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SOMMARIO. - A causa della sua complessita, la compattificazione di Stone-Cech
det numeri naturali é tra gli spazi topologici piu studiati. Altre compal-
tificazioni di N possono essere altrettanto complesse. In questo lavoro si
esamina il reticolo delle compattificazioni di N rispetto a due misure di
complessita.

SUMMARY. - Because of its complexily, the Stone-Cech compactification of the
natural numbers is among the most studied of topological spaces. Other
compactifications of N share in this complexity. This paper begins an exam-
ination of the lattice of compactifications of N with respect to two measures
of complexity that compactifications may share with SIN.

1. Introduction.

The Stone-Cech compactification of the natural numbers, 3N, has long
been a fascination of topologist. This is almost certainly due to the fact
that something of such tantalizing complexity could arise out of such a
topologically trivial object as the natural numbers. This complexity has
made SN into something of an example machine and one of the principle
grounds of interaction between set theory and topology.

Of course the lattice of compactifications of N is huge and there are very
many compactifications of N which are “near” N in the lattice. Perhaps
these compactification share in the complexity of SIN. It is this that we
begin to address in this paper.
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What do we mean when we say that SN is complex 7 We might of
course mean any one of an almost inexhaustable list of properties. We will
consider two of these:

1. First SN contains no nontrivial convergent sequences.

Vaughan and Dow call spaces with this property “contrasequential” [3].
We will usually use the notation w + 1 ¢ X. If w + 1 &5 alN, then this
alone forces restrictions on how small the remainder can be. In particular
|aN\ N| > 2°, where t is the smallest cardinality of a tower in P(N).
In fact it is known that a compact space of cardinality less than 2° is
sequentially compact [14, Thm 6.3], [16, Thm. 5.9]. Of course, within the
lattice of compactifications, the presence of nontrivial convergent sequences
in some cases yields as much information as their absence.

2. N contains a wealth of copies of SN.

In particular if F' is any infinite closed subset of SN then SN — F.
Clearly, all compactifications of N which share this property with SN are
contrasequential. However, it is known, at least consistently, that there are
compactifications of N which contain neither w + 1 or SN [6].

The notation substantially follows [2,7]. Information on cardinal func-
tions can be found in [8], and information on small cardinals in [14,16].

We will denote by N the set and the discrete space of the natural num-
bers and by w the cardinality of N. Also, as is customary, A* = Clgn(A)\ A
for each infinite A C N. In particular N* = N \ N.

If X is a Tychonoff space, the canonical quotient map from a larger com-
pactification yX to a smaller compactification a X will be denoted by m,4.
As usual, C*(X) denotes the algebra of all bounded real valued continuous
functions on X. C*(X) is a Banach space with the supremum norm. In
particular, C*(N) coincides with the space [, of all bounded real valued
sequences. As usual, ¢y 1s the subspace of consisting of those sequences
which converge to zero.

The closed subalgebra of C*(X) generated by a subcollection F is de-
noted by (F). C,(X) is the (closed) subalgebra of C*(X) consisting of
those functions which have continuous extensions to the compactification
aX. Usually, the unique extension of f € Co(X) to X will be denoted by
f®. The map f — f“ is an isomorphism from C,(N) onto C'(aX) and one
has || f* ||=|| f ||- The extension of f € C*(N) to SN will be denoted, as

is customary, by f*.
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If Y is a Banach space and M is a subspace of Y, then we say that M
is complemented in Y provided there is another closed subspace N of Y
for which Y = M @& N. A subspace M is complemented if and only if M 1s
the nullspace of a continuous projection defined on Y.

1. First we will consider several nontrivial examples of compactifica-
tions of N which are contrasequential.

If F is a closed subset of N* we will denote by SN/F the compactifi-
cation resulting from identifying F' to a single point.

THEOREM 1.1. Suppose that aN = pN/F, where F is a retract of fN.
Then w+ 1 4 aN.

Proof. Let r : BN — F be a retraction and let 71 = r|n. Let Ip be the
ideal of functions in C*(N) = [, whose extensions to SN vanish on F'. De-
fine a continuous linear projection P : C*(N) — C*(N) by Pf = f* ory.
Clearly the nullspace of P is exactly Irp. Thus Ip is complemented in
C*(N), and since I is of codimension one in Cy(N) , Co(N) is comple-
mented as well. Thus Cy(N) is isomorphic to C*(N) [10]. Now suppose
w+ 1 = aN. In particular, let {p, | n < w} U {p} C aN, with p, — p.
Define a mapping @ : Co(N) — cg by Qf = {f*(pn) — f*(p) }o=,. Clearly
|| @ ||< 2, so that @ is a continuous linear operator. Since any copy of
w + 1 must be C*-embedded in aN, () is surjective. By the open mapping
theorem, ) must be open. However, ) must also be weakly compact [8].
This would imply that ¢p is reflexive. Hence w + 1 4 aN. &

The hypothesis that F' is a retract of SN is satisfied, for example, if
F is of countable m-weight [15, Thm. 1.8.2]. In particular, if I C N* is
homeomorphic to SN, then w + 1 ¢ SN/F.

It is known that there are closed separable subsets of SN which are not
retracts of SN [13]. This leads to:

QUESTION. Suppose aN = SN/F, where F is separable. Can aN
contain nontrivial convergent sequences?

In any case it 1s clear that, if you identify a large enough set, then
convergent sequences must arise.
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LEMMA 1.2. Let alN be a compactification of N. If, for some p €
aN\ N, ng (p) has nonempty interior in N*, then w + 1 — aN.

Proof. Suppose WE; (p) has nonempty interior in N*. Then 71'5&1 (p)
contains a set of the form A* for some A C N. This set A, considered as a
sequence in aN. converges to p. &

REMARK 1.3. We may observe that, if there is a sequence in N which
converges to a point p in aN \ N, then 71'5; (p) has nonempty interior.

Now, how does one typically obtain convergent sequences in a compacti-
fication of N when viewed as a quotient of SN? One can proceed as follows.
Let D be any countable discrete subset of FN. Since D is C*-embedded in
BN, Clgn (D) = gN. If in this copy of SN we identify the remainder to
a point, we obtain a convergent sequence. We might in fact collapse any
closed set which contains this remainder and misses the points of . This is
in fact what always happens. Suppose {p, | n < w} is a nontrivial sequence
in alN converging to a point p. Let ¢, € 71'/501( (pn) and D = {qn | n < w}.
As before D is C*-embedded in SN so that Clgn (D) \ D = N*. In the
quotient aN, this set, and perhaps more, must be collapsed to p. From
this 1t is easy to observe that:

ProrosiTiON 1.4. Ifw+1 < alN, then there is a compactification YN,
strictly larger than aN, for which w + 1 — yN.

Proof. Let {p, | n < w} be a nontrivial convergent sequence in alN,
and let p be its limit point. Then there is a copy F of N* in SN such
that mg4(F) = {p}. Take a copy of SN in F. The compactification of N
resulting from the collapse of the remainder in this copy of SN to a point
is the desired yN. &

If X is a locally compact space, K is compact, and f : X — K is
continuous, then, clearly, there exists a minimum compactification aX of
X to which f extends. Such a compactification can actually be constructed
by endowing the disjoint union X UK with a suitable topology, which makes
it compact, and putting aX = Clxyx (X) [1,5,11]. The remainder of a X
is the singular set of f, S(f) = {y € K | for each neighborhood V of y,
f=1(V) is not compact}. The extension f of f to aX is the identity on
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aX \ X. Moreover, if vX is a compactification to which f extends, then
Tya lyx\x = f lyx\x , where f is the extension of f to vX.

If f € C*(X), then the minimum compactificaton to which f extends is
denoted by w;X. Clearly wy X'\ X is homeomorphic to a compact subspace
of R.

If F C C*(X), then we denote by wzX the minimum compactification
to which each member of F extends. Clearly wzX = sup{w;X | f € F}.
Therefore wzX \ X is homeomorphic to a subspace of the Tychonoff cube
117l Clearly the family of the extensions of the elements of F to wzX
must separate points of wzX \ X. One has w(wzX \ X) < |F| and, if X
is second countable, w(wrX) < |F|

THEOREM 1.5. Let g be a map from N into N and let f : N — N
be the composition of g and the inclusion map. Let aN be the minimum of
the compactifications of N to which f extends. Then w + 1 45 aN if and
only if g 1s is finite-to one.

Proof. We can put aN = N US(f) € NUJN. Let f denote the
extension of f to SIN. First suppose that there is n € N such that A =
g~ Y(n) = f~1(n) is infinite. Then n € S(f) = aIN\N and one has f(A*) =
{n}. Then mg,(A*) = {n}, hence, by lemma 1.2, w + 1 — aN.

Now, let g be finite to one. Then g(N) is infinite. We can replace
g(N) by N (and Clgn(9(N)) by GN), hence, without loss of general-
ity, we can suppose g surjective. Then, obviously, aN\N = S(f) =
N* so w + 1 5 aN\N. Now, let B be an infinite subset of N. Then
f(B) = g(B) is infinite. One has f(B*) = mga(B*) C aN\N = N*.
Clearly one has f(B*) = f(ClﬁN(B)) \ N. Moreover, since f is closed,
one has f(Clgn(B)) = Clan(f(B)) = Clgn(f(B)). So we have proved
Tpa(B*) = Clgn (f(B))\N = (f(B))*, which is infinite. Suppose B = {b,}
is a sequence in N converging to y € aN\N. Then mg,(B*) = {y},
contradiction. &

If # C C*(N) is countable, then wzN is metrizable, hence it has a
wealth of convergent sequences. The following proposition indicates that if
F is “nearly” countable, then the wealth of nontrivial convergent sequences
persists. We recall that the cardinal s is the minimum cardinality of a
splitting family in P(N).

ProposIiTION 1.6. Let F C C*(N) with |F| < s and let aN = wzN.
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Then, each infinite closed subset of aN and every open subset of aN which
intersects aN \ N contains a copy of w + 1.

Proof. Since w(aN) < s, by [14, Thm. 6.1] every closed subset of
aN is sequentially compact. If U is open in aN and p € U N (aN \
N), then U contains a closed neighborhood of p which must be infinite.

&

Note that, in the above theorem, N can be replaced by any locally
compact space of weight p < s.

ExampLE 1.7. Tt is of course possible to lose copies of w + 1 in the
supremum of a family of compactifications. In fact SN is the supremum of
all 2-point compactifications. However, it is even possible to lose copies of
w ~+ 1 in the supremum of two compactifications. Suppose A, B are disjoint
infinite subsets of N. Let aN be the compactification formed from SN by
identifying A* to a point, and let YN be formed by identifying B* to a
point. Each of these compactifications contains a copy of w + 1. However
aN VN = gN.

Now we consider two compactifications of an arbitrary Tychonoff space
X. Suppose that X < X and that w + 1 < aX. It should be the case
that, if ¥.X is not “too far” above aX, then w + 1 < 4X. In fact:

THEOREM 1.8. Let aX < ~vX and suppose, for each p € aX, one of
the following is true:

a. . (p) is first-countable;

b |nla(p)| < 2%
c. w(nii(p)) <s.
Then w4+ 1 — aX impliesw 4+ 1 — vX.

Proof. First suppose each fiber of 7, is finite. Let {p, | n < w} a
nontrivial sequence in aX converging to a point p. Choose ¢, € ﬂ',;o} (pn)
and let @ be the set of limit points of {¢,}. One has Q@ C 77} (p), hence Q is
finite. Then some subsequence of {¢,, } converges. Now suppose A = W,;O}(q)
is an infinite fiber. Then, by a., b or ¢., A contains a nontrivial convergent

sequence. &

Note that, if « X, yX are as in the above theorem, then w+1 < aX \ X
implies w + 1 — vX \ X.
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Let aX,vX be compactifications of X and let F C C*(X). One has
Cy(X) = [Ca(X) U F)

if and only if vX is the smallest compactification greater than or equal to
aX to which every element of F extends. In this case the family F7 of
the extensions separates points in every fiber 77} (p), where p € aX \ X.
v_o} (p) were not separated by F7, then we could

identify them to obtain a compactification still greater than or equal to

In fact, if two points in =

aX, to which each function in F extends and at the same time smaller
than vX. This contradicts the minimality of v.X.

CoROLLARY 1.9. Let Cy(X) = (Co(X)UF), where |F| < s . If
w+1l—=aX, thenw+ 1 —>~vX.

Proof. Let A = 71',;0} (p) be an arbitrary fiber. Then F7 separates points
of A. Since A is compact, this implies that w(A) < s and we can apply the
above theorem. &

We recall that, if vX = aX V JX, then 7y, and 7,5 separate points of
¥X \ X, hence w5 is injective on the fibers of m 4.

CoROLLARY 1.10. Let vX = aX VX and suppose |[§X \ X| < 2"
Then w+ 1 — aX mmpliesw + 1 — vX.

Proof. Since m,s is injective on the fibers of 7y, one has |77} (p)| < 2°
for each p € aX. &

ExampLE 1.11. Note that aX < 4X and w 4+ 1 — X do not imply
w~+ 1< aX. To see this, let K be a copy of SN which is contained in N*
and let K1 = N* be the set of nonisolated points of K. Then YN = gN/K;
contains a convergent sequence. Clearly SN/K < YN and w+1 ¢ N/K.

There is a class of compactifications of N having the property that
convergent sequences cannot disappear as you descend in the lattice. A
compactification aX of a locally compact space X is said to be singular
provided K = aX \ X is a retract of aX [4]. If f : X — K is the restriction
of a retraction, then the topology on aX may be realized by taking as a
base the collection of all open subsets of X together with sets of the form
UU(f~Y(U)\ F) where U is open in K and F is an arbitrary compact
subset of X.
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THEOREM 1.12. Suppose YN be a singular compactification of N such
that w+ 1 — yN. If aN < yN, then w + 1 — alN.

Proof. The proof is easy if the sequence in YIN can be chosen in N.
Suppose not and let {p, } be a nontrivial sequence in yN\N which converges
top € YN\ N. Let f: X — vX \ X be, as above, the restriction of a
retraction of X to the remainder. Choose ¢, € f~!(pn), for each n and let
V =UU(f~Y(U) \ F) be a basic neighborhood of p. Since all but finitely
many of p, are in U, all but finitely many of ¢,, are in V. Thus ¢, — p. $

REMARK 1.13. Tt is easy to see that, if X < +4X and 71',;; (p) is finite
for each p € a X, then w 4+ 1 — ~X implies that w + 1 — o X.

2. We now turn to what is probably a more interesting question: when
do compactifications of N contain copies of SIN7?

First we note the following:

REMARK 2.1. If PN < aN, then SN < oIN \ N. In fact, if h is the
embedding, then A(N*) N (aN \ N) is an infinite closed subset of A(N*),
so 1t contains a copy of GN.

It is well known that if the continuous image of a topological space
contains a copy of SN then the space must as well. So we have:

ProrosiTiON 2.2. If N — aX < yX then N — vX.

In section 1 we gave examples of compactifications of the form SN/F
which are contrasequential. For this kind of compactifications one has:

ProprosITION 2.3. Let F be a closed subset of N* such that w + 1 4
aN = gN/F. Then every infinite closed subset of aN contains a copy of
GN.

Proof. Put mg(F) = {p} and let H be an infinite closed subset of aN.
The proof is trivial if p ¢ H. So suppose p € H and let H; = ﬁgi(H) If
there is an open subset U of SN such that F C U and H; \ U is infinite,
we are done. In fact, in this case, H1 \ U must contain a copy B of N and
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s0 mgo(B) =2 B is a copy of SN contained in H. Then let us suppose that
Hq,\ U is finite for each open U containing F'. Since H; \ F is infinite, it
contains a countable discrete subset {p, | n < w}. Let ¢, = mga(pn), for
each n. Under our assumption, for every open subset U of SN containing
F, all but finitely many p, are in U. This clearly implies ¢, — p in alN,
contradiction. &

ExaMPLE 2.4. As in Example 1.12, let K be a copy of SN which is
contained in N* and let Ky = N* be the set of nonisolated points of K.
Then YN = SN/K; contains a convergent sequence and YN > aN =
BN/ K, which has the property that every infinite closed subset contains a
copy of fN. Therefore, that property can be lost “going up” in the lattice.

ProrosiTION 2.5. Let g be a map from N into N and let f : N — N
be the composition of g and the inclusion map. Let aN be the minimum of
the compactifications of N to which f extends. Then aIN has the property
that every infinite closed subset contains a copy of BN if and only if g is is
finite-to-one.

Proof. Let f be finite-to-one, so that, by Thm. 1.5, w + 1 <& aN.
The hypothesis implies aN \ N = N* (see section 1). Let F' be an infinite
closed subset of aN. If F'N (aN \ N) is infinite, then F' contains a copy of
BN. But, if F N (aN\ N) were finite, then F' would contain a convergent
sequence, contradiction. The converse follows direcly from Theorem 1.5.

The next theorem asserts that if SN can be realized as the supremum
of two compactification one of which is “simple”, then the other must be
“complex”.

THEOREM 2.6. Suppose PN = aN VAN and w + 1 — aN. Then
PN — yN.

Proof. If w4+ 1 < aN, then, by Thm. 1.8, some fiber A = ng(p)
is infinite. Since A is closed, it must contain a copy of fN. But 7g, is
injective on A, hence its restriction to A is an embedding. Thus SN — vN.

&
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Now, as the results of a theorem of Shapirovskii’s, we see that it is
impossible to create copies of fN from small collections of simple com-
pactifications.

TueoreM 2.7. [12, Cor. 3]. If BN — [], . Ya and k < cf(c) then
there is Mg < & such that SN — Y, .

The pertinence of this to our considerations follows:

COROLLARY 2.8. Let X be any Tychonoff space and let « X = sup{a X |
A< Kk} with k < cf(c). If BX 5 anX for each A, then X 4 aX.

Proof. We know that aX is (homeomorphic to) a subset of [T ., axX.
o

THEOREM 2.9. If SN = aN VN and BN 4 vN, then every infinite
closed subset of aN contains a copy of SNN.

Proof. One has N C aN x yN and 73, is the restriction of the first
projection. Put G = ﬂ'E;(F) Then G C F x yN. Since N < G, by
theorem 2.7 SN — F. &

CoROLLARY 2.10. Let fN = aNV (sup{"N | A < k}) with k < cf(c).
If BN &5 vaN for each A, then every infinite closed subset of aN contains

a copy of PN.

THEOREM 2.11. Suppose F is a subset of C*(N) such that |F| < c.
Suppose also that alN satisfies

C*(N) = (Co(N) U F).
Then each infinite closed subset of alN contains a copy of SIN.
Proof. Clearly, one has N = aN V wzrN. We know that w(wzN) < ¢

(see Section 1) and this implies /N ¢ wzN. Then we can apply Theorem
2.9. %

REMARK 2.12. In Theorem 2.6 we could replace the hypothesis N =
aN VvV 4N by dN = aN VvV yN, where JN is a compactification such that
every infinite closed subset contains a copy of f/N. We can do the same
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with Theorem 2.9 and Cor. 2.10. Also, in Theorem 2.11, we can replace
C*(N) by Cs(N), where 6N is a compactification which satisfies the same
condition.

In order to give a nontrivial example of a compatifications alN and of a
family F of functions which, compatibly, satisfy the hypotheses of Theorem
2.11, we need the following Lemma:

LEMMA 2.13. Let X be a normal space. Suppose Fi,Fs are closed
subsets of X and let h : Fy — Fy be a homeomorphism such that, Yz €
F1NFy one has h(z) = . LetY be the quotient space obtained by identifying
z and h(z) Ve € Fy. Then'Y is Hausdorff.

Proof. Let q be the quotient map and F' = Fy U Fy. Let y, z be distinct
point of Y. The only nontrivial case if when y,z € ¢(F). Let y1,21 € Fy
be such that q(y1) = y, ¢(z1) = z. Let U,V be open subsets of F such
that y; € U,z1 € V and U NV = . The hypotheses imply that U U h(U),
V UA(V) are open in F, and that U Uh(U) and V Uh(V) are disjoint closed
subsets of X. Let W, T be open subsets of X such that WNF = UUA(U),
TNF=VUh(V). We can choose W, T so that WNT = . In fact, let W’
and T’ be disjoint open subsets of X which contain UUW and VUA(V)
respectively. If necessary, we can replace W, T by W N W’ and T NT",
respectively. Clearly, ¢=1(¢(W)) = W and ¢~ (¢(T)) = T, so that q(W)
and ¢(7T') are disjoint open subsets of Y which contain y and z respectively.

&

EXAMPLE 2.14. Let Y be a P-space of the form Z U {z}, where 7 =
{zx : A < wi}, every z) € 7 is isolated in Y and the neighborhoods of z
are sets of the form {z}UF, where F C Z has countable complement. Now
Y can be embedded in N* [15, Thm. 4.4.4]. Clearly Y UN is regular and
Lindelof and hence normal. Since Y is closed in Y UN, Y is C*-embedded
in N*, hence Cln-(Y) = BY. Clearly, Cln+(Y) consists of {z} together
with all points of N* which are in the closure of some countable subset of
7.

Let S, T CY,with Z =SUT,SNT =0 and |S| = |T| = wy. Put
S = SU{z}, T" = TU{z}. Clearly both S’ and 7" are copies of Y,
then 3S’, BT' C N* and there is a homeomorphism h : 85" — BT’ with
h(z) = z. Since 8S’ and BT" have only z in common, by the above Lemma
we can create a compactification alN of N by identifying each point p
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in 35S’ with the point A(p) in BT'. Notice that no countable collection of
continuous functions can separate every p in 35’ from the associated points
h(p) in BT".

We are now in a position to define a collection of functions F of car-
dinality wq, such that C*(N) = (Co(N)UF). We can put S = {p, :
p<wtand T = {q, ' p < wi}, with h(p,) = ¢u. For each k < wy let
F, = Cln+({py : # < k}) and Gy, = Cln+({gqu : 1 < £}). Now, for each
Kk < wy, let f, € C*(N) be such that f%(F,) = {1} and f:(8T") = {0}.
Likewise let g, be such that g% (Gx) = {1} and g%(8S’) = {0}. Then
F={fx £ <wi}U{gx: & <wi}is the desired collection of functions.

Note that, if alN and F satisfy the hypotheses of Theorem 2.11, then
71'/50(1 (p) is finite for each p € aN. In fact, one has w(Tl'E; () < |F] < ¢,
whereas infinite closed subsets of SN must be of weight ¢. Then Theorem
2.11 could be deduced from Theorem 2.16 below. To prove it, we need the
following lemma:

LemMMA 2.15. If aN is a compactification of N such that ng(p) is
finite Vp € aN, then there exists m € N such that |7r§; (p)] < m,¥p.

Proof. Suppose that the cardinality of the fibers is unbounded, so that,
Vn € N there exists y, € aN\N such that |7r§;(yn)| > n. We can choose
a discrete A = {a,} C {yn} which still has the property |7rp_,;(an)| > n.
For each a,, choose n distinct points b(ln), . ..,bﬁ[‘) € ﬁgi(an). The sets
B; = {bgn)|n > i} are discrete and pairwise disjoint, then their closures in
BN are pairwise disjoint and homeomorphicto fN. Let 21 € Clgn (B1)\B1
and let k € N. Put B’ = {B; \ {s{",...,b{*"V}. Then Clyn(B')\ B’ =
Clgn(B1) \ B1 and there is the bijection A : bgn) — bl(:) from B’ to By
with the property ﬂ/@a(bgn)) = Wﬁa(h(bgn))),Vn > k. Then there is a point
zr € Clgn(Bx) \ Bk such that mgs(2x) = mga(z1). Since this is true for
every k € N, mg, has an infinite fiber. &

THEOREM 2.16. If aN is a compactification of N such that 71'/501( (p) is

finite Yp € aN, then every infinite closed subset of alN contains a copy of
ON.

Proof. Let F be an infinite closed subset of a«N. First suppose that the
set {p € F| |7r/golé(p)| > 1} is finite. Then, clearly, FE;(F) contains a copy



COMPLEXITY OF COMPACTIFICATIONS OF N 207

B of BN on which mg, is injective. Hence m34|p an embedding.

Now suppose that 71'5;(}7) contains infinitely many nontrivial fibers.
Put k = max{h € N| there exist infinitely many y in F' such that |7r/5§((y)| =
h}. The existence of k is ensured by Lemma 2.15. Let A = {an|n < w}
be a discrete subset of F' such that |7r,g;(an)| = k for each n. Put, for
every n, ng(an) = {ygn), . ..,ylin)} and B; = Cl/@N({yEn”n < w}). Then
By, ..., By are pairwise disjoint copies of SN contained in FE;(F) Clearly,
for each z1 € By there is z; € B;, such that mg4(2i) = ma(21), i =2,..., k.
Then, by the definition of k, there are only finitely many p € mg.(B1)
such that |7r5; (p) N By| > 1. This implies that B; contains a closed subset
B = BN such that m34|p is injective. &

Let alN be the compactification constructed in Example 2.14. We have
already remarked that, if G C C*(N) satisfies C*(N) = (Co(N) U G), then
|G| > wi. Then, under CH, no family of functions satisfies, with respect to
aN, the hypotheses of Theorem 2.11. However, each fiber of mg, is finite.

We can generalize the above theorem as follows:

THEOREM 2.17. Suppose that aN < YN and m 4 s finite-to-one. Then
~IN has the property that every infinite closed set contains a copy of SN if
and only if aN does.

Proof. First suppose that alN satifies the requested property. Let G be
an infinite closed subset of YN and put F' = 7,4 (G). Then F is closed and
infinite, hence it contains a copy of SN. But this implies that G contains
a copy of GN.

Conversely, first observe that, by Theorem 2.16, every image of IN*
with respect to a continuous finite-to-one map contains some copies of FN.
Now, let F' be an infinite closed subset of aN and let G = 77} (F). Let
B be a copy of N* contained in . Since mo|B is finite-to-one, one has

AN < m,o(B) C F. o
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