) CHA) = VA= Cok(d™ : A— IA) .

3.6. Lemma: The double cone.
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a) Let A be T-semihomotopical, with I-preserved pushouts. For every
object A the double (lower) cone C?A = CCA can be identified to the

colimit (¢, ¢1, ca) of the upper row of the diagram (1), where

+ + .
| AN - AL Y L

IT
(1) \ J /
C2A
2) ¢=38C.06 = C8.861, ¢ =6C.I1d=Cd.d,

Cy = dCtA = 01.6+.tA.

b) If A is I-pointed (has an I-preserved zero object), the maps ¢; and
co are just zero-maps and C2?A is the joint cokernel of the upper faces
of the double-cylinder 76%,0%7 : TA — I?A, through the epimorphism
c: I?A— C?A.

Note that the last formula in (2) shows that ¢y is determined by ¢y, so
that the pair (e, ¢1) is jointly epi.

Proof. Tt suffices to prove a). The colimit (1) is produced by the three
pushouts of diagram (3)

A —&— A

atr
Y
+
A L. oA —
(3)
It Is
Y

T 2. 04—+ X
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A o4 = 4
)
Y
d
T CA —— T

8t l atc dc

1d s
IT — — ICA —— (%A

In order to calculate X, consider now the diagram (4); the left upper
square is a pushout, by definition of C'A; then, also the right upper one is
so (their pasting is trivially a pushout); finally, also the right lower square
is a pushout, by definition of C(C A). The right rectangle is thus a pushout;
as the composed middle column of (4) coincides with the composed middle
column of (3), we have proved that X = C?A; also the formulas (2) can
be read over the diagrams (3)-(4); use the dotted part of (4) for the last
equality in (2).

3.7. Theorem: from diads to monads.

a) Let A be T-homotopical. Then the cubical (associative) monad
(1,0%,e,9%) produces a based monad (C, 0, g, d), where the connection g :
C? — (' is induced by g~ (as specified below, in (3)).

The transformation d is absorbant for g, in the sense that the following
diagram commutes

T 25 24 & o7
(1) N s ¢
cA & T

b) If A is I-pointed and has an interchange s : I? — I?, there is an
induced involutive interchange transformation s : C? — C?, exchanging
the faces C9 and 9C.

The relevance of the pointed-case assumption appears clearly from the
proof. Concretely, it is easy to see that in Top the interchange s : I? — I?
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has no induced transformation over the double-cone C2.

Proof. a) Use the above description of the double cone C? A as a colimit
(3.6). The operation g~ gives a commutative diagram (2), because of the
“absorbant element” axiom

+ + .
m & a5 opa o S

N A

3+ +
T +— A — A &

+

%

IT 2 (024 & 24

®) s |l

T 4 ca & a4

and the colimit is our operation g : C?A — CA, determined by the com-
mutative diagram (3).

It is now easy to see that (C,d, g, d) is indeed a based monad, deducing
the properties of (9, g) from the analogous ones of (97, ¢7). In particular,
the properties of d in the diagram (1) follow from the following calculations
(recall that 67 is iso (3.5), whence cancellable)

(4) g.dC =g.c;.0t =dt.ot =d ,

(5) 9.CddT =g.c1 =dt(IT)=dt(CT)IT .
b) In the pointed case, the interchange s : I? — I? of the diad

r’A % C?’A

g Lol
I’A =% C?4A

induces, by 3.6 b), an involutive transformation s : C? — C? determined

by the diagram (6). Using the formula ¢ = §C.74 of 3.6.2
(7) (s.C0).0 = s.6C. 10 = s.0C.16.107 = s.c.10” = c.s.10” =

.07 =6C10.071=6C0"C.6=0CJ.
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3.8. Homotopical invariance of cone.

Let A be I-homotopical, with a generalised interchange (S, s : SIST —
ISIS). We prove now various properties of the cone endofunctor, which
depend on s, and culminate in its invariance up to I-homotopy (and up to
homotopy for S = 1).

a) First we show that there is a canonical transformation s’ : IC — CT
induced by s : IT — II. The commutative diagram (1), together with the
fact that I preserves pushouts (applied to its upper row) produces in fact
a colimit morphism s’ A : I[CA — CTA, determined by (2)

T LA

& TA

I
15
:\
S
’:i\
=
Q‘
S
To’"

—_
—
—
(—
o+
(—
3
—_
[\]
—
o
(—
%\
~ I
il (—% ~

_|
13
N\
o
_|
I=
Q
:::\
E

b) This morphism s’ turns the maps 0°C' into the maps C'0%; in other
words, the diagram (3) below is commutative (for ¢ = 0, 1)

Qi
o
Q

CA ICA

l

cA €5 cIA

The thesis, s'.0°C = C0°, follows from the cancellation property of the
colimit cocone (4, d) ending in C'A. First, the diagram (4) below, where
each elementary quadrilateral is already known to be commutative, proves
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that s'.0°C.6 = C0°.8; similarly (5) shows that s'.0°C.d = C'6°.d

oC _
C > IC
) I
N o 7 /!
] — I
15° !
] — ]
A ca° H\

C (0}
c oc ic
d Id
Ny
T T

(5)
H t s’
1
T T
A ) ar
ca* -
C CcI

¢) Finally, the cone-functor C' is invariant up to I-homotopy. Indeed,
take a : TA — B with ad® = f.. Then the following diagram, commuta-
tive because of b), shows that the upper row & = Ca.s'A : ICA - CB
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represents an I-homotopy C'fo — Cfi

cA 2+ (cfa Lo CB

(6) ac ‘ C@’} /Cf,

A —— CA

d) For Top, the canonical transformation s’ : JC' — CT defined in a)
is not iso. But, if A is pointed (3.4), all the vertical arrows of diagram (1)
are isomorphisms, and so is s’.

e) Similarly one can show that the suspension endofunctor ¥ A = Cok(3 :
A — CA) is invariant up to I-homotopy.

3.9. The reversion of cones.

Given an I-homotopical category with generalised reversion (R, r : RI —
IR), there is a canonical cone-reversion isomorphism r¢ : RC~A — CTRA
consistent with the embedding of bases

(1) (RAZE RC- A) = (RARZS RC-A 25 0 RA)

Indeed, the automorphism R preserves pushouts and T; thus, the com-
mutative diagram (2) here below has, for colimit, the commutative diagram
(3), where r€ is iso (since r is so)

RT <— RA B2 RiaA

g |k

T «— RA — IRA

RT 24 pro-aA & RIA
T

(3)

[ [
AR ct+rA R IRA

This isomorphism can be extended to the lower and upper mapping
cones of a map f, which is of interest in order to simplify the Puppe se-
quence of f itself (to be studied in a subsequent paper).
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4. P-homotopical and IP-homotopical Categories.

IP-semihomotopical categories are characterised as h-categories with
cylinder and path-objects. In the pointed case, the cone-arc adjunction is
dealt with.

4.1. P-homotopical categories.

Dually, a P-semihomotopical (resp. P-homotopical) category A is equipped
with a semicodiad (resp. a codiad (P, %, e, g°)), has an initial object L and
pullbacks (resp. preserved by P). It is pointed (P-pointed) if L is also ter-
minal (and preserved by P).

Dga is a non-pointed P-homotopical category; L is the ring K of scalars,
while T is the null dg-algebra (an absolute terminal object). Cub C is P-
homotopical, provided that C is finitely complete, with initial object.

In a P-semihomotopical category, the associated semicomonad (F, )
consists of the (lower) co-cone, or arc-object EA=FE~A

(1) EA=Ker (0t : PA— A), §:EA—PA, d:EA— L,

(2) 0=0"6:FEA— A,

which is the pullback of iA : 1 — A along 8% : PA — A. Through the
nullhomotopy

(3) 0:0—>1Ad: EA— A

F A is the universal nullhomotopy representer of A (representing all homo-
topies into A whose vertical codomain is L-null, i1.e. factors through L, via

id: L— A).

4.2. TP0-categories and h-categories.

Analogously to the characterization 3.2 for 10-categories, an IP0O-category
is the same as an h-category where every object has a cylinder-object I A
and a path-object PA, or also where homotopies can be both corepresented
and represented.

We only write down the main part of the proof: In an h-category with
cylinder and path-objects, the functors I and P are canonically adjoint.
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The structural homotopies 14 : A = TAand 14 : PA = A are distinguished
by upper or lower indices. For every object A, the canonical homotopy ¢4 :
A = TA takes values in 1A, hence factors uniquely through the universal
cell 14 1 PIA = TA, yielding the unit w : 1 — PI of the adjunction; the
counit v = (v4 : TPA — A)4 is obtained similarly

(1) ug : A— PIA, tyaous =4,
(2) VA ZIPA—)A, ’UAOLPA:LA,
LA LA
A - IA PA = A

The naturality of the transformation u over a morphism f : A — B
follows from the diagram (5)

A 2 prAa 24 T4

(5) lf lPIf llf

B X5 pIB Z2& B

A My gpra A g4

(6) I e ||

A 2 PIA 24 TA

where the outer rectangle commutes, by definition of u and of I f, the right-
hand square commutes by definition of P(If) and the homotopy ¢7p is epi
on maps (3.2). Analogously, v is natural.

Last, we check one of the coherence conditions, vys.Jug = 174. The
diagram (6) above is commutative by definition of Tu, (left square) and of
vra (right square), whence

(7) (vraTua) ot =sppous =14 =174 004

and the thesis follows now from the cancellation property of 14.
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4.3. IP-homotopical categories.

An I P-semihomotopical (resp. IP-homotopical) category is an IPO-
(resp TP-) category (1.8) which is finitely complete and cocomplete. Note
that I, as a left-adjoint, automatically preserves | and pushouts, while P
preserves T and pullbacks.

The TP-semihomotopical category A is pointed if L = T = 0 (automat-
ically preserved by I and P).

Top is IP-homotopical, non pointed. Its initial object L= @ is absolute
(each map with values in it is iso). Tt follows that the left homotopical
structure is trivial: EA = @ for every A. Instead Top' is pointed IP-
homotopical; EA consists of the space of ares of A (paths whose end is the
base-point 04) and the functor E is right adjoint to the cone functor (see
4.4 below).

Note that the zero object 1s necessary to get this adjunction C' 4 E.
More generally, if A is I-semihomotopical, with initial object L preserved
by its cone functor C' (as it necessarily happens if C' has a right adjoint),
then A is pointed. In fact, the structural map d: T — C' L=1 yields an
arrow 1 —_1 which is necessarily reciprocal to the unique map 1L— T.

4.4. The cone-arc adjunction.

Let A be IP-semihomotopical and pointed: Then, the T-null maps and
the L-null maps coincide, so that the functors C' and E respectively corep-
resent and represent the same nullhomotopies.

It is thus easy to see that there is a canonical adjunction C' 41 E between
the (lower) cone and arc functors, which can be obtained as the adjunction
I — P in 4.2 (again the structural homotopies §4 : A — CA and 4 :
FEA — A are distinguished by upper or lower indices)

(1) ups:A— ECA, Scaousq =64,
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5. Some other examples.

Finally, we briefly sketch the IP-structure of chain complexes, small
categories and small reflexive graphs, highlighting the relations with the
monoidal closed structures.

5.1. Chain complexes.

Let D be an additive category.
The canonical projections and injections of biproducts in D are written
pr; and in;. A map

(1) f:®A; - OB (i=1,...m; j=1,...n)

of components f;; = pr;fin; will be written in the following “concrete”
form

(2) f(:L‘l,...:L‘n): (Efljxj,...zfmjl‘j),

which allows one to calculate “on variables” as in concrete categories of
modules, but can be formally justified by setting z; = pr; : ®A; = A;.

Let C.D denote the category of unbounded chain complexes A = ((A,),
(0n)), indexed over Z, with the usual morphisms (of degree zero). C.D
has a well-known h-structure (3.2), which makes it into an TP-category with
strict reversion and interchange. The calculus is a simplified version of the
case of dg-algebras (2.2-3).

A homotopy a : f — ¢ : A — B is defined by a sequence of D-maps
() so that

(3) a = (f,g,(an ZAn —>Bn+1))7 _fn + 9n :an—lan+an+1ana

with obvious horizontal composition and vertical identities

(4) kah = (kfh, kgh, (kanh)), 15 = (£, 1.(0)) .

We often write a(a) instead of a,(a), for a variable in A,. Homotopies
can be represented and corepresented, so that we have the cylinder and
path endofunctors

d(a, h,b) = (9a — h,—dh,db + h),
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(5") 6 (a) = (a,0,0), 6 (a) = (0,0, a),
A(a) = (0,a,0) (1467 =6t A— 1A),

d(a,h,b) = (da, —a+b—3Jh,0b),

(6" 0 (a,h,b)=a, 8%(a,h,b)=0,
ta(a,h,b)=h (1a:0- 509t :PA— A),

linked by a canonical adjunction T 4 P (4.2)

(7) uw:1— PI,
Un ! An — (An 7 An—l @ An) S (An+1 53] An 7 An-}—l)@
(An @An—l EBATL)1

U(CL) = (CL, 07 0) 07 CL, 0) 05 Oa a);

(8) w:IP =1,
Up: (An ® Any1 ®An) ® (A1 DA, @ Ap1)®
(Ap ® Apg1 ® An) = Ay, v(a, h, bz e, y;c,k,d)=a+e+d.

The TP0-structure is given by the faces §=,8%,97,9% of (5'), (6'), to-
gether with the degeneracies

(9) eI =1, ela,h,b)=a+b, e: I = P, ela) =(a,0,a).

As in the case of dg-algebras (2.3.1), the second order path-object P2A
has components

(10) (P2A)n =

(Ap ® App1 @ Ap) @ (Apg1 © Ao @ Apg1) © (A © Apg1 © Ap).

The connections ¢~, gt , the strict reversion r and the strict interchange
s of P are given by

(11) g_(a’h’b): (a’h’b;hﬂoﬂo;bﬂoﬂb)’

g+(aahab) = (aaoaa;oaoah;a:hab) )

(12) r:PA— PA, r(a,h,b)=(b,—h,a)
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(13) s: P?A — P2A,
s(a, h,byu,z,v;e, k,d) = (a,u,c;h,—z, k;b,v,d) .

The connections v~, ¥* and the symmetries p, o of the cylinder I
can now be derived from the adjunction (through the formulas 1.8.6 and
2.6.1-2).

C,D always has homotopy pullbacks and homotopy pushouts, which are
easily constructed from the biproducts of D (extending the construction of
P A and IA, respectively). On the other hand, clearly, C..D has finite limits
(resp. colimits) iff D has them; in this case C,D is P-homotopical (resp.
I-homotopical), by 4.3.

5.2. Positive chain complexes.

The subcategory C.D of positive chain complexes (with A, = 0 for
n < 0) has again homotopies defined as above. They are produced by a

diad I’ which is the restriction of the cylinder functor I for unbounded
complexes considered above

(1) I' ' CD5CD, (F'Ap=A,® A1 ® A, .

Assume now that D has kernels (and therefore all finite limits). Then
our h-structure is defined by an IP-structure, with path functor P’ : C.D —
C.D

(P/A)O = Ker (35“ ZAo@Al EBAQ —)Ao) .

Indeed, in this hypothesis, the embedding U : C.D — C.D has a reflec-
tor F' and a coreflector G

(3) F:C,D—-CD, (FA,=A,0r0, forn>00rn<0,

(4) G:C,D—=CD,
(GA), = A, or Kerdy or 0,forn>00orn=00rn<0,
so that the adjunctions I 4 P (in C,D) and F U 4G

U T F
(5) CD = C,D = C.D = CD
G P U

produce a composed adjunction I’ 4 P’ (in C.D), with I' = FIU, P’ =
GPU.
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5.3. Complexes of modules.

Let now K be a commutative unital ring and D = K-Mod the category
of K-modules, with the usual tensor product ® = ®x and internal hom-
functor Hom = Homp . In this case the IP-structures of CyD and C.D are
monoidal closed (1.9).

Indeed, the category C.D of unbounded chain complexes (of K-modules)
has a classical symmetrical monoidal closed structure [EK, p. 558]

(1) (A @ B)n = @p(Ap @ Bn—p):

da®b) = (da) @b+ (—=1)1?la® (9b) ,

(2) (Hom(A, B)), = II, Hom(A,, Bnyp),

(0f)x = d(fx) — (1)1 f(02)

whose identity is the complex K (concentrated in degree zero).
We obtain an “interval” I by setting I = I(K); it is a complex concen-
trated in degrees 0 and 1

(3) L=Ka&K, ©L=K 8 =)\,

and it is easy to verify that the cylinder and path functor of C.D (5.1) are
given by

(4) I(A)=T® A, P(A)=Hom(],A) .

Further the object 7 = I(K) has a dioid-structure in (C,D, ®), coming
from the diad I and the fact that I?(K) = I(I(K)) = I ® I. And this
dioid determines the whole TP-structure of C,D, according to the general
procedure for monoidal closed categories (1.9).

The same argument applies to positive chain complexes of modules,
through the appropriate monoidal closed structure. This can be derived
from the reflector F' and coreflector G (5.2); thus the new tensor product
is still expressed by (1), while the new hom is positive and has a different
formula in degree zero

(Hom (A4, B))o = Ker(dy : (II,Hom(A,, By) — II,Hom(A,, Bp_1)).

5.4. Categories.
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The category Cat of small categories is cartesian closed, with [X,Y] =
YX the category of functors X — Y and their natural transformations.
The identity of the tensor product is the ordinal 1 = {0}. The ordinal
category 2 = {0, 1} is a dioid-object in (Cat,x)

o g° (0:1) — (1:1)
(2) 1 = 22x2 (3) (AN
) (0,00 — (1,0)

where 2 x 2 is the order-category displayed in (3), while the functors 9°
and ¢° are determined by their action on the objects, as follows

(4) 0y =¢, g (i,5)=iVvyj, gt(@,j)=iAj (5,4,5=0,1).

The dioid 2 is commutative, i.e. the “cartesian interchange” s : 2x2 —
2 x 2 (s(4,j) = (4,4)) makes the diagrams 2.5.1-2 commute. And it has an
obvious generalised reversion r : 2 — 2°(r(i) = 1—1), based on the duality
involution (—)° : Cat — Cat. Our dioid produces thus a cartesian closed
IP-structure (1.9) on Cat, IX = X x2and PX = X2 (the category of maps
of X and commutative squares), with strict interchange and generalised
reversion. A homotopy for this structure, given by a functor o : IX — Y (or
by the corresponding o’ : X — PY’), amounts to a natural transformation
a: fo—= fi: X =Y between two functors f. : X — Y(f. = a.0°X); the
reversed homotopy is obviously a? : f{¥ — fo¥ : X7 — Y.

5.5. Reflexive graphs.

Consider the category Cub; of (small) reflexive graphs, or 1-truncated
cubical sets, or 1-truncated simplicial sets. To fix the notation, an object
is a diagram in Set

5¢
(1) Xo &= X, 0"e=1=0% (¢=—,4)

consisting of a set of vertices Xo, a set of arrows (or edges) X1, the domain
and codomain mappings 0, 8T, the degeneracy mapping e.

This category Cub; has a monoidal closed structure. The wnternal
hom-functor [X,Y] is given by the reflexive graph consisting of morphisms
of reflexive graphs X — Y with their transformations. The tensor product
X @Y is the subgraph of X ® Y containing all the objects (z,y) € Xo x Yg
and only those arrows (u, v) € X1 x Y7 such that either u or v is degenerated
(an identity).
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Consider now the ordinal 2 = {0, 1} as a reflexive graph, and a dioid-
object in (Cuby, ®); the description is the same as above (5.4.2-4), except-
ing the fact that the reflexive graph 2 ® 2 has four non-degenerate arrows
(as in 5.4.3, without the diagonal).

One obtains thus an IP-structure on Cub;, with /X = X ® 2 and
PX = [2,X]; to assign a homotopy a : IX — Y (or the adjoint one, o' :
X — PY) is here equivalent to give a transformation a: fo = f1 : X =Y
between two morphisms f. : X — Y of reflexive graphs. The symmetries
proceed as above.

Cat has also a monoidal closed, non cartesian, structure (called the
“funny” structure in Street [St]) where [X,Y7] is the category of functors
X =Y, with their transformations (of graph-morphisms, without requiring
the naturality condition) while X ® YV is the category generated by the
tensor product |X| ® |Y| of the underlying reflexive graphs (as above),
under the obvious relations coming from the composition in X and Y

—(g,ey).(f,ey) = (9f,ey), if f, g are composable arrows of X and y is
an object of Y,

— (ex,g).(ex, f) = (ex,gf), if f, g are composable arrows of Y and z is
an object of X.

Again, the ordinal category 2 = {0,1} produces a monoidal closed
IP-structure; a homotopy a : IX — Y amounts now to a (possibly non-
natural) transformation of functors a: fo = f1 : X = Y.
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