CONVERGENCE GROUPS: SEQUENTIAL COMPACTNESS
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SOMMARIO. - Si studia la compattezza sequenziale dei gruppi di convergenza,
le sue generalizzazioni (completezza, coarseness, precompaltezza sequenziale,
compaltezza calegorica ecc.), le relazioni tra esse nonché il loro impatto sulla
struttura algebrica del gruppo.

SUMMARY. - Guided by the known facts in the case of topological groups, we
study sequential compactness of convergence groups, its generalizations (com-
pleteness, coarseness, sequential precompactness, categorical compaciness etc‘),
the relations between them and their impact on the algebraic structure of the
underlying group.

Throughout this paper a group is an abelian group, a convergence
group is a group G equipped with a compatible sequential convergence
£ C GN x G satisfying the usual axioms - uniqueness of limits, convergence
of the constant sequences, the subsequence axiom, the Urysohn axiom. A
convergence group G is sequentially compact if every sequence of GG has a
converging subsequence. Sequential compactness should be considered as
a natural counterpart of compactness in the case of convergence groups. A
convergence group is sequentially precompact if each sequence has a Cauchy
subsequence. As in the case of topological groups we have

“sequentially compact” < “complete” & “sequentially precompact”.

The next generalization of sequential compactness proved to be very
fruitful. A convergence group G is coarse if every sequentially continu-
ous algebraic isomorphism G — H is an isomorphism [FZ1]. This is a
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natural counterpart of minimality in the case of convergence groups (a
Hausdorff topological group (G, 7) is minimal if G admits no Hausdorff
group topologies coarser than 7 [DPS]). It was believed for some time that
coarse groups should be sequentially precompact since Prodanov and Stoy-
anov [PS] proved that minimal topological groups are precompact ([FZ1]).
Simon and Zanolin [SZ] produced a counterexample under the assumption
of the Continuum hypothesis.

The relation between coarseness and completeness has been studied to
a greater extent. Fri¢, Zanolin and the author proved that coarse divisible
abelian groups are complete ([FZ1, Theorem 5] for torsion-free groups, and
[DFZ, Proposition 3.1] in the general case). To study further this relation
and measure how far is a convergence group from being complete the author
introduced an appropriate technique in [D2]. It led to the final description
of the class of groups on which all coarse convergences are complete (see
Theorem 3.3 below) and the construction of sequentially compact conver-
gences on each algebraically compact group in [D4]. The present paper
develops new tools (partially used already in [D4]), particularly suitable
for the study of sequentially precompact convergence groups.

In Part 1 we recall all necessary definitions and facts from [D, D2,
DFZ, FZ1, N] in order to make the paper practically selfcontained. Part 2
is divided in four sections. In the first and last ones we discuss sequential
precompactness and introduce the precompact radical which measures the
failure of precompactness and permits to consider two “approximations” of
precompactness. Here we consider also other functorial subgroups, as well
as the functorial topologies and convergences defined by means of them.
We show that metrizable coarse groups are sequentially precompact. In
the second and third section we define a natural construction of enlarging
of a given sequential convergence £ on a fixed group G and discuss the
properties of these enlargements. In case L is precompact, these enlarge-
ments describe all convergences on G coarser than £, and in particular the
coarse and the sequentially compact ones among them.

In Part 3 we apply the technique developed in Part 2 to obtain a new
coarseness criterion for sequentially precompact groups stronger than the
known ones. We also obtain a very rigid algebraic restraint for a reduced
group to admit complete coarse convergences. It extends Orsatti’s theo-
rem [O1] describing the groups which are compact in their natural topology
to the case of convergence groups by replacing “compact” by “coarse and
complete”. Moreover, the rigidity of this condition is extended also to the
convergence in question: only the functorial convergence defined by means
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of the natural topology of G may have this property (this aspect of our re-
sult generalizes also the uniqueness established in [O2]). This result gives
a restriction also for the (smaller) class C of groups admitting sequentially
compact convergences, but we show that C contains all divisible groups.
We offer also a strong criterion for non-coarseness of infinite products de-
pending only on the algebraic structure of the groups in question.

In Part 4 we collect many open questions remaining in this area of
convergence groups.

ACKNOWLEDGMENTS. The pioneering work of M. Dolcher [D] has in-
spired the author to join this field. The author’s thank go also to R. Fri¢
and F. Zanolin for many helpful conversations and advise.

1. Basic Definitions and Properties.

NoTAaTION. In what follows N denotes the set of (positive) natural
numbers, P the set of prime numbers, Z the group of integer numbers, Q
the group of rational numbers, T the unit circle group and MON the set
of strictly monotone maps N — N. We fix |X| for denoting the cardinality
of a set X. The symbols w and ¢ stand for the first infinite cardinal and
the cardinality of the continuum respectively. If X is a subset of a group
G, then <X> is the subgroup of G generated by X. We denote by G{7) the
direct sum of 7 copies of the group G, by ¢(G) - the torsion subgroup of G,
by G[n] the subgroup of elements z of G with nz = 0 (n € N), by s(G) -
the socle of G (i. e. s(G) = ®pepsp(G), where s,(G) = G[p]), by r(G) - the
free-rank of G, by r,(G) - the p-rank of G (i. e., rp(G) = dimgzpz 5,(G)).

A sequence S = {z,}5%, in a group G will be understood as a map
S : N — G with S(n) = z, for n € N. A subsequence of S is a composition
Sos with s € MON. Let P be a property concerning sequences. We say
that a sequence S has definitely P if a subsequence Sos has P for a shift
s € MON,i. e. s(n) = n+ c for some ¢ € N. The family of all sequences
in G has a natural group structure inherited from GN.

A (sequential) convergence group is a couple (G, L), where G is a group
and £ C GN x G is a convergence, i. e. this is the family of all pairs
(S,z) such that S is a sequence converging to x, we denote this by z =

limg S, or S N z, or simply S —— z. The convergence £ satisfies
five axioms: uniqueness of limits (if S — z and S — y, then z = y),
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convergence of the constant sequences, the subsequence axiom (if S — z
then for every s € MON Sos — ), the Urysohn axiom (S — z whenever
for every s € MON there exists s € MON such that Seses’ — z) and
L is compatible with the group structure of G (if S — z and ' — 2’
then S — 5" — z — 2'). Equivalently, a convergence £ is (the graph of) a
homomorphism limg : H — G, where H is a subgroup of GN (of converging
sequences) containing the image A(G) of the diagonal homomorphism G —
GN such that limge A = idg and the remaining subsequence axiom and
Urysohn axiom are satisfied. We denote by £(0)~! the family lil’nz1 0 of all
sequences converging to zero in (G, £). This is in fact an isomorphic copy
of the subgroup £ N (GN x {0}) of the group GN x G.

For a subset M of a convergence group G the closure of M is the set
of all limits of sequences contained in M. We say that M is closed (resp.
dense) if the closure of M coincides with M (resp. with G); U C G is
open if G\ U is closed. (This defines a (sequential) topology 7 on the
group G, but in general (G, 7) is not a topological group [N].) On the other
hand, every topological group (G, 7) gives rise to a convergence group by
declaring S — z for every sequence converging in 7, we denote by £, this
convergence. When 7 is metrizable, we speak of metric convergence L.

QUOTIENTS, PRODUCTS, COMPLETIONS. A homomorphism f : G — H
between convergence groups is sequentially continuous if for each converging
sequence S — z in G the sequence f(S) converges to f(z) in H. Let G
be a convergence group, N a closed subgroup of G and f : G — G/N the
quotient homomorphism. Unless otherwise stated, the group G/N will be
equipped with the convergence defined as follows: f(S) — f(z) in G/N for
a sequence S in G and z € G if for each s € MON there exist a sequence
S’ in N and s’ € MON such that Seses’ +5' — z in G. It is easy to
see that this definition 1s correct, f is sequentially continuous and has the
universal property characterizing the quotient.

Let {(G}y, £;) : © € T} be afamily of convergence groups. Their Cartesian
product G will be always provided with the convergence £ such that S — =z
in (G, L) iff for each projection p; : G — G; the sequence p;(S) converges
to pi(x) in (Gi, £i).

A sequence S in a convergence group 1s a Cauchy sequence if for every
s € MON the sequence Seos — S convergences to zero. Every convergent
sequence 1s a Cauchy sequence. A Cauchy sequence with a constant subse-
quence is convergent. It is worth noting that these notions do not depend
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on the numeration of the sequence. In fact, if 7 is a permutation of N,
then S is convergent (Cauchy) iff Ser has the same property. In this way
one may speak of convergence (being Cauchy) of countably infinite sets
instead of sequences. This permits us to form finite unions of sequences and
discuss their convergence. If {(G;, £;) : i € I} is a family of convergence
groups and G their Cartesian product with projections p; as above, then a
sequence S in G is a Cauchy sequence iff each p;(S) is a Cauchy sequence.
Therefore G is complete iff each G; is complete.

A sequential convergence group G is complete if every Cauchy sequence
in G is convergent. Let us recall that every convergence group (G, L)
has a standard completion called the Novak completion and denoted by
(G, [:) (a non-trivial sequence S in G is convergent in £ if and only if S is
contained in finitely many cosets ;4G and the corresponding subsequences
S; — z; are Cauchy sequences in G [FZ3]. A convergence group G may
have other completions non-isomorphic to G (IN]), however every complete
convergence group containing (G, £) as a dense convergence subgroup has
as underlying group G. For other good categorical properties of G see item
(€) of Fact 1.1 below.

COARSE GROUPS. The set S¢ of all group convergences on a group
G will be always considered with the partial order defined by inclusion.
Then the poset S has as bottom element the discrete convergence (where
only definitely constant sequences converge). The coatoms of S are called
coarse convergences [FZ1]. Here we recall some properties of coarse groups
which will frequently be used in the paper (particularly the external crite-
rion (c) and the internal one (d)).

Fact 1.1.

a) [FZ1] Let (G, L) be a convergence group. Then there exists a
coarse convergence £ on (i containing £.

b) [FZ1] A closed subgroup of a coarse group is a coarse group.

c) [DFZ] Let G be a dense subgroup of a convergence group G'. If G
is coarse then G is essential in G’ (i. e. meets non-trivially each
non-trivial subgroup of G'). If G’ is coarse and G is essential in
G', then G is coarse.

d) [FZ1] A convergence group G is coarse iff every sequence S of G
has one of the following two properties:
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(C1) there exists a subsequence of S converging to 0;

(Cq) there exist n € N, s1,...,8, € MON, ky,...,k, €Z
and z € G, z # 0, such that k1Ses1 + ... + kpSes, — z.

e) [FK]If f: G — K is a sequentially continuous homomorphism
into a complete convergence group K then there exists a sequen-
tially continuous homomorphism f G K coinciding with f on
G. If f is a embedding, then f(G) coincides with the closure of
F(G) in K (so that if f(G) is dense in K, then f is an algebraic
isomorphism). Moreover, if {z,} is a sequence in G such that
flen) = yin K, then 2, — f~!(z) in G.

Note that (a) is in strong contrast with the topological case (many groups,
e. g. Q, admit no minimal group topology at all). In (e) the inverse f1
need not be sequentially continuous on the closure of f(G) in K.

The following cardinal invariants were introduced in [D2] in order to
measure the non-completeness of a convergence group. For a convergence
group G and p € P define p(G) = r(G/G), pp(G) = r,(G/G) and 0, (G) =
7, (G[p]/Glp)). The group G is said to be t-complete (resp. b-complete,
J-complete, s-complete, r-complete) if p(G) = 0 (resp. G/G is a bounded
torsion group, G//G is a finite group, op(G) =0forevery pe P, p,(G) =0
for every p € P). If G is coarse, then G is essential in G by Fact 1.1 (c).
This is equivalent to p(G) = 0 and ¢,(G) = 0 for each p € P. If G is
torsion-free and p,(G) = 0,(G) = 0, then pG is closed in G ([D2, Lemma
2.1]). Thus for a torsion-free coarse group G p,(G) = 0 implies pG' closed.

2. Precompactness, Enlargements and Functorial Subgroups

SEQUENTIAL PRECOMPACTNESS. Here we consider a natural general-
ization of Cauchy sequences. A sequence S in a convergence group (G, L)
is said to be L-totally bounded if each subsequence of S has a an £-Cauchy
subsequence. Clearly a Cauchy sequence is totally bounded, but while
the union of two Cauchy sequences need not be a Cauchy sequence, finite
unions of totally bounded sequences (in particular, Cauchy sequences) is
always totally bounded.

In analogy, a sequence S in a convergence group (G, £) is said to be £-
totally unbounded if it has no £-Cauchy subsequences. A sequence S is not
L-totally bounded iff S has a subsequence which is £-totally unbounded.



CONVERGENCE GROUPS: SEQUENTIAL COMPACTNESS etc. 147

We are not going to use this notion in the sequel.

Denote by B(g,c) or simply by B the set of all L-totally bounded
sequences in (G, L£). Then B is a subgroup of GV. If ¥ is a set of se-
quences in (G, L) then (G, L) is said to be X-sequentially precompact if
Y C B,. We abbreviate GN-sequentially precompact to sequentially pre-
compact. The convergence group (G, L) is strongly sequentially precompact
if there exists a sequentially compact group containing (G, £) as a conver-
gence subgroup. Note that each sequentially compact group is strongly
sequentially precompact and each strongly sequentially precompact group
is sequentially precompact, however it is not known if the last two proper-
ties coincide as in the case of topological groups (cf. [FZ1,57] and Question
4.4).

The next lemma shows that sequential precompactness is preserved un-
der countable products and sequentially continuous homomorphic images.
It is easy to see that this holds for sequential compactness and strong se-
quential precompactness as well (apply the lemma and the preservation of
completeness under products).

LEmMA 2.1. a) If the group G is T-sequentially precompact and f :
G — H 1s a surjective sequentially continuous homomorphism, then H 1is
f(X)-sequentially precompact.

b) Let for each n € N G, be a convergence group and %, C GN. Then
the group [ Gy is [] Zn-sequentially precompact iff Gy, is T, -sequentially
precompact for each n € N.

Proof. a) follows from the fact that for a Cauchy sequence S in G the
sequence f(S) is a Cauchy sequence in G/H.

The necessity in b) follows from a). To prove the sufficiency assume
that G, is X,-sequentially precompact for each n € N and take a se-
quence S in [[X¥,. Define by induction s1,...,8,,... € MON such that
for S, = Sesqe...es, the sequence p(Sy,) is Cauchy. Now define the “di-
agonal subsequence” D by setting D(n) = S,(n). Then for each n € N
D coincides definitely with a subsequence of S, hence p,(D) is Cauchy.
Then also D is Cauchy. &

One can easily obtain from b) that sequential (pre)compactness is pre-
served also under X-products in the sense of Corson [C]. In general even
products of ¢ sequentially compact groups may fail to be sequentially pre-
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compact. In fact, Fri¢ [F3] showed that the power Z(2)¢ is not coarse.
Since it is complete, this yields that Z(2)° is not sequentially precompact.

THEOREM 2.2. Let G be a convergence group and K be a sequentially
compact subgroup of G such that the quotient G/ K is coarse (sequentially
compact). Then G is coarse (resp. sequentially compact).

Proof. Let ¢:G — G/K be the canonical homomorphism. Consider
first the case when G/K is coarse. Fix a sequence S in G and consider
the sequence (S) in G/K. Since G/K is coarse there are two possibilities
according to Fact 1.1 (d).
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CasE 1. There exists a subsequence ¢(Ses) — 0. Then there exists
s’ € MON and a sequence T in K such that Seses’ +T — 0 in G. By the
sequential compactness of K there exists s’/ € MON such that Tes” — 2
in K. Hence Soses’ss” — z in (. Therefore S satisfies either (C7) or (C2)
of Fact 1.1 (d) depending on whether z = 0 or not.

CASE 2. There exist n € N, s1,...,8, € MON, kq,...,s, € Z and
z € G\ K, such that k1p(Ses1) + ... + kn@(Sesn) — ¢(z). Then there
exists s € MON and a sequence T in K such that ¥;k;Ses;es’ +T — x in
(. By the sequential compactness of K there exists s’ € MON such that
Tos" — zin K. Then X;k;Ses;0s’es”" — x — z and obviously z — z ¢ K. So
for kj, s;es’es” (1 =1,...,n) and 2 — z # 0 (C3) holds.

The case when G/ K is sequentially compact, being much easier, is dealt
analogously. &

This theorem generalizes Proposition 2.3 of [DFZ] where the case of a
product G = (G/K) x K was considered.

Now we prove that metric coarse convergences are sequentially precom-
pact.

THEOREM 2.3. Let (G,T) be a metric topological group such that the
metric convergence L = L, is coarse. Then:

a) 7 is minimal and £ is sequentially precompact;
b) G is essential in the (compact) completion G of (G, 7);

c) L is sequentially compact iff it is complete.

Proof. a) According to [DPS] a metrizable group G is said to be M-
minimal if every continuous isomorphism of GG into a metrizable topological
group H is open. It is proved there that abelian AM-minimal groups are
minimal, hence precompact (Theorem 2.9.2). Let us see that the group
(G, 7) is M-minimal. Assume o < 7 is a metrizable group topology on G.
Thus the coarseness of £ yields £L C £, C L, C L. Hence £, = L;. Since
these topologies are metrizable, this yields ¢ = 7. This proves that 7 is
M-minimal. Ttem b) follows from Fact 1.1 (¢), item c) follows from a). ¢

ENLARGEMENTS. Now we present a coarsening construction for con-
vergences isolated from a general kind of construction frequently used in
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topological algebra [P1]. In the case of a sequentially precompact conver-
gence L it appeared in [D1]. Following Fri¢ [F2] we call it enlargement and
remove the sequential precompactness condition.

FacT 2.4. Let (G, L) be a convergence group. Then every subgroup F'
of GG satisfying F NG = 0 is closed.

Proof. Assume that S is a convergent sequence definitely contained in
F'. By the definition of G there is a subsequence S’ of S which is contained
in a coset of G. Then the difference z, — z,, for any couple of members of
S’, with sufficiently large m and n, is both in F and G. By the hypothesis
F NG =0 this difference is zero. Thus S is definitely a constant sequence,
so that im S € F. &

Throughout the rest of this Section (G, £) will be a convergence group,
F will be a subgroup of G with ' NG = 0 and ¢ the canonical homomor-
phism ¢ : G — G/F.

DEFINITION 2.5. Let (G, L) be a convergence group, F' be a subgroup
of G with FNG =0 and ¢ : G — G/F be the canonical homomorphism.
We denote by L (and call F-enlargement of L) the convergence induced
on G by G//F under the (monomorphic) restriction ¢|g.

In the next lemma we collect some easy to check properties of F-
enlargements.

LEMMA 2.6. a) With G, L and F as above, a sequence S in G converges
to 0 in Lg iff for every s € MON there exist s' € MON and an clement
f € F such that Seses' converges to f in G.

b) The assignment F — Lp is a one-to-one order preserving correspon-
dence between subgroups ofé with G N F = 0 and group convergences on
G coarser than L; in particular, Loy = L.

REMARK 2.7. a) Note that £ can be defined also without the condition
G N F = 0, but then one has various inconveniences and in particular
uniqueness of limits fails (actually the closure of 0 in Lr is GN F).

b) If the reader is still not satisfied by this apparently external charac-
terization of the F-enlargement he can make 1t intrinsic by replacing the
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subgroup F' of G by a non-empty family F of Cauchy sequences in (G, L)
closed under the usual equivalence relation (S ~ S"if S — S" — 0) and
subtraction. So in these terms the restraint F NG = 0 is given by asking F
to have no convergent sequences beyond those in £71(0). Now S € EEI(O)
iff for every s € MON there exists s’ € MON such that Seses’ € F.

According to the above lemma the assignment F'+— Lp defines a poset
isomorphism between the poset of all subgroups F of G with FN G = 0
and a subset of S consisting of convergences £’ containing £. To describe
the image of this isomorphism observe that £Lr(0)~! C B, holds always.
In the next theorem we show that this condition is also sufficient for a
convergence to be an F-enlargement of £ for some subgroup F of G. In
other words, the F-enlargements of a given convergence £ on (G coincide
precisely with the convergences £’ on GG containing £ and such that each
L'-zero sequence is L-totally bounded.

Generalizing [F2, Sec. 2], where G = Q and £ is the metric convergence
we suggest the following

DEFINITION 2.8. Let (G, L) be a convergence group and M be a con-
vergence on (G containing £. The convergence M on GG having as zero

sequences M (0)~! N B, will be called £-bounded part of M.

THEOREM 2.9. Let (G, L) be a convergence group and let M be a
convergence on G containing L. Then there exists a subgroup F of G
satisfying

FNG=0and L C M, (1)

and F is the greatest subgroup of G satisfying (1). Moreover, Lr = M,
consequently M = L whenever (G, L) is M(0)~'-sequentially precompact.
The following conditions are equivalent:

a) each M-Cauchy sequence in G is L-totally bounded;
b) BM = Bﬁ;
¢) M = Lp and G/F coincides with the Novak completion of (G, M).

Proof. Denote by G’ the Novak completion of (G, M). The identity
t: (G, L) = (G, M) extends to a sequentially continuous homomorphism ¢ :
G — G’ by Fact 1.1 (€). Set F' = keri, then FNG = 0 holds obviously. To
verify the rest of (1) note that by the categorical properties of the quotient
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there exists a sequentially continuous monomorphism g : G/F — (' such
that g = 7. Now the inclusion in (1) follows from the definition of Lp.

Now consider a subgroup F’ of G satisfying (1) and pick an element
z € F'. Then there exists a sequence S — z in G. Thus S — 0 in Lp.
By (1) this gives S — 0 in M. On the other hand, S = i(S) — i(z) in G’.
Since G’ has unique limits () = 0. This proves that # € F, so that each
subgroup of G satisfying (1) is contained in F.

To prove that L contains the £-bounded part of M take an L-totally
bounded sequence S — 0 in (G, M). We have to show that S — 0 in
L. Since L satisfies Urysohn’s axiom it is enough to see that S has a
subsequence converging to 0 in (G, Lr). By assumption there exists an £-
Cauchy subsequence S’ of S. Denote by z the £-limit of S’ in G. Applying
I gives i(z) = limg 2(S") = limpg S = 0. Thus z € F. By the definition
of Lp this means that S’ Lp-converges to 0 in G. This proves that the
L-bounded part of M is contained in L. To prove that Lp coincides with
the £-bounded part of M it suffices to recall that Lp coincides with its
L-bounded part.

Since M D L, clearly By C Bag, so the equivalence of a) and b) is
straightforward. By the first part of the proof b) implies that M = Lp since
M(0)~1 C Ba. To prove the rest of the implication b) = c) observe that
by means of the monomorphism g G/F can be identified with a convergence
subgroup of G’. We have to prove that g is surjective. Let now S be an M-
Cauchy sequence in G. By a) each subsequence S’ of S has a subsequence
S which is £-Cauchy. If S — z in G, then S = 7(S") = i(x) in the
subgroup g(G/F) of G/, so that S” is convergent in g(G/F) Since S is
M-Cauchy, this yields that S is convergent in g(G/F) Thus every M-
Cauchy sequence has a limit in g(é/F) Thus g(é/F) coincides with the
Novak completion of (G, M) as abstract group. To show they coincide
also as convergence groups it suffices to apply the definition of quotient
convergence to check that the quotient convergence of G/F has the same
property as the convergence of the Novak completion. Namely, a sequence
S in G/F converges iff each subsequence S’ of S has a subsequence S”
contained into a coset z + G and S” — z is an M-Cauchy sequence.

Assume that ¢) holds. Then M = Lp and G/F is complete. To
check a) take an M-Cauchy sequence S in G. By the completeness of
G/F there exists z = limg S in G/F. Let x = g(y) for some y € G.
Then there exists an L£-Cauchy sequence T in G such that y = lim;T

in G. Then T = o(T) Moe = g(y). Hence limp(S — T) = 0. By
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Lemma 2.6 for each s € MON there exist s € MON and f € F such that
(S = T)esos’ — f in G. Since Tosos’ — y in G we get Sesos’ — f + y in G.
Hence Seses’ is L-Cauchy. This proves that every M-Cauchy sequence is
L-totally bounded, so a) holds. O

PROPERTIES OF THE ENLARGEMENT. In the next theorem we give

again, to ease the reference, the main properties of the enlargement estab-
lished in Theorem 2.9.

THEOREM 2.10. Let (G, L) be a convergence group. Then the assign-
ment F' — Lp is an order preserving bijection between the set of all sub-
groups F ofé with F NG = 0 and the set of all L-bounded convergences
on G containing L. The Novak completion of (G, L) coincides with G/F
iff Bep, = Bz, In such a case (G, Lp) is complete WG=G+F,ie F
splits off.

According to the above corollary G/F is complete iff By, = Bg. It
will be important to find a more convenient form of this condition.

LEMMA 2.11. Let (G, L) be a convergence group, F a subgroup of G
with FNG = 0 and p € P. Consider the embedding G — G/F Then
sp(G/F) CG iff s,(G) CG+F and

péﬁngG—}-pF. (2)

Proof. Let sp(G/F) C G. Then clearly sp(é) C G + F holds. To prove
(2) take an element z € G such that pz € F. Then the coset 2 + F belongs
to s,(G/F), hence by our hypothesis = g 4+ f for some g € G, f € F.
Obviously pz = pg + pf € pG + pF.

Conversely, let sp(é) C G+ F and (2) hold. If the coset & + F in
G/F belongs to s,(G/F) then pz € F. Thus by (2) there exist g € G
and f € F such that pr = pg + pf. Set t = z — g — f, then pt = 0, so
t e sp(é) C G+ F. Consequently t = g1 + f1 with ¢y € G and f; € F.
This gives z = (g+g1)+ (f+ L) €EG+F,soz+ FC G+ F.

&

COROLLARY 2.12. Let (G, L) be a convergence group and F be a sub-
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group of G with FNG = 0 such that G/F 1s complete. Then for everyp € P
pp (G, Lp) =1,(G/(G+ F)) and p(G,LF) = r(G/(G + F)). Moreover:

a) (G, L) is b-complete iff nG C G + F for some n € N;
b) (G,Lrp) is f-complete iff G+ F has finite index in G;

) (G, LF) ist-complete iff G/(G + F) is torsion;
)

el

d) (G, Lr) is s-complete iff for each p € P 5,(G) C G + F and (2)
holds.

Proof. Since the Novak completion of (G, Lr) coincides with G/F
by Theorem 2.10, a)-c) follow from the definitions. Ttem d) follows from
Lemma 2.11. &

The following seems the most important application of Theorem 2.9.

COROLLARY 2.13. Let (G, L) be a sequentially precompact convergence
group. Then the assignment F' — Lp 1s an order preserving bijection
between the set of all subgroups F of G with FNG = 0 and the set of
all convergences on G containing L. The Novak completion of (G,LF)
cowncides with G/F Moreover the following are equivalent:

a) (G, Lr) is sequentially compact;
b) (G, Lr) is complete;
)G=G+F.

Proof. Follows from Theorem 2.10 since now every convergence M
containing £ is £-bounded and satisfies Boy = B = GV, &

Now we give a criterion for coarseness of the F-enlargement.

THEOREM 2.14. Let (G, L) be a sequentially precompact convergence
group. Then for a subgroup F of G with F NG = 0 the following are
equivalent:

a) (G, L) is a coarse convergence group;
b) F is mazimal with the property with FNG = 0;
¢) F 4 G is essential in G and for each p € P (2) holds.
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Proof. The equivalence of a) and b) follows from Corollary 2.13.

a) = c¢) By the coarseness criterion a) implies that G is essential in
G/F By Corollary 2.13 G/F is complete and so we can apply Corollary
2.12. The essentiality of G in G/F yields that (G, JLF) is t-complete and
s-complete. This implies c).

c) = a) The same argument as above yields that G is essential in its
completion G/F Now we are going to apply the coarseness criterion Fact
1.1 (). Let S be a sequence in G. By the sequential precompactness of
(G, £) it will have a subsequence S’ converging to an element z of G/F.
If z # 0, then S satisfies (C1) from Fact 1.1 (e). Assume that z # 0, then
by the essentiality of G in G//F there exists n € N such that nz € G\{0}.
Now the sequence nS’ converges to nz in (G, Lr). Thus the sequence S
satisfies in this case the condition (C3) in Fact 1.1 (e). This proves that
(G, LF) is coarse. &

Note that if in the above situation G is torsion-free then F' contains
t(G) and F' is a pure subgroup of G whenever Lp is coarse.

The F-enlargements prove to be very useful not only in the case of
sequentially precompact convergences £. Nice examples can be obtained if
one takes a metric convergence £ such that the metric completion of G is
locally compact. For G = Q and £ the usual Euclidean metric on Q the
reader may see [F2], where also unbounded convergences are considered.

FUNCTORIAL SUBGROUPS AND CONVERGENCES. Functorial subgroups
in the category of topological groups were studied in [D3]. They can be
introduced also in the category ConGr of convergence groups and se-
quentially continuous homomorphisms by assigning to each G € ConGr
a subgroup r(G) such that for every morphism f:G — H in ConGr
f(r(G)) C r(H). We begin with the simplest examples determined by
the abstract-group structure.

A subset M of a group G is c-closed if M is closed in G equipped with
any sequential convergence. Since every convergence is contained in a coarse
one (Fact 1.1 (a)) a subset M of G is c-closed iff it is closed with respect
to every coarse convergence on (G. Obviously a finite union of ¢-closed sets
is c-closed. For every n € N the subgroup G[n] is c-closed, so by virtue of
[D, Theorem 2.2], these functorial subgroups will play an important role in
our exposition. Here we list some of their properties without proof:
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a) G[0] = G, G[1] =0 and G[m] C G[n] whenever m divides n;
b) (@QGQ)[”] = @aGa[n]§

c) ifdis GCD of the (possibly infinite) family of integers {n}, then
Gld] =N, Glnal;

d) if n is the LCM of ny, ..., ns then G[k] = G[ni]+ ... + G[ns];

e) if {go} is a family of elements of G and {n,} are integers, then
for M = {z € G: (Ya)nax = go} either M = 0 or M = m + G[d]
holds, where m € M is arbitrary and d is the GCD of {nq}.

The set M described in €) is e-closed. In Theorem 3.1 below we charac-
terize the groups G such that c-closedness of the subgroups p(G is equivalent
to the stronger condition given in e).

For a group G the functorial subgroups nGG, n € N, are used to define
a topology vg, called natural topology of G ([01,03]). Tt has as a base at
0 the filterbase {nG}nen. Following [F] and [O3] set G = NS nG and
p*G = Ny_,p"G for p € P. Then vg is Hausdorft iff G, = 0. In case G is
torsion-free this is equivalent to reducedness of G (i. e. G has no divisible
subgroups beyond 0). Finally, v is precompact iff G/nG is finite for every
n €N and G, = 0.

For a prime number p the functorial subgroups p"G of G define the
p-adic topology 7, of G having as local base at 0 the filterbase {p”"G}hen.
We note that the p-adic topology 7, of G is Hausdorff iff p* G = 0. Further,
7, is precompact iff p*G = 0 and G/p"G is finite for each n € N.

These topologies are functorial: every homomorphism (G, vg) = (H,vy)
is continuous, analogously for the p-adic topology. The convergences L,
and L., (briefly £,) related to these topologies will be important for us.
Obviously, they are functorial in the same sense. Usually we impose con-
ditions ensuring that the topologies v¢ and are 7, Hausdorff in order to let
the respective convergences have unique limits.

Denote by Prec the full subcategory of all sequentially precompact
groups in ConGr. Then a typical functorial subgroup in the category
ConGer is defined by setting for each G € ConGr 7(G) to be the intersec-
tion of all sequentially continuous homomorphisms G — H with H € Prec.
Obviously 7(G/n(G)) = 0 always holds (so that 7 is a radical [D3]). Let
us call 7(G) precompact radical of G. The full subcategory Pr of conver-
gence groups G with m(G) = 0 contains Prec and is closed under taking
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subgroups and products. One can also consider the intermediate full sub-
category Pre having as objects the groups G € ConGr admitting a coarser
sequentially precompact convergence. Define a new functorial subgroup by
setting for G € ConGr 71(G) to be the intersection of all sequentially
continuous homomorphism f: G — T. Then n(G) C = (G).

ProPOSITION 2.16. a) Each countable group in Pr belongs to Pre and
each coarse group in Pre belongs to Prec. Hence every countable coarse
group in Pr is sequentially precompact.

b) mr(G) = G for every sequentially compact divisible group G with
|G| < c.

Proof. a) follows easily from Lemma 2.1.

b) Let f:G — T be a sequentially continuous homomorphism. Then
the subgroup f(G) of T must be divisible and sequentially compact, hence
closed. The only closed subgroups of T are the finite ones and T itself.
Since divisible finite groups are trivial and f cannot be surjective, we con-
clude that f is the zero homomorphism. &

Compact topological groups have many non-trivial convergent sequences
even when they are not metrizable, nevertheless we have the following con-
sequence of the above proposition.

COROLLARY 2.17. Let G be a sequentially compact divisible convergence
group with |G| < c¢. Then every sequentially continuous homomorphism of
G into a compact topological group is trivial.

In Corollary 3.10 below we show that such groups exist in profusion
(every divisible with |G| < ¢ admits a sequentially compact convergence).

3. Applications.

COARSENESS CRITERION. Applying Theorem 2.14 with F = 0 we ob-
tain the following coarseness criterion for sequentially precompact groups.

COROLLARY 3.1. A sequentially precompact group G s coarse iff G is
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essential in G.

Sequential precompactness cannot be removed here, this is witnessed
by any complete non-coarse group. This result is stronger than Criterion 2
in [DFZ] (Fact 1.1 (d)) since G is not assumed to be coarse. Actually G is
rarely coarse (it was conjectured in [D2] that G is coarse iff G /G is finite).

It is well known that each abelian group admits a precompact group
topology. It was proved in [D4] that similar result holds for sequential
convergence groups, actually each group admits a strongly sequentially
precompact convergence.

THEOREM 3.2. Ewvery group admits a sequentially precompact coarse
convergence.

Proof. By [D3, Theorem 2.2]) there exists a sequentially precompact
convergence £ on (G. By Zorn’s lemma there exists a subgroup F of its
Novak completion G such that F NG = 0 and F is maximal with this
property. Now apply Theorem 2.14 b) to conclude that the enlargement
LF 1s coarse. &

This result gives an easy proof of the fact that infinite coarse groups
are not discrete. It cannot be extended to non abelian groups as shown in
[FZ1] (Ol’shanskii’s group admits only the discrete convergence).

WHEN ALL COARSE CONVERGENCES ARE COMPLETE. Here we describe
the class A of groups on which all coarse convergences are complete.

A sequential convergence group G is said to satisfy (CL) if for every
n € N the subgroup nG is closed (D2]). Every sequentially compact groups
satisfies (CL). Tt was proved in [D2] that for coarse groups the condition
(CL) implies completeness, in particular (CL) is equivalent to completeness
for torsion-free coarse groups ([D2, Theorem 2.2]). Now we see that a
similar condition characterizes the class A.

THEOREM 3.3. For a group G each of the following conditions are
equivalent:

a) G is either divisible or bounded torsion such that for everyp € P
the p-torsion part of G has the form Z(p*)(®°) @ Z(pF+1) (@) @
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@ Z(PET) ) for some k > 1, a, > 0 and finite cardinals a;
fori>0;

b) for every p € P there exists a finite subgroup F of G and n € N
such that pG = F + G[n];

c) for every p € P the subgroup pG is c-closed;
d) every coarse convergence on GG is complete.

The proof of this theorem is given in [D4]. It makes use of the technique
of enlargements and functorial subgroups developed in Part 2.

GROUPS WITH COMPLETE COARSE CONVERGENCES. Next we study
the class C. of groups admitting complete coarse convergences. Clearly
C. contains all finite groups and all groups admitting sequentially compact
convergences. Moreover, C. is closed under finite products, since coarseness
is preserved by finite products ([F1]).

We begin the description of the smaller class of groups having a coarse
convergence with (CL). As already mentioned, for torsion-free groups com-
pleteness is equivalent to the condition (CL), so this will completely de-
scribe the torsion-free groups in the class C..

It was proved by Orsatti [O1] that a group G such that vg is compact
satisfies

G=]J(zpr x Fp), (3)

where Z, is the group of p-adic integers, F}, is a finite p-group and n, &
NuU{0} for each prime p. Moreover, a group with (3) has a unique compact
group topology, namely vg (see for example [02;, DPS]). Our next result
shows that these results can be extended to the much larger class of coarse
convergences satisfying (CL).

THEOREM 3.4. Let L be a coarse convergence on a group G with vg
Hausdorff. Then the following are equivalent:

a) L.=Lyg;
b) vg is precompact and L satisfies (CL);
c) L is sequentially compact and L = L.

In case these conditions hold G satisfies (3).
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Proof. a) = b) Assume that £ = £,,. Then the coarseness of £ implies
in virtue of Theorem 2.3 that v is precompact. It suffices to note now
that £, always satisfies (CL).

b) = a). Assume L is a coarse convergence with (CL) on G and vg is
precompact. Then the subgroup nG of G is closed for each n € N. By the
precompactness of v the quotient G/n(G is finite, hence the subgroup nG
is also open for each n € N. Assume that S — 0 in £. Fix £k € N and
assume that infinitely many members of the sequence are out of kG. Then
the complement G \ nG is closed and contains a subsequence S’ of S. This
contradicts the fact that S’ converges to 0 € kG. This proves the inclusion
L C L,,. Since L is coarse and vg is Hausdorff we conclude that £ = £, .

b) = ¢) since (CL) implies completeness. Finally, ¢) = a) is trivial.

The isomorphism (3), in case a)-c) hold, follows from Orsatti’s theorem
[O1] since now v¢ is compact. &

COROLLARY 3.5. For a group G satisfying (3) for finite p-groups F, and
non-negative integers n, L, is the unique coarse convergence satisfying

(CL) on G.

As we have seen above, the precompactness of v, required in the next
corollary, is a natural condition.

COROLLARY 3.6. If for the group G the topology v is precompact, then
the following are equivalent for G':

a) G admits a coarse convergence with (CL);

b) G admits a sequentially compact convergence;
c) G admits a compact metrizable group topology;
d) vg is compact;

e) for each prime p there exist a finite p-group F, and n, such that (3)
holds.

Proof. Obviously ¢) = d) = ¢) = b) = a). The implication
a) = e) follows from Theorem 4.4. &

COROLLARY 3.7. Let G be a group such that vg is precompact, but
not compact. Then G admits no coarse convergence satisfying (CL), so in
particular no sequentially compact convergences. If G is torsion-free then
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G ¢C..

The groups G satisfying the hypothesis of the above corollary are the
groups G with vg precompact and which fail to satisfy the isomorphism
(3). In particular, any group G with r(G) < ¢ and vg precompact works.
For example every infinite finitely generated group has this property.

Now we give a local version of the above results which characterizes the
p-adic convergence £, of a group (G. Note that the factors Zp® x F, in (3) are
uniquely determined by G since Zp” x F, = ({mG : m € N, (m,p) = 1}.

COROLLARY 3.8. Let p be a prime number and G be a torsion-free group
with p?G = 0 and G/pG finite. If L is a coarse complete convergence on
G, then L= L, and G = Z’; for k =r,(G/pG).

(GROUPS WITH SEQUENTIALLY COMPACT CONVERGENCES. Next we
study the class C of groups which admit sequentially compact convergences.
Obviously, C C C. and the class C is closed under countable products,
since sequential compactness is preserved under countable products. It was
shown in [D4] that A C C and C contains all algebraically compact groups,
while the torsion-free finite-rank groups in C are precisely the divisible ones.

According to the above results, for a torsion-free group G, such that vg
is precompact, G € C. can be witnessed only by the convergence £, .. Now
(3) looks simpler.

THEOREM 3.9. Let G be a torsion-free reduced group such that G /[pG
s finite for each prime p. Then the following are equivalent for G:

a) G € Ce.

b) G €C.

c) G=]lep ZI;" for some k, € N.

Proof. Let p € P. Since G is torsion-free, the finiteness of G/pG implies
that all quotients G/p*G (k € N) are finite. For coprime natural numbers
(n,m) = 1 one has mnG = mG NnG. Hence every quotient G/kG (k € N)
is finite. Thus vg is precompact by the reducedness of G. To prove the
implication a) = ¢) assume G € C,. and fix a complete coarse convergence
L on G. Then L satisfies also (CL) since G is torsion-free. Now Corollary
3.6 applies. The implications c) = b) and b) = a) are trivial. &
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As a direct consequence of Theorem 2.14 we obtain

CoROLLARY 3.10. Let (G, L) be a sequentially precompact group. Then
G admits a sequentially compact convergence containing L iff G splits off
in its Novak completion G. All such convergences correspond to the various
complements of G in G.

Now we give a large supply of groups in C.

COROLLARY 3.11. Let G be a divisible group and let L be a sequen-
tially precompact convergence on G. Then every coarse convergence on G
containing L is sequentially compact.

Proof. According to the above corollary it suffices to note that G splits
in G. &

This corollary provides examples of groups satisfying the hypothesis of
Corollary 2.17.

SEQUENTIALLY COMPACT CONVERGENCES ON R. Compact metric
group topologies on the reals were constructed for the first time by Halmos
[H]. Such topologies are not comparable with the euclidean topology of R.
It was proved by Prodanov [P2] that the reals do not admit a minimal group
topology coarser than the usual topology. To see that the counterpart for
convergences strongly fails fix a sequentially precompact convergence £ on
R containing the metric convergence. To obtain such a convergence it suf-
fices to take any continuous monomorphism of R into a compact metrizable
group (see for example [HR] or [DPS, Chapter 3]). By Corollary 3.11 every
coarse convergence on (G containing L is sequentially compact. Various
interesting convergences on R were constructed by Fri¢ [F2].

COARSENESS OF PRODUCTS. Now we give a negative result on coarse-
ness of infinite products. Since a closed subgroup of a coarse group is coarse
(Fact 1.1 (b)), it is enough to consider only products of coarse groups.

The following condition for a group G is satisfied by free groups

Ne_1pnG = 0 holds for every infinite sequence
of distinct primes {p, }52;.

(I

Tt is easy to see that a group satisfying (TT) is torsion-free. Among the
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subgroups G of Q those satisfying (IT) are precisely the groups of finite
type (i. e. those for which the set of primes appearing in the denominator
of elements of G is finite). An arbitrary torsion-free group G satisfies (IT)
iff all rank-one subgroups of G satisfy (TT) (or equivalently, there exists a
free subgroup F of G such that G/F is torsion with only finitely many
non-trivial primary components).

PROPOSITION 3.12. Let G be an infinite group satisfying (1) with G /pG
finite for each prime p. Then for every coarse convergence L on G only
finitely many of the subgroups pG (p € P) are closed, so that p,(G) # 0 for
all but finitely many primes p. Consequently (G, L) is not b-complete.

Proof. Let £ be a coarse convergence such that p,G is closed for in-
finitely many primes p,. Then (IT) implies that NS%,p, G = 0. This yields
that the metric topology 7 generated by the family {p,G} is Hausdorff.
Since this topology is also precompact, a similar argument as that given in
the proof of Theorem 3.4 shows that £ = £,. Now Theorem 2.3 yields that
7 is a minimal group topology. This is false since omitting the first prime
and using again (TT) we get a strictly coarser Hausdorff group topology on
G. According to [D2, Lemma 2.1], p,(G) = 0 implies pG closed, since G
is torsion-free. Therefore p,(G) # 0 for all but finitely many primes p.
Hence for the Novak’s completion G of (G, L) the quotient G /G contains
non-trivial p-torsion elements for all but finite number of primes p. Conse-
quently G'/G is not bounded torsion, so that (G, L) is not b-complete.

Finitely generated free groups satisfy the hypothesis of the next theo-
rem.

THEOREM 3.13. Let {G,}5L, be a family of coarse non-trivial groups
satisfying (T1) and such that for each n € N G,/pG, is finite for each
p € P. Then the product [[,_, Gy is not coarse.

Proof. According to [D, Theorem 1.2] the coarseness of [,_, G, yields
that all but a finite number of the groups GG, are b-complete. By Proposi-
tion 3.12 the groups GG, are not b-complete. &
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Obviously, this theorem can be proved also for products HZO:1 G, where
for infinitely many n € N G,,/pG,, is finite for each p € P and G,, satisfies
(IT).

In the following corollary we consider products of non-trivial groups.

COROLLARY 3.14. a) Let G = {G; : i € I} be a family of convergence
groups with coarse product. Then the number of finitely generated free
groups in G 1is finute.

b) Let G = {G; : i € I} be a family of coarse finitely generated free
groups. Then [, G; is coarse iff G is finite.

This corollary provides a new easy proof of the first example disproving
the preservation of coarseness under countable products given in [DFZ,
Example 2.2]. In fact, the groups G, in that example are all isomorphic to
Z, so satisfy the hypothesis of the Corollary 3.14. To understand better the
force of b) one can compare with the topological case: if G}, is the group Z
provided with the p-adic topology, then HpEP G, is totally minimal [DPS].

COARSE GROUP WITH SMALL NON-COARSE NOVAK COMPLETION. Here
we give an example of a coarse convergence group G such that G is not
coarse. An example with these properties was given already in [DFZ, Ex-
ample 3.5, Proposition 3.5.1-3.5.3] by means of the free convergence group
technique. The underlying group of that example is G = Z(*), i. e. the
free group of countable rank, and ps(G) is infinite. This shows that the
group is far from being r-complete, in particular it is far from being com-
plete. This property is rather undesirable from the point of view of the
following conjecture made in [D2]: the Novak completion of a coarse group
is coarse iff G is f-complete. We are still unable to prove or disprove this
conjecture, however, we provide here an example in the above direction
with the following two advantages: a) its underlying group is much simpler
than the group in [DFZ], b) G is very close to being f-complete, in fact
p(G) = pg(G) = 0,(G) = 04(G) =0 for each ¢ € P, ¢ # p and p,(G) = 1.
Moreover, our example has the following extremal property: being non
f-complete, the quotient G/G is (necessarily) infinite, but all its proper
subgroups are finite.

ExampLE 3.15. Let p € P and G = Z(;) be the localization of Z at
p, 1. e. the subgroup of Q consisting of all rationals with no entries of p
in the denominator. Consider the p-adic convergence £ = £, on G. It is
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precompact and its metric completion G is the group Z, of p-adic integers.
By Fact 1.1 (e) it coincides with the Novak completion of G as abstract
groups. We show now that any coarse convergence M on G containing £
has the properties mentioned above.

In fact, by Theorem 2.14 M = Lp for some subgroup F of G with
F NG = 0 and maximal with this property. Thus F' is a pure subgroup
of G, so that F Z pG. Since p( is a maximal proper subgroup of G it
follows that pG + F = G, thus the quotient G/F is p-divisible. On the
other hand, G is ¢-divisible for each ¢ € P, ¢ # p, so the quotient has
the same property. Thus the quotient G/F is divisible. By the coarseness
criterion G is essential in G so G/F is torsion-free and has the same free-
rank. Hence G/F =~ (Q as abstract groups. By Theorem 2.14 G/F coincides
with the Novak completion G of (G, LF). Thus G/G = Z(p*) - the Priifer
group. The well known properties of Z(p®) imply all properties of the
non-completeness measure of (G, Lr) mentioned above. It remains to see
that G is not coarse. This can be done as in [D1], providing an explicit
convergence containing properly the convergence of G. We prefer here to
apply the coarseness criterion from Fact 1.1 (d). Identifying G with Q
consider the sequence S in G defined by S(n) = pl—n. Then no subsequence

of S convergences to 0 in G. Assume that (C3) holds from Fact 1.1 (d).
Then there exist a non-zero r € (7, non-zero integers tq,%s,...,1x and k
subsequences Si, ..., Sk of S such that S’ = EletiSi convergences to r in
G. According to the definition of the convergence in G this will imply
that the differences of distinct members of S’ with sufficiently big numbers
belong to GG - contradiction. &
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4. Open Questions.

PRECOMPACT GROUPS. Every group admits a finest precompact group
topology, namely that generated by all characters. We do not know if
convergences have analogous property ([D4]).

QUESTION 4.1. Does every group G admit a finest sequentially precom-
pact convergence?

Positive answer to this question will yield that every (G,L) € Pre
admits a finest sequentially precompact topology coarser than £ (so that
Prec will be a bireflective subcategory of Pre). On the other hand, we do
not know if Pre is closed under products, or equivalently

QUESTION 4.2. Does a product of sequentially precompact groups admat
a coarser sequentially precompact convergence?

We do not know even if Z(2)¢ € Pre (obviously Z(2)¢ € Pr). However,
it is clear that the conjunction of positive answers to both 4.1 and 4.2 is
false. In fact, “Yes” to 4.2 yields that Pr = Pre, in particular G/7(G) €
Pre for each convergence group G. With 4.1 true the subcategory Prec
of sequentially precompact groups would be epireflective in ConGr hence
closed under products - a contradiction.

As shown in Corollary 2.17, 71 (G) # G may happen with a sequentially
compact group G. This phenomenon suggests the study of an appropriate
subclass containing the metric compact topological groups.

PrROBLEM 4.3. Describe the sequentially compact convergence groups G
having sufficiently many sequentially continuous homomorphism f: G — T.
Are they necessarily metric?

No examples are known at present to distinguish sequential precompact-
ness from strong sequential precompactness. This leaves open the following

QUESTION 4.4. Is every sequentially precompact group G strongly se-
quentially precompact? What if G is also coarse?

STABILITY UNDER QUOTIENTS. Some of our properties generalizing
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sequential compactness are stable under quotients, as sequential compact-
ness itself and (strong) sequential precompactness. This fails in the case
of coarseness and completeness. Following the case of topological groups
([DPS]) we call a convergence group G totally coarse if every quotient of
G is coarse ([Z]). The following example shows that coarseness may be
destroyed even by quotients w.r.t. simple finite subgroups. Fix a split-
ting T = Q(®) @ (Q/Z) of the circle group T and let G be the subgroup
Q) @ s(Q/Z). Then G is coarse, but for each prime p the quotient G/C,
w.r.t. the (unique) cyclic subgroup C, of T of order p is not coarse (ap-
ply Corollary 3.1). This group is not complete, but it is still possible that
complete coarse groups are totally coarse.

Uspenskii [U] has recently shown that every topological group is a quo-
tient of a Weil-complete group (this is not given explicitly in his paper [U],
but it follows immediately from one of the main results). Corollary 2.13
says that for a sequentially precompact convergence group G the quotients
(NJ/F remain complete. This leads to

QUESTION 4.5. When is completeness preserved under quotients or se-
quentially continuous isomorphisms? Is every convergence group a quotient
of a complete group?

Following the analogy with the topological case ([DPS, Chapter 7]) we
call a group G totally complete if all quotients of G are complete, and
strongly complete if every sequentially continuous isomorphic image of G is
complete. Obviously sequentially compact groups possess both properties,
while coarse complete groups are strongly complete. Hence for the class
T of groups admitting a totally complete and totally coarse convergence
we have C C 7. C C.. Note that a torsion-free group G belongs to 7. iff
G /G, € T.. Hence the characterization of the torsion-free groups in 7. is
bounded to that of reduced ones.
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PRECOMPACTNESS OF THE COARSE GROUPS. The question of sequen-
tial precompactness of coarse groups is far from being resolved. We do not
know if C'H can be removed from the only known example of a coarse group
which is not sequentially precompact ([SZ]). Tt is not known whether that
example is totally coarse; if “Yes” then it would be also totally complete
by [D2, Theorem 3.2].

QUESTION 4.6. Is it consistent with ZFC' that every (totally) coarse
group 1s sequentially precompact?

The algebraic structure of a group G may have an impact on the pre-
compactness of the coarse convergences on (. It is not known whether
all coarse convergences on the groups Z or Q are sequentially precompact.
Theorem 3.2 suggests the following

QUESTION 4.7.Does every infinite group admit a non-precompact coarse
convergence?

CATEGORICALLY COMPACT GROUPS. A convergence group G is c-
compact 1if for every convergence group H the canonical projection p: G X
H — H sends closed subgroups of G x H to closed subgroup of H. It can be
proved that GG is e-compact iff it is totally complete and strongly complete
(i. e. every sequentially continuous homomorphic image of G is complete,
[D5]). In particular, sequential compactness implies c-compactness. Tt
was proved recently by Uspenskii and the author [DU] that categorically
compact abelian topological groups (defined in analogous way) are com-
pact. The proof is essentially based on the precompactness of the minimal
abelian topological groups. On the other hand, the categorically compact
linearly topologized modules are the linearly compact ones [DT]. Both facts
suggest the following

QUESTION 4.8. [Is every c-compact group sequentially compact (or at
least coarse)?

QUESTION 4.9. Is every (totally) coarse c-compact group sequentially
compact?
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PropucTs. In all known examples of infinite products which fail to be
coarse the groups are not complete.

QUESTION 4.10. Are countable products of (totally) coarse (totally)
complete groups coarse?

If “Yes” then the class C. (resp. 7¢) is closed under countable products.
Productivity for totally complete, totally minimal topological groups was

established in [ED].

It is easy to see that finite products of c-compact groups are again c-
compact, we do not know if this can be extended to the case of (countably)
infinite products.

The generalization of preservation of some property under finite prod-
ucts in the sense of Theorem 2.2 is known also as “three-space-problem”
(see [EDS] where this problem is studied for (total) minimality of topolog-
ical groups). We propose the following “multiple” question.

QUESTION 4.11. Let K be a closed subgroup of a convergence group G.
If both K and G/K are (totally} coarse (or/and sequentially precompact)
does G have the same property? What if K is complete?

ALGEBRAIC VS SEQUENTIAL COMPACTNESS. By a result of Lo$ [L] (see
also [F, Theorem 42.3]), algebraically compact groups are characterized as
groups admitting w-limits (groups G with a homomorphism w-lim: GN -G
satisfying only the constant sequence axiom, so that the Urysohn axiom and
the subsequence axiom are missing but now all sequences are convergent
[F, §42]). The key to the proof is the fact that the quotient GN/G™)
is algebraically compact. In the case of groups admitting w-limits GV is
the group of all converging sequences. Consider now a convergence group
(G, L£). Then the set p(L) of all converging sequences in (G, £) is a subgroup
of GN with G™V) C £71(0) C p(£) and p(L)/GN) = G x L~1(0)/GMN.
This suggests the following;:

QUEsTION 4.12. Let (G, L) be a sequentially compact group. Is then
p([,)/G(N) algebraically compact?

If “Yes” then also G will be algebraically compact, hence the class C
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coincides with the class of algebraically compact groups in view of the
other inclusion proved in [D4]. In the case of negative answer remains
the possibility to use the inclusion C C C., so that it would be helpful to
describe C.. At this stage we do not know even if 7w e ¢, (or 7 e ¢,
note that this group is not algebraically compact).
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