LINKING TWO MINIMAL TRIANGULATIONS
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SOMMARIO. - Si presenta un algoritmo per collegare due triangolazioni “min-
imali” del piano proiettivo complesso CP?. La prima é la triangolazione
simpliciale a 9 vertici di Kihnel [BK]; la seconda é la triangolazione con-
tratta di CP? costruita dal terzo autore in [G].

SUMMARY. - We present an explicit algorithm for linking two “minimal” tri-
angulations of the complex projective plane CP? . The first one is the “9-
verter” simplicial triangulation found by Kihnel [BK]; the second one is
the contracted triangulation of CP? | built by the third author in [G].

1. Introduction.

In 1983 W. Kihnel built a simplicial triangulation of the complex pro-
jective plane CP?, denoted C' P2, with 9 vertices, 36 edges, 84 triangles, 90
tetrahedra and 36 4-simplexes (see [BK] and [K]). The list of its 4-simplexes,
each represented by a 5-tuple of integers out of {1,2,...,9}, is shown in
Table 1.
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12456 45789 78123
23564 56897 89231
31645 64978 97312

12459 45783 78126
23567 56891 89234
31648 64972 97315

23649 56973 89316
31457 64781 97124
12568 45892 78235

31569 64893 97236
12647 45971 78314
23458 56782 89125

The above triangulation is proved to be minimal with respect to the
number of vertices; moreover, it is unique with this property [KL]. The nine
links of its vertices are all isomorphic to one of the Briickner-Griinbaum
3-spheres with 8 vertices enumerated in [Br] and [GrS], and more precisely
to the “non-polytopal” one (see also [Ba], [MY]).

The minimality (and uniqueness) of the Kiihnel triangulation, with re-
spect to the number of vertices, is meaningless in the larger context of
pseudocomplezes. In fact, a result by Pezzana [P1] assures that each closed
connected n-manifold M” is always homeomorphic to the space of a pseu-
docomplex K, with exactly n+ 1 vertices (called a contracted triangulation
of M™). As recalled in the next section, this fact allows to represent M"
by an edge-coloured graph T (called a crystallization of M™), which is in
some sense “dual” of K.

The “simplest” contracted triangulation of CP? has 5 vertices, 10 edges,
20 triangles, 20 tetrahedra and 8 4-simplexes. It is proved to be minimal
with respect to the number of 4-simplexes (as well as to the number of
vertices) [G, Lemma 1 and Corollary 2]. The associated crystallization
(which we shall denote by I1%) is shown in Figure 1.
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Figure 1

As it is easy to check, II® regularly imbeds into the orientable surface of
genus two, with respect to all cyclic permutations of the colour-set. Since
S™ is the only closed n-manifold of regular genus zero [FGs], and S! x §3
is the only closed 4-manifold of regular genus one [C], then TI® also realizes
the least regular genus among all crystallizations of the complex projective
plane.

The main purpose of this paper is to present an effective algorithm for
linking together these two minimal representations of CP?2.

The first step is to exhibit a coloured simplicial subdivision C'PZ; of
CPZ, with 26 vertices, 167 edges, 438 triangles, 490 tetrahedra and 196
4-simplexes (hence much more economical than the first barycentric sub-
division of C'PZ, which has 4320 4-simplexes). The “dual” graph TI'%¢ (of
order 196 and regular genus 36), is then transformed into I1® by cancelling
94 dipoles.

The reduction algorithm is realized

by a Turbopascal Program. The same program, working in dimension
n, allows to get the regular genus of a graph (in fact the genera of all its
regular imbeddings) and a presentation of the fundamental group of the
represented manifold (see [Ch]).
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We wish to thank Josef Eschgfaller for his helpful suggestions during
the realization of this program.

2. Main Definitions and Notations.

All spaces and maps considered in this work belong to the piece-
wise-linear category, for which we refer to [Gl] or [RS]. The prefix “PL”
will always be omitted. For graph theory, see [W].

By a coloured n-complex [BM] is meant a pseudocomplex K of dimension
n [HW, p. 49], endowed with a map ¢ from the set Sg(K) of vertices of
K to the “colour-set” N, 41 = {1 € Z|1 < i < n+ 1}, such that ¢|Sg(o)
is injective for each simplex o of K. This is equivalent to say that ¢ is a
vertez-colouring of K, by means of n + 1 colours.

A contracted n-compler is, by definition, an n-dimensional pseudocom-
plex K with Card Sg(K) = n+1. Such a K always admits a straightforward
colouring ¢, which is unique up to permutations of the colour-set N,, 1.

Let now K be a coloured n-complex, triangulating a closed
n-manifold M" (i.e. whose space |[K| is homeomorphic to M"). Let fur-
ther T = T(K) be the dual 1-skeleton of K. The vertex-colouring ¢ :
So(K) — N, 41 induces a “dual” edge-colouring v : E(T') — N, 4; on I':
if e € E(T) is the edge of T' dual of the (n — 1) simplex ¢"~! of K, and
©(So(e™™ 1)) = N,iy1 — {e}, then set y(e) = c.

By the definition itself, it turns out that T' is an (n + 1)-coloured graph,
i.e. a multigraph (hence possibly with multiple edges, but no loops), regular
of degree n + 1, endowed with an edge-colouring v : E(y) — N,41 (this
simply means that y(e;) # vy(es) for every pair e1, ey of adjacent edges
of T'). Tt completely represents M": in fact, knowing T', it is possible to
uniquely invert the described procedure, in order to reconstruct K (and
therefore M™ = |K|).

It is easy to see that every simplicial complex admits a coloured sub-
division. This implies that all closed connected n-manifolds M™ can be
represented by (n + 1)-coloured graphs. The main result of [P], [P2] as-
sures that among such graphs there always exists at least one crystallization
(i.e. a graph T, whose associated pseudocomplex K is contracted). This
is equivalent to say that for each ¢ € N, 41, the subgraph T, obtained by
deleting all edges coloured ¢ from T, is connected. An alternative proof of
the above existence theorem is contained in [LM]; it makes use of the moves
introduced in [FG1], that we now recall, since they compose the single steps
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of the reduction algorithm, presented in the following section.

Let T be an (n+1)-coloured graph, representing a manifold M". By a B-
residue (B being a subset of Nn+1) is meant a connected component of the
subgraph T'g = (V(T),y~1(B)). A subgraph © of T, formed by two vertices
z,y joined by h edges with colours ¢, ..., ¢p, is called an h-dipole (1 < h <
n) if z and y belong to different (N, 1 —{e1, ..., cp})-residues. Cancelling
O from ' means to form the graph T”, where V(T') = V(T') — {z,y} and
where E(T”) is obtained from E(T) — E(©) by “pasting together” the pairs
of equally coloured edges coming to z and y from outside ©. Adding © to T/
means the inverse procedure. The colours ¢y, ..., ¢, are said to be involved
in the dipole ©. The main result of [FG1] assures that if two (n + 1)-
coloured graphs T' and T represents two closed connected n-manifolds M™,
M'™, then M™ and M'™ are homeomorphic iff T' and I can be obtained
from each other by cancelling and/or adding a finite number of dipoles (see
also [F]). General surveys on the above arguments are contained in [FGG]

and [V].

3. The Algorithm.

As hinted in §1, we show how to produce a rather economical coloured
subdivision C'P% of C'P. First of all, we relabel the nine vertices of C'PZ,
by setting:

(i) =

Let X(CPZ) = {el,.. .,e(lh, e’ .. .,ezg, ej, .. .,ezs} be the set of all
edges e}, of CP2 (1 <r <5, 1< j <d,} whose endpoints are both
labelled r by n. Let further dg = 1. For each pair (s,js), 0 < s < 5,
1 < js < ds, we shall construct a subdivision Kj of CPZ and a vertex-
labelling n;_ @ So(Kj ) — N5, such that:

7, for 1 <7 <5;
i(mod 5), for6<i<9.

1) 3 [So(CP§) =m;
2) X(K$)={e! €X(CP])|either h=s, j, > j; or h > s}.

For, let K¢ = CPZ, 1Y = n be the starting point of the subdivision
algorithm. Suppose now given a subdivision H = Kz»t and a vertex-labelling
¥ =1, So(H) — N5, satisfying conditions (1) and (2). If ¢ = 5 and
Jjt+ = ds, then the algorithm stops and H is the desired coloured subdivision
of CPZ, since v is a vertex-colouring. If this is not the case, then we
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shall construct a subdivision H = K" and a vertex-labelling 1/; =5
So(ﬂ) — Ny, again satisfying conditions (1) and (2), where either m = ¢,
jm:]t+1 (lf_]t <dt),orm:t+1,jm:1(1f]t:dt)

The edge el!) = e’ € X(H) (with m as before) has both endpoints
labelled m by v. Let m; be the first element of N5-{m} (in the natural
order) such that Card {¢/="(m1)NSo(Lk(e(™); H))} is minimal in N5-{m}.
Roughly speaking, m; is one of the colours different from m (in fact the
first you meet) which are less used for labelling the vertices of the link
of e in H. Let H!) be the stellar subdivision of H on e(®) [GI]: it
has only one more vertex v(1) (i.e. the barycenter of e(l)), whose link is
Lk(v(); HM) = geV) « Lk(e("); H). Note that del') is a O-sphere, with
both vertices labelled m. Now, define () : So(H(1)) — Ny as follows:

pw) if w#£ v

my if w=v .

Tf no vertex of Lk(v(1); H() is labelled m; by ¢(!)| then set H(Y) = H,
(1) = 4. Conversely, apply the same procedure on each edge e:) =

—

v sw, of H®) with 1/)(1) (wg) = maq, choosing the labels of the new vertices
(the barycenters of the edges e(?)’s) in Ny — {m, m;}. The subdivision H
of H and the vertex-labelling Y we are looking for, are obtained by at most
four such steps.

The final product of the described algorithm is a simplicial coloured sub-
division C'PZ; of C'PZ; it strongly depends on the order fixed on $(C'PZ) and
on the colours chosen at each  step. Its  “dual”
5-coloured graph I'(C'PZ) will be called TI'%%) since it has 196 vertices
(each represented by an integer out of Njgs), corresponding to the 196 4-
simplexes of C'PZ;. It is memorized on the computer as a list of 498 lines
(records),shown in Table 2. The first two elements of each line belong to
Nig6 and represent two different vertices 7, j of II'?% (i < j); the remaining
elements of each line form a subset B = B(i,j) of N5 and represent the
colour-set of the edges joining i and j in IT'%%. Note that this set always
reduces to a single colour, since IT'°® admits no multiple edges.

Table 2
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graph I1'%% by cancelling a finite sequence of dipoles from it.

The reduction algorithm is realized by a Turbopascal Program, which
has one procedure to search and one to delete dipoles from the graph. The
searching procedure acts on each line (i, j; B) of the list representing the

graph, checking if i and j belong to different (N5 — B)-residues.
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Once a dipole © = (4, j; B) has been recognized, the cancelling procedure
works in the following way:

1)

2)

it deletes the lines, which contain either ¢ or j from ' (O included)
and puts them into a new graph Z(0);

for each colour ¢ € N5 — B, it searches the two lines (i, h; B') (or
(h,3;B"), (4,k; B") (or k,j : B")) of Z(©) containing ¢ and j re-
spectively, such that ¢ € B N B’; then supposing
h < k) either it adds a new line (h,k;{c}) to T' (if no previ-
ous line of T contains both A and k), or it substitutes the line

(h, k; A) (already contained in T'), by the (h, k; AU {c}).

Note that each step reduces the order of the graph by two. The whole re-
duction procedure stops either when the resulting graph is devoid of dipoles,
or when it reduces to a single line (which would imply that it represents
a sphere). In both cases, the resulting graph is a crystallization: thus the
described algorithm shows, among other, how to get a crystallization of a
closed manifold out of a coloured complex triangulating it (see also [LM]).

The sequence of 94 dipoles (each represented only by the pair of its
vertices) found and cancelled, starting from IT1'°% is shown in Table 3.
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Table 3

1 2 3 11 4 8

5 9 6 10 T 17
12 27| 13 18| 14 30
15 33| 16 21 19 41
20 42| 22 50| 23 52
24 53| 25 37| 26 56
28 59| 29 38| 31 63
32 66| 34 T1| 35 72
36 73 39 79| 40 80
43 84 | 44 8 | 45 46
47 49 ] 48 91| 51 98
54 78 | 55 100 | 5T 104
58 95 | 60 108 | 61 111
62 92| 64 114 | 65 12
67 115 | 68 116 | 69 96
74 135 | 75 130 | 76 131
77132 | 81 113 | 82 139
83 112 | 86 141 | 87 142
88 112 | 89 90 | 93 151
94 188 | 97 159 | 99 160
101 161 | 102 162 | 103 119
105 149 | 106 155 | 107 156
109 166 | 110 146 | 123 174
124 148 | 70 129 | 127 157
133 153 | 136 178 | 137 163
138 168 | 143 170 | 145 183
154 185 | 158 169 | 117 140
164 186 | 165 184 | 167 193
171 190 | 179 196 | 182 191
126 147 | 150 172 | 175 194
125 177 | 187 195 | 189 192
120 144

The output of the program is the graph II® presented in Table 4. It has
8 vertices (belonging to the set {118,128,134, 152,173,176, 180, 181}, and
20 edges.
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Table 4

118 173 colours: 2 5 134 181 colours: 2 4
118 180 colours: 3 4 134 176 colours: 5
118 176 colours: 1 134 173 colours: 1 3
128 176 colours: 2 3 152 181 colours: 3 5
128 180 colours: 5 152 180 colours: 1 2
128 181 colours: 1 152 176 colours: 4
128 173 colours: 4

It turns out that the graphs II® (built in [G] and shown in
Figure 1) and II® are isomorphic by the colour-preserving isomorphism ¥ in-
duced by the following bijection ¢ between the respective
vertex-sets: (1) = 118; ¥(2) = 173, (3) = 134; ¢(4) = 181; (5) = 152;
P(6) = 180; (7) = 176; ¥(8) = 128.

It would be interesting to apply the same algorithm to the
15-vertex triangulations of the 8-manifold presented in [BrK] (which is
probably the quaternionic projective plane HP?), in order to get a (mini-
mal?) crystallization of it.
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