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SOMMARIO. - Viene data una classificazione dei gruppi finiti proiettivi lineari
PSL(2,q) e PGL(2,q) che sono quozienti del gruppo iperbolico tetraedrale
associato al tetraedro iperbolico di volume minimo. Questi gruppi finiti pos-
sono essere considerati analoght 3-dimensionali dei gruppi di Hurwitz nella
dimensione 2,che sono i quozienti finiti del gruppo iperbolico triangolare (2, 3,
7) associato al triangolo iperbolico di volume minimo oppure, in modo equiv-
alente, ¢ gruppi di automorfismi dell’ordine massimo 84(g — 1) di superfici
iperboliche (o di Riemann) di genere g.

SUMMARY. - We classify the finite projective linear groups PSL(2, q) and PGL(2,q)
which are quotients of the hyperbolic tetrahedral group belonging to the hyper-
bolic tetrahedron of smallest volume. These finite quotients can be considered
S-dimensional analogues of the Hurwitz groups in dimension 2 which are the
finite quotients of the hyperbolic (2, 3, 7)-triangle group belonging to the hy-
perbolic triangle of smallest volume or equivalently, the automorphism groups
of mazimal order 84(g—1) of closed hyperbolic (or Riemann) surfaces of genus

g.

1. Introduction.

There exists an extensive literature on the finite groups which are quo-
tients of the (2,3, 7)-triangle group, see [2]. The (2,3, 7)-triangle group is
the group of isometries of the hyperbolic plane H* consisting of the ori-
entation preserving elements in the group generated by the reflections in
the sides of a hyperbolic triangle with angles /2, n/3 and =/7. The fi-
nite quotients of the (2,3, 7)-triangle group are called Hurwitz groups and
are of interest both from an algebraic and geometric point of view. Alge-
braically, they are the finite groups with a generating system of “minimal
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type” (which are not too special): two generators of orders 2 and 3 whose
product has order 7. Geometrically, they are exactly the finite groups of
automorphisms (resp. isometries) of closed Riemann (resp. hyperbolic)
surfaces of genus ¢ > 1 of maximal possible order 84(¢g — 1). This comes
from the fact that the quotient 1[']12/(27 3,7) of the hyperbolic plane H* by
the triangle group (2, 3, 7) is the orientable hyperbolic 2-orbifold of smallest
possible volume (or equivalently, of maximal negative Euler characteristic).
Particular emphasis has been on simple Hurwitz groups. The most impor-
tant (frequent: see [8] for a formal approach to this intuitive notion) class
of simple groups are the projective special linear or linear fractional groups
PSL(2,q) over the Galois field I, of order ¢ = p™, p prime. The Hurwitz
groups of type PSL(2,q) have been classified by Macbeath in [9].

In dimension 3, that is for group actions of large orders on hyperbolic
3-manifolds, the situation is more complicated. The orientable hyperbolic
3-orbifold of minimal volume is not known (and Euler characteristics are 0
in dimension 3). The orientable hyperbolic 3-orbifolds of smallest known
volumes are either tetrahedral orbifolds , that is quotients of hyperbolic 3-
space H* by tetrahedral groups, or admit a 2-fold covering by a tetrahedral
orbifold (see [10]). A tetrahedral group is the group of orientation preserving
elements in the group of isometries in H* generated by the reflections in
the faces of a hyperbolic tetrahedron all of whose dihedral angles are of the
form w/n, n € Z;. In contrast to the infinitely many hyperbolic triangle
groups there exist only 9 bounded hyperbolic tetrahedra of this type, as
found by Lanner (see [1] or [13]). The tetrahedron 7 of smallest volume
among these 9 Lanner tetrahedra is shown in Figure 1, where a number n
at an edge denotes a dihedral angle 7/n.
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Figure 1

We denote the corresponding tetrahedral group by T'; similarly, we have the
hyperbolic tetrahedron 7’ with associated tetrahedral group 7”. The main
result of the present work is the classification of finite quotients of type
PSL(2,q) and PGL(2,q) of the tetrahedral groups T and 7", by torsion-
free subgroups. These subgroups are then the universal covering groups of
closed hyperbolic 3-manifolds with large isometry groups (containing sub-
groups PSL(2,q) or PGL(2,q)), the best known one among them being
the Seifert-Weber hyperbolic dodecahedral space. Similar methods apply
to the remaining 7 tetrahedral groups, with some appropriate modifications
of the numerical computations.

2. Preliminaries and Statement of Results.

The quotient HS/T of hyperbolic 3-space by the tetrahedral group T'
is a closed orientable hyperbolic 3-orbifold whose universal covering group
(in the sense of orbifolds, isomorphic to the orbifold fundamental group)
is the tetrahedral group T'; its underlying topological space is the 3-sphere
S$3 and its singular set is the 1-skeleton of the tetrahedron 7 (the singular
set 1s the projection of the fixed point sets of the nontrivial elements in
T, see [11] for basic definitions about orbifolds). The singular points of an
orientable 3-orbifold can be of one of the following types (the stabilizer of
a point in the universal covering projecting to the given point): cyclic Z,,
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dihedral D,, = (2,2, n), tetrahedral A4 = (2,3, 3), octahedral S4 = (2, 3, 4)
or dodecahedral Az = (2,3,5), where (2,3,n) denotes a triangle group,
spherical for n < 5. Of course, these are just the finite subgroups of the
orthogonal group SO(3). For example, the vertices of 7 are of types D,
Ds, S, and Aj, see Figure 1; in particular, these groups are subgroups of
T. Similar remarks apply to the tetrahedral group 7" associated to the
tetrahedron 7’. A presentation of T" resp. 71" is as follows:

T resp. T' = Dj ¥ A5/<(’15L°)k>v

where k = 4 resp. 5 in case of T resp. T', A5 = (z,y | 2? = ® =
(zy)> = 1), D5 = (a,b|a? = b? = (ab)® = 1) and the amalgam Z5 is
generated by ab = (zy)~!. These presentations can be obtained in one of
the following ways: either by applying Poincaré’s theorem on fundamental
polyhedra to the group generated by the reflections in the faces of the
tetrahedron and then applying the Reidemeister-Schreier subgroup method
to find a presentation of the subgroup of index 2 of orientation preserving
elements, see [1] or [12]; or by computing the orbifold fundamental group
T (HS/T) = T of the quotient orbifold by either the orbifold version of Van
Kampen’s theorem ([7]) or by applying the Wirtinger-method for knots to
the complement of the 1-skeleton of the tetrahedron, see [6, Prop.1].
Now, for a given surjection

¢:T— PSL(2,q)
with torsionfree kernel, we have the restriction
p= ¢|A5 :As — PSL(2,9)

which is injective. Therefore, in order to find the finite quotients of T' of
type PSL(2,q), we shall start with an inclusion

¢:As = PSL(2,q)
and try to extend it to a surjection
¢:T = PSL(2,q),

with torsionfree kernel.

LEMMA 1. The following are equivalent

i) AsC PSL(2,q);
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i) As C PGL(2,9);
i) ¢ =41 (mod10) or ¢ =5";
iv) V5€e F, that is 5 has a square root in .

Moreover, if this is the case, there are exactly 2 conjugacy classes of sub-
groups As in PSL(2,q) but only one in PGL(2,q), for each ¢ = p”,
p # 5, or ¢ = 52". There is only one conjugacy class of subgroups Asx
in PSL(2,52n+1).

Proof. For PSL(2,q), this is proved in [3] and [6]; for PGL(2,q) it
follows then from the fact that As is generated by two elements of order 3
and b which necessarily lie in PSL(2,q). The last statement follows from
the classification of subgroups Ajs in projective linear groups given in [3].

A matrix A € GL(2, q) projects to an element in PSL(2,q) C PGL(2,q)
if and only if its determinant det A is a square in [,. Multiplying with
(Vdet A)~ € F;, we may assume then that det A = 1 which we shall al-
ways do in the following. Then the trace of an element A € PSL(2,q) is
well defined up to sign. It will be convenient in the following to consider
PGL(2,q) as a subgroup of PSL(2,¢%). Given A € GL(2,q) its deter-
minant is always a square in the quadratic extension F 2 of F,. Then
(Vdet A)~! A has determinant 1 and represents an element in PSL(2, ¢?)
so its trace 1s again well-defined up to sign; in the following, by the trace
of an element of PG L(2, q), we shall understand this trace. Then we have:

LEMMA 2. The trace of an element in PGL(2,q) belongs to Fy C [Fy2
if and only if the element lies in PSL(2,q) C PGL(2,q).

An element in PSL(2,q) is called parabolic if its trace is equal to +2.
A proof of the following Lemma can be found in [3] or [4].

LEMMA 3.

a)  Two non-parabolic elements in PSL(2,q) (or PGL(2,q) C PSL(2,4¢%))
are conjugate if and only if they have the same trace (up to sign).

b) A non-parabolic element in PSL(2,q) (or PGL(2,q) C
PSL(2,9%)) has order 2,3,4 resp. 5 if and only if its trace is
equal to 0,%1,++/2 resp. +(1+/5)/2 (where the last stays for

four numbers).
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For the triangle group
(2,3,m)=(z,y| e’ =y’ = (zy)" = 1)
and the dihedral group
D, = (2,2,m) = (a,b | a* = b* = (a,b)™ = 1),
let G, 1 be the group

G =D« (2,3,m)/((a2)"),

m

where Z,, is generated by ab = (zy)~!.

All groups G, 1 are spherical, euclidean or hyperbolic tetrahedral groups,
where in the hyperbolic case the tetrahedron may be bounded, cusped
(some vertices on the sphere at infinity) or of infinite volume (some vertex
beyond the sphere at infinity of HS), see [11, Ch. 13] for a classification of
tetrahedra. In particular, the groups Dy, and (2,3, m) can be considered
as subgroups of Gy, 1.

The following result is an elaboration and generalization of results proved
in [5] and [6], where we were interested in the case m =7, k € {2,3,4,5}.

PROPOSITION. Let ¢ : (2,3, m) — PSL(2,q) be a homomorphism with
torsionfree kernel and let v € ', be the trace of the element p(z y) of order
m in PSL(2,q) which we assume non-parabolic. Let € ¥, resp. Iqu -F,
be the trace of an element of order k in PSL(2,q) resp. PGL(2,q) —
PSL(2,q), and let

C(r,y) = 722 —4(7’2 —1—72) + 12,

C(r,y) e F,.

Then ¢ extends to a homomorphism with torsionfree kernel ¢ : Gy ) —
PSL(2,q) resp. PGL(2,q) such that ¢(by) has trace T if and only if C(7,7)
is a square resp. a non-square in Fy. Moreover a given ¢ has at most 2
such extensions; if ¢ ertends then any extension ¢ : (2,3, m) = PSL(2,q")
has image in PSL(2,q) resp. PGL(2,q).

Proof. By conjugation one may assume that ¢(z y) is in diagonal form
(if this is not possible in PSL(2,q) it will be possible in PSU(2,4¢?) =
PSL(2,q)). The elements ¢(z) resp. ¢(y) have orders 2 resp. 3 which
gives some conditions for the coefficients of these matrices, using Lemma
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3. Then one extends ¢ : (2,3,m) - PSL(2,q) to a homomorphism
o D, g (2,3,m) = PGL(2,q) looking for all possible elements ¢’(a) of

order 2 (t:ace 0) such that also ¢'(b) = ¢'(a=! y=! 271) has order 2. Now
¢ extends to ¢ : G — PGL(2,q) if and only if, for one of the possible
choices of ¢'(a), the element ¢'(a z) has order k or, more exactly, trace 7.
For this one has to solve a quadratic equation in [F, whose discriminant is
C(7,v) -, where a € F is a square if ¢'(a) € PSL(2,¢) and a non-square
if ¢'(a) € PGL(2,q9) — PSL(2,q). This gives the number theoretical con-
dition, see [5], [6] for the details of the computations. Moreover, if there
exists an extension then there are at most 2 such extensions corresponding
to the 1 or 2 solutions of the quadratic equation, with image in PSL(2,q)
resp. PGL(2,q).

Our main results are as follows:

THEOREM 1. There exists a surjection with torsionfree kernel
¢:T — PSL(2,p") resp. PGL(2,p")
exactly in the following cases:
I) p==1 (modl10)
= -1 (mod8): PSL(2,p) and PSL(2,p?)

PSL(2,p) if 1 +/5 is a square in IF,
PSL(2,p%) if 1 ++/5 is a non-square in I,

( :
GL(2,p) if 1 +/5 is a non-square in F,
SL(2,p*) if 1 ++/5 is a square in F,
= 3 (mod8): PGL(2,p) and PSL(2,p?).

1) p=+43 (mod10):
PSL(2,p%) if 1 +/5 is a square in F,.
PSL(2,p*) if 1 +/5 is a non-square in F,.

) p=5: PSL(2,52).

THEOREM 2.There exists a surjection with torsionfree kernel

¢:T — PSL(2,p") resp. PGL(2,p")
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exactly in the following cases (note that the case of PGL(2,p") really does
not occur):

I) p==1 (modl0)
i) p non-square in F1g: PSL(2,p) and PSL(2,p?)

ii) p square in Fyq:
PSL(2,p) if (T+5v5)/2 is a square in F,
PSL(2,p%) if (T+5/5)/2 is a non-square in F,

p = £3 (mod 10) :
PSL(2,p%)  if (T4+5v5)/2 is a square in F,.
PSL(2,pY)  if (T+55)/2 is a non-square in F,.
P

=5 : PSL(2,5) = As.

3. Proof of the Theorems.

Suppose p # b5 first.

By Lemma 1 there exists a subgroup Ajs (unique up to conjugation) in
PGL(2,q9), ¢ = p", p # 5, if and only if ¢ = +1 (mod 10). This leaves
the possibilities p = +1 (mod10) and p = +3 (mod10). Any inclu-
sion ¢ : A5 = PGL(2,q) is then conjugate to an inclusion ¢ : As —
PSL(2,p) if p = 1 (mod 10) or to an inclusion ¢ : A5 — PSL(2,p?) if
p = £3 (mod 10). Starting with such an inclusion, we want to extend it to
the tetrahedral group 7' = G 4.

Let be v € F,, be one of the 2 possible traces (1 ++/5)/2 (up to sign)
of an element of order 5 in PSL(2,q), ¢ = p or p?. It is easy to see that
an element of order 5 and its square have different traces therefore both
values of 4 occur as the trace of the element ¢(z y), for some inclusion ¢.

We want to find an extension ¢ of ¢ such that ¢(az) has order 4; let

ri=+/2¢€ le or ]sz be the trace of an element of order 4. Recall that 2
is a square in [, that is +1/2 € F,,, if and only if p = +1 (mod 8).
Then C(1,9) = 1+ /5, and (1 ++/5) (1 — /5) = —4. Now —1 is a square
in I, if and only if ¢ = 1 (mod 4). Therefore, if ¢ = 1 (mod 4), both 14+/5
and 1 — /5 are squares or non-squares in [F,, whereas if ¢ = 3 (mod 4) one
is square and the other a non-square.

Suppose p = +1 (mod 10) and p = —1 (mod8). Then p = 3 (mod4)
so exactly one of the 2 values C(r,v) is a square in F,. By the Propo-
sition, we get an extension to PSL(2,p) and another one to PSL(2,p?)
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(but not to PSL(2,p) in the second case where C(7,7v) is a non-square
in F, but a square in ]sz). The first extension is surjective because Ag
is a maximal subgroup of PSL(2,p) and As has no elements of order 4
(see [3], [4] for the classification of maximal subgroups of projective linear
groups). The second extension is also surjective because the image cannot
be PGL(2,q) C PSL(2,p*) which would be the only other possibility, again
by the classification of maximal subgroups of projective linear groups; this
follows from the fact /2 € [F, which implies that every element of order 4
in PGL(2,p) is already in PSL(2,p), by Lemma 2.
The other cases under I and II are treated in a similar way.

Now suppose p = 5. Then every element of order 5 in PSL(2,5")
is parabolic. Because in the Proposition we assumed that ¢(z y) is non-
parabolic, we exchange the roles of the element ¢(z y) and ¢’(a ) of orders
5 and 4, that is we start with an inclusion

©:S4=1(2,3,4) = PSL(2,5™)

(in fact the non-squares in 5 are non-squares resp. squares in F5», n odd
resp. even). Any such inclusion is conjugate to an inclusion

©:S,=(2,3,4) > PSL(2,25),

by the classification of subgroups S4 in projective linear groups ([3]).
Now v = +v2, 7 = 42, so C(7,7) = —4 = 1 (mod5) which is a square.
Therefore ¢ extends to a surjection

¢ Gas — PSL(2,25),

and this is the only possibility.

This finishes the Proof of Theorem 1.

The Proof of Theorem 2 is analogous, with the following modifications.

Suppose p # 5. Now let v := +(1 +e+/5)/2 and 7 := +(1 + §+/5)/2
where £, 6 € {+1,—1}. Then

C(r,y) = (9458 —5V5(c +6)) /4.

If e = —§ then C'(7,v) = 1 is a square and an extension ¢ of ¢ always exists.
However the image of ¢ 1s A5 in all cases. In fact, by an easy computation
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using generators and relations for 7/ = (5 5 and permutations in As one
sees that an inclusion

¢:As > A5 C PSL(2,q)
extends 1n exactly 2 ways to a map
(]5 : G575 — Ay C PSL(Q, q)

with torsionfree kernel, and that for both extensions ¢(zy) and ¢(az)
are not conjugate in Ay, therefore one is conjugate to the square of the
other and consequentely they have different traces in PSL(2,q). By the
Proposition, any inclusion

¢:As = PSL(2,q)
has at most 2 different extensions
¢:Gs5— PSL(2,q)
for the fixed 7(# 7) which are therefore already realized by the extensions
¢ :Gs5 — As C PSL(2,9).
If ¢ = § then O(1,7) = (T+5/5)/2 and
(T45V5) (T—55)/4 = —19.

Now the traces of ¢(zy) and ¢(az) for a possible extension ¢ are equal
therefore by the above argument the image of ¢ cannot be As. Now the
proof is analogous to the proof of Theorem 1 noting that —19 is a square
in F, if and only if p is a square in 1o, by the quadratic reciprocity law.

Finally, suppose p = 5. By a direct calculation with parabolic elements
in PSL(2,5), in analogy to the proof of the Proposition, one finds that up to
conjugation the only possible surjective image is PSL(2,5) C PSL(2,5").

REMARK. Up to conjugation in the symmetric group Ss, there is exactly
one surjection

¢ZG575—)A5

with torsionfree kernel; the kernel is the universal covering group of the
Seifert-Weber hyperbolic dodecahedral space (see [1]).
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